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Abstract: Text-based CAPTCHAs remain the most widely adopted security scheme, which is the first
barrier to securing websites. Deep learning methods, especially Convolutional Neural Networks
(CNNs), are the mainstream approach for text CAPTCHA recognition and are widely used in
CAPTCHA vulnerability assessment and data collection. However, verification code recognizers
are mostly deployed on the CPU platform as part of a web crawler and security assessment; they
are required to have both low complexity and high recognition accuracy. Due to the specifically
designed anti-attack mechanisms like noise, interference, geometric deformation, twisting, rotation,
and character adhesion in text CAPTCHAs, some characters are difficult to efficiently identify with
high accuracy in these complex CAPTCHA images. This paper proposed a recognition model
named Adaptive CAPTCHA with a CNN combined with an RNN (CRNN) module and trainable
Adaptive Fusion Filtering Networks (AFFN), which effectively handle the interference and learn
the correlation between characters in CAPTCHAs to enhance recognition accuracy. Experimental
results on two datasets of different complexities show that, compared with the baseline model Deep
CAPTCHA, the number of parameters of our proposed model is reduced by about 70%, and the
recognition accuracy is improved by more than 10 percentage points in the two datasets. In addition,
the proposed model has a faster training convergence speed. Compared with several of the latest
models, the model proposed by the study also has better comprehensive performance.

Keywords: CAPTCHA recognition; noise; interference; filter; LSTM; resistance mechanisms

1. Introduction

The Completely Automated Public Turing test to tell Computers and Humans Apart
(CAPTCHA), which is recognized as a Human Interactive Proof (HIP), represents a widely
utilized mechanism designed to autonomously differentiate between human users and
machines [1]. Introduced by von Ahn and colleagues as a text-oriented CAPTCHA variant
known as reCAPTCHA, this CAPTCHA emerged from a research initiative at Carnegie
Mellon University in 2003 [2]. Due to its low cost, high reliability, and easy deployment,
text-based CAPTCHA is widely used as a security product on the Internet and is applied
to many websites and information systems around the world [3]. However, it is difficult
for websites to distinguish whether the CAPTCHA reader is a human or a machine. These
text CAPTCHAs are increasingly vulnerable to malicious attacks based on deep learning,
such as the Deep CAPTCHA [4]. The pervasive incorporation of digital and Roman
characters in text-based CAPTCHAs could render them susceptible to interpretation by
Optical Character Recogniton (OCR) [5]. For CAPTCHAs engendered with elevated levels
of noise, the efficacy of models in deciphering the content is significantly impeded owing to
the persistence of interference even after the images are binarized [6]. Breaking algorithms
based on traditional machine learning, including Decision Trees (DT), K-Nearest Neighbors
(KNN), and Support Vector Machines (SVM), also suffer from insufficient recognition
ability [7].
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The research on the CAPTCHA recognition algorithm can help websites and CAPTCHA
designers find the vulnerabilities of CAPTCHAs. By using the proposed CAPTCHA
recognition engines, companies and developers may evaluate the security of the website’s
CAPTCHAs and block dangerous vulnerabilities in time to avoid being attacked. From a
commercial point of view, the CAPTCHA recognition algorithms can be embedded into
network security assessment toolkits to evaluate the security of websites. In addition, the
research on CAPTCHA recognition may be used for reference in scene text recognition,
object detection, and OCR.

In recent years, the field of text-based CAPTCHA recognition has seen several ad-
vancements, particularly in the realm of deep learning, which has become the mainstream
direction for text-based CAPTCHA recognition [8]. CNNs are the most used networks as
they excel at learning spatial hierarchies in an image, thereby providing a robust way for
CAPTCHA recognition [9]. Recurrent Neural Network (RNN) or Long Short-Term Memory
(LSTM) is another neural network that has shown impressive recognition accuracy in
CAPTCHAs with Connecting Characters Together (CCT), as it can remember patterns over
lengthy sequences [10]. Combined with CNNs and RNNs, the attention mechanisms allow
the neural network to focus on certain important features, spatial positions, and channels,
thereby improving the recognition effect [11]. Additionally, some content generation tech-
niques have shown potential for enhancing models by creating believable CAPTCHA–like
images to train a more robust network [12]. It is important to note that a single model may
not always be the best choice. Depending on the complexity of the CAPTCHAs, a hybrid
approach could be employed to decode CAPTCHAs [13].

The CAPTCHA recognition model is commonly utilized as a module by web scrawlers
running on personal CPU platforms for data collection tasks. Therefore, it is necessary to
reduce Parameters (PARAMs) while maintaining the Average Attack Success Rate (AASR).
Accordingly, it is important to discern as many CAPTCHAs as possible per second. Frames
Per Second (FPS) is therefore employed as a metric to gauge the real-time performance of
CAPTCHA solvers, which reflects the number of CAPTCHAs that a solver can process each
second, making it a critical measure of efficiency in some scenarios. Multiply–Accumulate
Operations Per Second (MACs) and Floating-Point Operations Per Second (FLOPs) are
another two metrics which are employed to evaluate computational performance and
estimate the complexity of models or algorithms.

To train the model, an appropriate loss function is selected to better update the model
parameters. For classification models, Cross-Entropy (CE) and Binary Cross-Entropy (BCE)
are the most used. Focal loss, an improved version of the BCE loss function, is often used
in object detection and image classification tasks. It is worth mentioning that performance
evaluation is generally tested on public datasets.

The primary contribution of this research is to propose a new text-based CAPTCHA
recognition model, named Adaptive CAPTCHA, based on Deep CAPTCHA, which has the
characteristics of small model parameters and high recognition accuracy. The improvements
are in three aspects:

• Trainable adaptive fusion filter networks are integrated into the model to combat the
noise and interference presented in CAPTCHAs.

• A CRNN is adopted to replace the global Fully Connected (FC) layers to increase
the ability to identify correlation between characters, which also greatly reduces the
number of parameters.

• By introducing residual connections, the model has a faster training convergence
speed compared with the baseline.

• Compared with other works, the method proposed in this study achieves a compact
real-time CAPTCHA breaker with extremely low complexity and high AASR.

2. Related Works

In the past, CAPTCHA–breaking methods were mostly used in machine learning,
which has limited performance and poor algorithm robustness. As image recognition
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enters the era of deep learning, the main research directions have focused on CNNs, RNNs,
Generative Adversarial Networks (GANs), and object detection networks. These models
both require data preprocessing to better recognize characters. Preprocessing acts as a
preliminary stage, incorporating tasks such as image grayscale and binarization, thinning,
and filtering [14]. Grayscale transformation is a process that converts a colored image into
a single-channel image, while binarization is the conversion of a grayscale image to an
image composed solely of black and white pixels. In some tasks, thinning is employed to
represent the shape of a character as a skeleton, removing specific points from the original
image while retaining the overall structure. For CAPTCHA–breaking models that generally
run on CPU platforms, the number of parameters cannot be too large, so the grayscale is
necessary to convert a three-channel color image into a single-channel image. This can
effectively reduce the width of the model without significantly affecting its recognition
accuracy. In addition, some cracking methods will first segment the characters before
recognizing them, but these segmentation methods require complex designs for different
deformations and are not robust [15].

There is usually a filtering module after preprocessing, which is extremely prominent
for CAPTCHA recognition with noisy backgrounds. The result of filtering directly affects
the character recognition accuracy of the subsequent network. After filtering, the predicted
results are outputted through neural networks, which consist of a combination of different
technologies such as CNNs, RNNs, and GANs.

2.1. CAPTCHA Recognition with CNN and RNN

The most powerful classification networks, CNNs and RNNs, serve as the foundation
for many CAPTCHA recognition networks. Leveraging the Dense Convolutional Network
(DenseNet) with cross-layer connections, Wang et al. introduced modified networks for
CAPTCHA recognition [16]. They reduced the number of convolutional blocks and devel-
oped specific classifiers for different CAPTCHA image types. A CAPTCHA recognition
method with a focal loss function is presented by Wang et al. Their method enhances the
traditional VGG network structure and incorporates the focal loss function [17]. Lu et al.
proposed a skip-connection CNN model using two publicly available datasets of text-based
CAPTCHA images, which yields a promising result compared to previous studies [18]. A
drawback of this technique is the requirement to first segment characters, with the process
relying on manually configured operators, which poses a challenge when dealing with
CAPTCHAs that contain overlapping characters. Shi et al. proposed a CRNN based on the
Connectionist Temporal Classification (CTC) loss function and an RNN, which improved
the detection ability of variable-length characters [19].

More recently, capsule networks have been used due to their capability of preserv-
ing detailed information about the input [20]. Nevertheless, this approach is extremely
computationally intensive, and later trials indicate that the Attack Success Rate (ASR) is
not good for CAPTCHAs with significant levels of noise. Ke Qing et al. introduced a
network called PosConv that utilizes the positional information in the character sequence
without using an RNN. This network employs a unique padding method and modified
convolution to directly incorporate the relative position into the local features of letters [21].
In 2022, Aditya Atri and his colleagues employed the Depth First Search (DFS) method
to extract characters from CAPTCHAs, called DeCAPTCHA [22]. They then utilized a
CNN to recognize these extracted characters. However, the process of segmentation is
significantly impacted by the presence of noise and interference, as well as the complexity
of the calculations involved. Ke Qing et al. introduced a ConvNet that incorporates a
unique group convolution operation across the width of the image [23]. This operation
effectively reduces unnecessary calculations, resulting in enhanced performance. In 2023,
Rajat Subhra Bhowmick and his colleagues assessed the weaknesses in the CAPTCHA sys-
tems of government websites. The authors provide an innovative neural network structure
designed to effectively solve CAPTCHAs by incorporating textual instructions into the
image [24]. Mukhtar Opeyemi Yusuf et al. introduced a multiview deep learning method
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for cracking CAPTCHAs. This approach utilizes correlational characteristics from many
perspectives to enhance the model’s ability to generalize and accurately classify [25]. A
method was proposed by Zaid Derea et al. for recognizing CAPTCHAs that involves
making several copies of the original CAPTCHA pictures and producing individual binary
images with the precise positions of each set of CAPTCHA letters [26]. Soumen Sinha et al.
developed a technique to bypass CAPTCHAs using a sequential CNN model known as
CAP-SECURE, which is employed to assess the flaws and susceptibilities of websites [27].

Deep CAPTCHA is a state-of-the-art model that is used in the field of text-based
CAPTCHA recognition, as proposed by Zahra Noury et al. in 2020. The model consists of
a series of convolutional layers and pooling layers, which are responsible for extracting
features from the input, as shown in Figure 1. These features are then fed into FC layers
for the classification task. The probabilities of each character in the CAPTCHA are finally
outputted by several SoftMax functions individually. However, this model does not ade-
quately suppress noise and interference by filtering, considering the large number of noise
spots and interference lines that are specially designed for CAPTCHAs. In addition, the
model lacks a module for modeling sequence relationships, whereas there are correlations
between many neighboring characters due to interference and statistical distributions. In
response to the above two problems, a new text-based CAPTCHA cracker, named Adaptive
CAPTCHA based on the Deep CAPTCHA model, is proposed, which will be explained in
detail in the next section.
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Figure 1. The Network of Deep CAPTCHA.

2.2. CAPTCHA Recognition with Object Detection Networks

The objective of an object detection algorithm is to recognize and spatially locate
objects in images [28]. Because each character in the text CAPTCHA can be detected and
classified as an object box, object detection networks can identify the content of CAPTCHAs.
There are many excellent models in the field of object detection, such as SSD, YOLO3, Faster
R-CNN, and YOLOv7 [29–32]. Du et al. demonstrate that Faster R-CNN can effectively
extract feature maps, enabling accurate recognition of the characters and their locations in
CAPTCHA images [33]. Experimental results indicate that Faster R-CNN achieves high
accuracy in the recognition of CAPTCHAs. Nian et al. proposed a network based on Mask
R-CNN, which comprises a feature extraction module, a character location and recognition
module, and a coordinate matching module [34]. In 2020, N. Carion et al. adopted end-
to-end transformer-based detectors, which have great application potential in the field of
CAPTCHA breaking [35]. However, text-based CAPTCHA recognition based on object
detection requires a large amount of image annotation work, resulting in high cost and
low efficiency.

2.3. CAPTCHA Recognition Based on Synthetic CAPTCHAs

As transfer learning based on synthetic CAPTCHAs can greatly improve the training
effectiveness of the model, GAN methods have become a research hotspot in CAPTCHA
cracking in recent years [36]. These methods have shown considerable promise in CAPTCHA
recognition, where models pre-trained on specific synthetic CAPTCHA datasets are fine-
tuned on the target dataset. In 2018, Ye et al. proposed a model based on GANs to crack
text-based CAPTCHAs [11]. In 2020, the authors used GAN-based cracking methods to
evaluate 33 different verification code datasets and achieved high accuracy [37]. In 2021,
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Zhuet al. introduced a CAPTCHA recognizer with the Cycle–GAN approach that drew
inspiration from the method devised by Ye et al. [38]. The approach involves training a
GAN to produce new CAPTCHAs, which are then used to train a solver network. Their
model reported high accuracy on multiple CAPTCHA datasets. In addition, Wang et al.
proposed a fast CAPTCHA solver that effectively breaks complex text CAPTCHAs while
using minimal labeled data [39]. It employs a GAN for simplifying image processing,
resulting in a character accuracy rate of over 96%. GAN-based models usually utilize
public datasets for pre-training, but the training cost greatly increases, making it not
cost-effective for small tasks such as CAPTCHA breaking. In 2020, Haitian Chen and
colleagues introduced a novel CAPTCHA known as StyleCAPTCHA, which uses neu-
ral style transfer to produce CAPTCHAs [40]. In 2022, the framework by Ning Zhang
et al. employs a GAN to combat interference and background noise and incorporates an
improved character segmentation method to handle CAPTCHA pictures with varying char-
acter lengths [41]. Turhan Kimbrough introduced a novel framework to enhance feature
extraction in CAPTCHAs by assigning several labels to each CAPTCHA. This approach
involved generating training datasets using various CAPTCHA methods and employing a
pre-processing methodology [42].

2.4. CAPTCHA Recognition with Attention Mechanisms and Transformers

Attention mechanisms allow networks to give more attention to certain channels and
regions of a CAPTCHA. The Convolutional Block Attention Module (CBAM), conceived
by Woo et al., is set to be integrated into any classification network, and introduces chan-
nel attention and spatial attention mechanisms [43]. Zheng et al. focus on enhancing
CAPTCHA recognition by integrating the CBAM with a baseline network [12]. Zi et al.
proposed a model based on an encoder–decoder architecture that employs an attention
mechanism in conjunction with LSTM [44]. A novel transformer-based method was used
for CAPTCHA identification by Shi et al. [45]. The method involves character segmentation
through optional image pre-processing to enhance accuracy, followed by reconstruction.
As a spatial attention mechanism, Spatial Transformer Networks (STNs) can correct the
deformation and distortion of characters in CAPTCHAs [46]. Zhao et al. developed GEE-
SOLVER, a method for solving text-based captchas using self-supervised learning. They
utilized masked autoencoders to learn the hidden features of unmasked pictures. However,
this approach consists of a vision transformer encoder that requires significant computa-
tional resources [47]. In 2023, Li et al. developed a task for predicting and reconstructing
CAPTCHA images, which enables unsupervised feature encoding that implicitly represents
the spatial domain properties of the images [48]. Raghavendra Hallya et al. introduced
global and local attention methods for both transfer learning and parameter search models.
However, the parameter search needs a lot of computation and is time-consuming [49].

In summary, in the preprocessing stage, the grayscale method without segmentation
is a better option. For the recognition stage, a GAN is inefficient in terms of training, while
object detection methods require a large amount of manual annotation. Therefore, a model
based on CNN and RNN architectures is the optimal combination of high accuracy and low
complexity. However, ASR, FPS, and PARAMs must be fully considered when evaluating
models running on CPU platforms.

3. Methods

For text-based CAPTCHA designers, it is necessary to balance both the resistance
mechanisms against web attacks and the usability of website users [50]. To increase anti-
attack ability without reducing the user’s recognition time, CCT and deformation are used
in the CAPTCHA design [51]. As a result, a few consecutive letters may be difficult to
distinguish by the naked eye, such as two back-to-back letters V, as shown in Figure 2. To
avoid confusion, designers try to reduce confusing characters when designing CAPTCHAs,
resulting in Markov Transition Probabilities (MTPs) between adjacent characters. For this
reason, some datasets present the character sequence dependence between two consecutive
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characters, such as the public dataset M-CAPTCHA [52]. For these CAPTCHAs, break
models must consider how to process this correlation between adjacent characters.
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Figure 2. Some confusing adjacent characters in CAPTCHAs.

As analyzed previously, every CAPTCHA image contains noise, interference, deforma-
tions, overlapping, and CCT. To address these problems for text-based CAPTCHA breaking,
a model called Adaptive CAPTCHA is raised that utilizes filters and CRNN, which bor-
row part of the structure from Deep CAPTCHA, as shown in Figure 3. Compared with
Deep CAPTCHA, the proposed model has fewer model parameters, fewer convergence
epochs, and higher recognition accuracy. Pos T, Pos 0, Pos 1, Pos 2, and Pos 3 represent
different output positions of the model. These different positions can be short-circuited
using residual connections, potentially improving the training speed [53].
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Figure 3. The networks of Adaptive CAPTCHA.

In Adaptive CAPTCHA, the parameter settings of the first three convolutional layers
and FC layers are completely consistent with Deep CAPTCHA. Unlike Deep CAPTCHA,
which uses fully connected layers with a huge number of parameters after conv3, our
model introduces CRNN based on two convolutional layers and one LSTM layer to replace
the FC layers. The subsequent experiments show that replacing the full connected layers
can significantly reduce the number of parameters. Additionally, LSTM can model the
correlation between CAPTCHA characters, thereby improving ASR.

The verification code is subject to interference and noise., and the filter module is
specially designed to address the lack of processing in the original Deep CAPTCHA.
However, the inclusion of the filter layers must be adjusted according to the level of image
noise. Otherwise, it may negatively impact the recognition of the characters.

3.1. Data Collection and Preprocessing

In this study, two datasets are adopted for evaluation: the first is the public dataset M-
CAPTCHA on Kaggle “https://www.kaggle.com/datasets/sanluo/mcaptcha (accessed on
5 February 2024)”, and the second is a dataset generated based on the Python ImageCaptcha
library, called P-CAPTCHA. M-CAPTCHA contains 25,000 images, while P-CAPTCHA
has 20,000 CAPTCHAs. Every CAPTCHA image contains four characters from position

https://www.kaggle.com/datasets/sanluo/mcaptcha
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one to four, and each character is taken from the 26 uppercase English letters. Figure 4a,b
show some samples in the M-CAPTCHA and P-CAPTCHA datasets, respectively. As can
be seen in the figures, images in P-CAPTCHA have little interference, noise, character
distortion, and deformation, while the M-CAPTCHA dataset has a much stronger anti-
attack mechanism, which includes more complex background interference, greater spatial
deformation, and nonlinear distortion, making it very difficult to recognize.
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Figure 5a,b show that P-CAPTCHA characters present a uniform distribution, while
M-CAPTCHA characters are relatively uniformly distributed, indicating that there are
correlations between the characters in the M-CAPTCHA.
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Further analysis found that the M–dataset also has MTPs between characters, and
the MTPs of some characters (from R to Z) in the training set are shown in Figure 6. The
presence of MTPs leads to their first-order statistical distributions being closely related to
the transition probabilities. Letters in the vertical coordinate represent a character, and
letters in the horizontal coordinate represent the next adjacent character. The numerical
values of their intersection are the MTPs of these two characters, which are zero in some
grids, such as the MTP between the two consecutive letters W. The presence of MTPs
indicates a strong correlation between characters, which can be better modeled by RNN
compared with FC to improve recognition accuracy.

Based on the above data analysis, it is necessary to model the inter-character correla-
tion, so a CRNN module was adopted in this study. The images in both datasets are of the
same size, with a width of 64 and a height of 192 pixels, thus requiring no scaling. However,
grayscale processing of the images is necessary, which can greatly reduce the complexity of
the model while maintaining the accuracy of CAPTCHA recognition. In addition, all of the
images need to be normalized for better training.
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3.2. AFFN Module

CAPTCHA recognition is different from general image recognition tasks. To prevent
web attacks, there are many artificially designed noise points and interference lines in
the image. A robust filter network may help the subsequent CNN better extract the
features of CAPTCHAs, thereby improving recognition accuracy. In this study, AFFN for
combating anti-attack mechanisms presented in this research, as seen in Figure 7, comprises
a sequence of nested autoencoder filter units. Both the encoder and decoder are composed
of a convolutional layer, a Batch Normalization (BN) layer, and an activation layer.
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The number of layers depends on the noise power of the target dataset; the more noise,
the larger the number of layers set, and vice versa. The experiments in the next section will
show that a reasonable number of filter network layers is required to improve the AASR
of the model. One approach is to manually set the number of filter units based on the
noise level of the image, but this method requires experience and is not flexible. Another
approach proposed in this study is to use adaptive filtering factor to adjust the weights of
the filtering unit.
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By introducing the fusion factor Alpha in AFFN, adaptive filtering of noise can be
achieved. The adaptive fusion factor controls the weights of the next nested filtering unit
participating in the filtering. Since this factor is trainable, the model can automatically
adjust the filtering intensity based on the noise in the image. Each filtering unit in the filter
bank adopts an encoder–decoder structure, and by using symmetric parameters, the shape
of the input and output features can remain unchanged. The maximum number of filtering
units N in the AFFN is a hyperparameter that needs to be set in advance.

Figure 8 shows the optimization process of the Alpha during training on the M–dataset
and P–dataset when the maximum number of filtering units is two. The larger the Alpha
value, the lower the filtering strength of the model, which also reflects the lower noise level
of the data set. The Figure also shows that the P–dataset has a higher optimal Alpha than
the M–dataset, which is consistent with the low noise characteristics of the P–dataset.
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3.3. Residual Connections

Different layers output features of different sizes, which can be connected through
residual connections to favor gradient backpropagation. However, when using residuals,
too many connections may lead to performance degradation for models with few layers,
such as the text CAPTCHA recognizer. Multiple residual connections can confuse training
signals during backpropagation, affecting gradient optimization. Secondly, an excessive
number of residual connections makes the model overfit the training data, which can
negatively impact its ability to generalize to the test set. Additionally, excessive residuals
harm the weights and learning rate, which may reduce the efficiency of the network
parameters. Fourth, unnecessary residuals between specific layers can disrupt the original
flow of information and introduce extra disturbances, especially if these layers transfer
information well on their own.

In our model, we experimentally selected some residual connections from Pos T, Pos
0, Pos 1, Pos 2, and Pos 3, as shown in Figure 3. Because our model has a small number of
layers, it is important to carefully verify the impact of residuals on overall performance
through experiments to find the optimal configuration.

3.4. CRNN Module

The CRNN module contains two convolutional layers, each followed by a BN layer
and an activation function, as shown in Figure 9. These two convolutional layers are
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used to further down-sample the features and extract higher-level semantic contents. The
addition of the BN layer can accelerate the convergence of the model, which will be
shown in the subsequent experimental section. The LSTM module adopts a single-layer
structure, which divides the output of the convolutional layer into four parts by flattening
the channel, height, and width dimensions and dividing them evenly into four parts; each
part represents a character. In this way, the dependencies between characters can be learned
to combat interference problems between characters such as CCT, geometric deformation,
and MTPs. A dropout layer is also added before and after the LSTM layer to prevent
overfitting. Based on testing experience, the probability of randomly discarding is set at
30%. This CRNN module is the key to model improvement, which not only greatly reduces
the number of parameters but also improves the ASR.
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3.5. Metrics and Loss Functions

In addition to designing robust network models, the evaluation of model performance
is critical. Among all evaluation metrics, the ASR and the PARAMs are the key metrics
for CAPTCHA recognition. The definition of ASR is the proportion of the number of
correctly recognized characters to the total number of characters in a dataset, as shown
in the following Equation (1). AASR is another index that is used to measure the overall
recognition accuracy of CAPTCHAs regardless of the specific character position.

ASR = the number of characters recognized/the number of all characters (1)

In the image classification, the CE and BCE are currently mostly used loss functions,
and these functions are very suitable for backpropagation to update network weight
parameters with the probability distribution input. If xi represents the predicted probability
and yi represents the true label, Equation (2) shows the weighted BCE formula for a multi-
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classification task, and wi represents the weight. If wi is equal to one, the above formula
degenerates into a general BCE function.

L = −wi[yilogxi + (1 − yi)log(1 − xi)] (2)

Another loss function is focal loss, as shown in Equation (3). Among them, α is used
to control the ratio of positive and negative samples, and γ is used to control the weight of
difficult and easy samples. By setting different parameter values, different samples were
given different weights.

L = −αyi(1 − xi)
γlogxi − (1 − α)(1 − yi)x

γ
i log(1 − xi) (3)

Mean Squared Error (MSE) loss is another loss function that calculates the squared
difference between predicted probabilities and real labels. Its advantages include smooth
gradients, which aid optimization. Different from BCE, MSE is less sensitive to differences
between probabilities for true categories due to its quadratic nature. However, BCE
provides a stronger gradient signal for low-probability events, which is often desirable in
classification tasks where the focus is on the probability of the correct class.

4. Results and Discussion

An ablation study was performed to demonstrate the performance by incorporat-
ing different modules into Deep CAPTCHA. All of the experiments were tested on M-
CAPTCHA and P-CAPTCHA, each being divided into two subsets, with 80% devoted to
training and 20% to testing. An Adam optimizer with a learning rate of 0.0001 was em-
ployed in the experiment. A total of 130 epochs were enough for the model’s convergence,
so this value was adopted as the training epoch. Most experiments were primarily con-
ducted on the Tesla T4 platform using the CUDA 12.1 environment, with some experiments
performed on an Intel (R) Core (TM) i5-8265U CPU, manufactured at Chongqing, China,
such as FPS.

4.1. Visual Analysis of Filter Networks

Figure 10 shows that the filter networks improved the recognition accuracy for all four
positional characters on the M–dataset. There was an increase in ASR from around 85% to
about 95%, with filter networks contributing approximately 10 percentage points on the
M–dataset. The first and fourth characters had a relatively high ASR for the CCT from only
one adjacent character, while the second and third characters were affected by both sides.
Therefore, the filter networks filtered out more noise and interference, resulting in a greater
boost to ASR in the second and third positions.

As opposed to the M–dataset, where ASR improved significantly with the addition of
the filter networks, there was no change in ASR in the P–dataset, and a slight decrease was
found in the second character, as shown in Figure 11.

After undergoing the filtering process illustrated in Figure 12a, it is evident that the
noise level in the M-CAPTCHA images has markedly diminished. Compared with M-
CAPTCHA, the reason for the lack of improvement in ASR is that the P–dataset contains
less background noise and interference. The strong filter networks did not only filter out
the noise but also did some damage to the characters in the original image, as shown in
Figure 12b. The design of filter networks is a double-edged sword that must be balanced
between noise and characters. For images that contain a lot of interference and noise, it is
necessary to increase the number of layers of the filter networks. On the contrary, less noise
should reduce the number.
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The losses with and without the filter networks on the M-CAPTCHA and P-CAPTCHA
are shown in Figure 13a,b, respectively. The curves in the two figures indicate that the
convergence speeds increased after adding the filter networks, suggesting that the inter-
ference of the two images had been reduced, which made it easier for the model to learn
the features. However, the filter networks caused overfitting to the interference on the
P–dataset, which affected the characters and led to an increase in MSE.
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Therefore, the number of filter units in Adaptive CAPTCHA should be proportional to
the noise level. It is recommended to integrate more filter units for noisier CAPTCHAs and
fewer for less noisy ones. Figure 14 shows the AASR when the filter network is configured
with different units of layers, and the best AASR on the P–dataset was obtained when the
filter network is AFFN. When configuring the Deep CAPCHA with two filtering units,
the AASR is better than that with four filtering units. This is because the P–dataset is a
low-noise CAPTCHA dataset, and strong filtering ability may damage the characters in
the CAPTCHAs. It can also be seen that the AASR of the Deep CAPTCHA without any
filtering units is the lowest. Therefore, by using the fusion factor Alpha, the model can find
the optimal filtering unit weights, thereby achieving better performance.
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4.2. Visual Analysis of CRNN

To compare under the same benchmark, this experiment did not use the filter net-
works but only replaced the FC layers of Deep CAPTCHA with CRNNs, which contain
two convolutional layers: a flatten layer and an LSTM layer. The settings of all other layers
and parameters were the same as Deep CAPTCHA. The AASR on the M-CAPTCHA was
increased to over 98%, as shown in Figure 15a. The CRNN layers improved the AASR on
the P–dataset from about 85% to almost 99%, as shown in Figure 15b. These two results
indicated that the CRNN can more effectively extract CAPTCHA features and learn the
correlation between characters caused by CCT and prior distribution, regardless of whether
the dataset has a lot of noise or not.
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In the CRNN, the CCN layers extract high-level semantic features, while the LSTM
layers learn character relationships. In addition, the BN layers accelerate model learning,
so removing them affects the convergence speed of the model. It can be seen from Figure 16
that, after using LSTM without BN layers, the AASR curve has a plateau area between
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about zero and five epoch intervals. Adding the BN layer speeds up gradient propagation
and makes training more stable.
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For the CRNN, increasing the number of layers of LSTM cannot improve the AASR,
since one layer of LSTM is enough to learn the sequence relations of CAPTCHA images, as
shown in Figure 17. On the curve, one-layer LSTM even slightly outperformed two and
three layers, which also had a minimum number of parameters.
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4.3. Visual Analysis of Residual Connections

Residual connections are used in neural networks to help address the vanishing
gradient problem, particularly in networks with many layers. This situation occurs during
training when the gradients become very small, making it difficult for the network to learn
effectively. By adding residual connections, the network can bypass certain layers, allowing
the gradients to flow more easily through the network. Overall, residual connections can
help improve the training and convergence of deep neural networks, particularly in cases
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where the network has many layers and may encounter the vanishing gradient problem.
Since the proposed networks add the filter, CNN, LSTM, and BN layers based on Deep
CAPTCHA, which increases the number of layers in the entire network, it is necessary to
add residual connections. Figure 18a shows that on the M-CAPTHA, when one residual T0
or T1 is added compared to no residuals, the convergence rate is comparable, while once
more than two residuals are added, it leads to overfitting. This is because while the model
can be trained relatively well, adding too many residuals instead hinders the gradient
propagation. However, the residuals compensate for the corruption of the filter networks
on the characters of the dataset, allowing for a smoother flow of information and therefore
improving the results, as shown in Figure 18b.
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4.4. Visual Analysis of Loss Functions

Figure 19 demonstrates AASR with different loss functions, and there were no signifi-
cant performance discrepancies.
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The legend BCEFocal-alpha-gamma in the figure represents the weight of the positive
sample loss term in BCE, while gamma represents the exponential weight of the predicted
value. The BCE function exhibits a slight performance edge over its counterparts. Given
the lack of pronounced performance benefits and the increased computational expense of
focal loss, the original BCE function emerges as the more prudent choice for the model.

To better visualize the results of this study, a confusion matrix was employed. Figure 20
depicts the AASR confusion matrix of Adaptive CAPTCHA on the M–dataset. The results
suggested a better degree of precision, as evidenced by the misclassification rate of the
proposed method for characters being less than 1%. The figure shows that the letter O
is easily recognized as Q, and Z is often misidentified as S. Therefore, by examining the
confusion matrix, the model could be allowed to further improve the AASR by using active
learning for some characters that are easily misidentified.
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4.5. Ablation Study

In this study, ablation experiments were conducted on STN, filter networks, and
residual connections. A comprehensive performance was compared in terms of FPS, AASR,
MACs, PARAMs, and convergence speed, as shown in Table 1. R (T0, 13, 23) represents the
model using three residual connections simultaneously, from position T to 0, from position
1 to 3, and from position 2 to 3, and others are also similar. Considering that CAPTCHA
recognizers as part of a crawler usually run on personal computers, all FPS were measured
on a CPU platform. In both datasets, the number of model parameters using the CRNN was
reduced by almost 41% compared to the PARAMs using FC layers, while the recognition
accuracy was improved by more than 12%. This shows that both on M-CAPTCHA with a
priori statistical distributions and complex backgrounds and on the simple and low-noise
P-CAPTCHA, the CRNN has a clear advantage in terms of accuracy and complexity.
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Table 1. Ablation study.

No. Models FPS MACs Params AASR
M-Dataset

AASR
P-Dataset

CEPOCH
M-Dataset

CEPOCH
P-Dataset

O Deep CAPTCHA
(Baseline) 126 193.1 M 6.46 M 85% 85% 120 120

A Baseline + CRNN 109 276.1 M 3.82 M 98% 99% 110 110
B A + AFFN 77 319.1 M 3.82 M 99% 98% 30 100
E B + R (T0) 77 319.1 M 3.82 M 99% 99% 50 30
F B + R (T0, 13, 23) 71 320.2 M 3.82 M 99% 99% 70 20
G B + R (T0, T1) 67 319.6 M 3.82 M 99% 99% 70 70
H B + R (T0, T1, 13, 23) 66 320.7 M 3.82 M 99% 99% 60 20

I B + R (T1)
(Adaptive CAPTCHA) 72 319.6 M 3.82 M 99% 99% 40 20

J B + R (T1, 13, 23) 70 320.7 M 3.82 M 99% 98% 80 40
L B + R (T1, 23) 70 320.3 M 3.82 M 99% 99% 70 80
M O + AFFN 81 236.1 M 6.46 M 93% 84% 100 120
N O + STN 67 226.2 M 6.53 M 62% 95% 120 60
O O + AFFN + STN 60 269.2 M 6.53 M 89% 97% 110 60

Although the STN can theoretically be used to correct the geometric deformation
of characters, the experimental results are not ideal when only promoting a little AASR
on the M-CAPTCHA but increasing the number of parameters. The reason is that there
are many irregular and non-linear deformations across a single CAPTCHA, making the
STN difficult to calibrate. The performance improvement of the STN for the P-CAPTCHA
is noticeable from around 85% to 95%, which is due to the low noise and the regular
geometrical deformation of character strokes. However, the 95% ASR of the STN on simple
datasets is still not as good as the 99% ASR of the CRNN, not to mention the fact that the
STN is ineffective on complex datasets, and therefore the STN is not the best choice for text
CAPTCHA breaking.

Adaptive CAPTCHA converges much faster than Deep CAPTCHA on both datasets.
Among all possible residual connections in the experimental results, the model with residual
connection T1 had a convergence speed of 40 epochs on the M–dataset and 20 epochs on the
P–dataset while maintaining the highest accuracy and the minimum number of parameters.
From the table, for a low-complexity network such as Adaptive CAPTCHA, too many
residual connections may destroy the gradient propagation instead of decreasing the
convergence speed.

The table also shows that Deep CAPTCHA had advantages in FPS and MACs, as
shown in the table, which indicates there was a lower computational complexity. However,
for real-time data collection tasks, the FPS value of 72 for Adaptive CAPTCHA was suf-
ficient. For the Deep CAPTCHA, there was an obvious shortcoming in PARAMs, which
was about 70% higher than the Adaptive CAPTCHA. The proposed model, Adaptive
CAPTCHA, performed well in terms of AASR, PARAMs, and convergence speed while
maintaining proper performance in FPS and MACs, which can meet the requirements of
web crawlers and security vulnerability assessment.

4.6. Comparison with Other Works

In this section, we compare the performance of the proposed Adaptive CAPTCHA
with four other models. The first model is the baseline model, Deep CAPTCHA, as
mentioned before. The second is the Multiview Network (MultiviewNet) proposed by
Mukhtar Opeyemi Yusuf et al., which applies two different filters to the same image and
then sends them to two CNN paths for processing before making predictions. In this
experiment, median filtering and bilateral filtering were used. The third and fourth models
are ConvNet proposed by Ke Qing et al., and Capsule, proposed by Ionela Georgiana
Mocanu et al.
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It can be seen from Figure 21 that ConvNet and Adaptive CAPTCHA have the highest
AASR exceeding 99%, but the convergence of ConvNet is faster under the same learning
rate. The AASR of MultiviewNet and Capsule is between 90% and 95%, while Deep
CAPTCHA is about 85%.
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Table 2 lists other evaluation metrics of the different models. The chart clearly indicates
that while ConvNet exhibits the highest AASR, its PARAMs and MACs are suboptimal,
being almost four times more than those of Adaptive CAPTCHA. Besides, the FPS of
ConvNet is the lowest, only around 22.5. It is worth noting that Capsule is the lightest
framework with PARAMs of 691.26 K and has the lowest MACs among all models, but its
inference speed is slower than Deep CAPTCHA and Adaptive CAPTCHA. The AASR of
MultiviewNet is about 95% with small PARAMs, but the FPS is indeed significantly low.
Adaptive CAPTCHA is in the first two on all indicators, which indicates that the proposed
model does have comprehensive performance advantages.

Table 2. Comparison with other latest models.

No. Models FPS MACs Params AASR

A Deep CAPTCHA [4] 126 193.1 M 6.46 M 85%
B MultiviewNet [25] 45.8 968.8 M 1.22 M 95%
C Capsule [20] 59.4 77.77 M 691.26 K 90%
D ConvNet [23] 22.5 1.47 G 15.23 M 99%
E Adaptive CAPTCHA 72 319.6 M 3.82 M 99%

5. Conclusions

In conclusion, a novel text CAPTCHA model was proposed in this research based on
a comprehensive enhancement of the Deep CAPTCHA through means of experiments. The
integration of additional filtering networks suppresses background noise and interference
in CAPTCHA images, while overpowered filter networks can destroy character strokes in
an image. Based on the experiments, an AFFN based on an encoder–decoder architecture
was proposed, whose weights of filter units are learnable according to the noise level of the
target CAPTCHA dataset. A notable reduction in the model’s parameters was achieved
by substituting the original model’s FC layers with a novel CRNN, which significantly
increased the model’s capability to capture inter-character dependencies, thus elevating
the AASR on both datasets with different complexities. In addition, a series of ablation
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studies have been carried out to examine the impact of various components such as
the STN, filter units, LSTM, and residual connections. We also provided an extensive
comparison among various models, assessing pivotal performance metrics including the
PARAMs, FPS, MACs, and AASR. Empirical evidence demonstrates that our proposed
Adaptive CAPTCHA model achieves high accuracy with a substantially reduced number
of parameters. As a direction for future work, we suggest exploration into variable-length
character CAPTCHAs, which present challenges in CAPTCHA recognition tasks. We also
advocate for the application of Bayesian estimation to the realm of CAPTCHA recognition.
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