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Abstract: Electric vehicles (EVs) have already been acknowledged to be the most viable solution
to the climate change that the entire globe has long been combating. Along the same line, it is
a salient subject to expand the availability of EV charging infrastructure, which quintessentially
necessitates the optimization of the charger’s locations. This paper proposes to formulate the optimal
EV charger location problem into a facility location problem (FLP). As an effort to find an efficient
method to solve the well-known nonpolynomial deterministic (NP) hard problem, we present a
comparative quantification among several representative solving techniques. This paper features
two comprehensive case studies representing regions with an average and a high density of EVs. As
such, this paper shows that the proposed framework can lead to successful location optimization
with adequate refinement of solving techniques.

Keywords: electric vehicle (EV) charging; facility location problem (FLP); integer program;
optimization solvers; machine learning

1. Introduction

It is widely agreed that electric vehicles (EVs) are a promising solution to relieve
environmental issues. In fact, EV sales in the United States (U.S.) have increased yearly.
Charging infrastructure is critical to the continued growth of EVs and its upstream indus-
tries. A lack of convenient and ubiquitous charging infrastructure is one of the key factors
that impedes EV adoption [1]. The U.S. federal government moved swiftly to address
this. An example is the EV Charging Action Plan [2,3] that provides USD 7.5 billion to
develop 500,000 public chargers nationwide by the Year 2030. The private sector has also
responded positively to the government’s leading effort. As an example, Tesla announced
a commitment to open thousands of its “Superchargers” to EVs made by other manufac-
turers [4]. Currently, Tesla provides 28,000 charging ports at Supercharger stations in the
U.S., which have been accessible primarily to drivers of the company’s own cars until
now. Nonetheless, the reality still looks quite far-fetched. The U.S. government aims for
the average availability of EV charging stations to be every 50 miles [5] (compared to gas
stations existent every 3.5 miles [6]), while low-income residents are more dependent on
automobiles and must travel further to access jobs and essential services [7]. To this end,
this paper lays out a theoretical framework of optimal EV charger deployment.

We emphasize that our EV charger location optimization problem will very highly
likely take a wide diversity of variables (including economic, societal, human behavioral,
etc.) into account. As such, we set this paper to contribute to the following:

• Building a comprehensive mathematical framework accommodating the particular complexity,
• Demonstrating our numerical computational framework for solving the facility loca-

tion problem (FLP) representing the optimal location;

Appl. Sci. 2024, 14, 5092. https://doi.org/10.3390/app14125092 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14125092
https://doi.org/10.3390/app14125092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2373-909X
https://orcid.org/0000-0002-7393-5080
https://orcid.org/0000-0003-0986-4107
https://doi.org/10.3390/app14125092
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14125092?type=check_update&version=1


Appl. Sci. 2024, 14, 5092 2 of 19

• Laying out an extensive comparative study among the optimization solving techniques
as an effort to find the most efficient solver;

• Applying the findings to two real-world case studies representing an average and high
density of EVs.

2. Related Work

There have been studies on the subjects that are related to this paper’s discussion.
Table 1 summarizes the prior work that is related to this paper in an effort to highlight this
paper’s contribution.

Table 1. Comparison of this paper’s contribution to prior work.

Literature Contribution

FLP Formulation into MINLP for various real-world problems

Distance Optimization Stochastic analyses for location selection

Weight Assignment Techniques Demand prediction by assigning weights to data

Machine Learning Techniques More efficient weight assignment via priority prediction

Solving Techniques Exact or heuristic approaches to solve NP-hard problems

This Paper Comprehensive feasibility study encompassing the aforemen-
tioned numerical techniques

2.1. Problem Formulation Approaches
2.1.1. Facility Location Problem (FLP)

The latest research introduced a body of prior work that formulates the optimal
deployment of EV chargers as a multi-objective optimization problem [8], considering
various factors such as battery types [9] and distances to nearby energy sources [10].

We extended our investigation to the literature on facility location problem (FLP),
which is analogous to our problem in the sense of having to determine optimal deployment
plans including locations and expansion patterns [11]. It took our attention that the FLP is
formulated as the mixed integer programming [12], wherein the constraints are reduced to
continuous-variable linear equations. The literature goes on to generalize the formulation to
the mixed integer linear programming [13] and the mixed-integer nonlinear programming
(MINLP) [14].

2.1.2. Distance Optimization

This method aims to select locations that enable all potential users to receive services
with the shortest distance or minimum cost [15]. Representative examples include the set
cover, p-median, and p-center techniques. The set cover ensures that users receive similar
levels of service, p-median aims to efficiently locate facilities with minimal movement
required for service, and p-center minimizes the maximum distance between facilities and
users. Distance optimization techniques allow for efficient location selection, but they
require careful consideration of local information and feasibility of installation, distances
between users and candidate locations, and the exact number of chargers to be installed.
Consequentially, it is appropriate to use these techniques for the final location selection
after considering all location analyses.

2.1.3. Weight Assignment Techniques

Another body of literature shed light on predicting demand in location selection by
assigning weights to the data. Some examples of weight assignment techniques include the
analytical hierarchy process (AHP) [16], standard analysis model-based location selection
methods [17], and weighted average methods [15]. However, these methods often involve
subjective elements, such as expert opinions and surveys, in the process of determining
weights, which can be considered a disadvantage.
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2.1.4. Machine Learning Techniques

Machine learning was found to provide more objective weight assignment by learning
from numerical data and assigning weights to variables based on their importance in the
learned model or using regression coefficients to determine priorities [18]. Furthermore,
an abundant body of literature already justified the efficiency of machine learning in solving
an optimization problem with an extremely large number of data points [19]. Therefore,
as shall be detailed in Section 6, this paper adopts machine learning as a means to take
advantage of its scalability in cases with a very large number of data points.

2.2. Solving Techniques

The key challenge in this research is an exhaustive enumeration that would quickly
become computationally hopelessly expensive for the MINLP [20]. As such, solving an
MINLP in polynomial time by using exact algorithms (e.g., cutting plane, branch and
bound, etc.) can only be considered for small instances. For large instances, it is difficult
to enumerate all the solutions due to the number of permutations that easily explodes to
n! [21], leaving fewer options such as the black-box solver [22].

Thus, for solving such large-instance NP-hard problems, heuristic approaches attract
broader interests [21]. Considering our MINLP problem that is uniquely characterized
by a large number of variables, we find it particularly suitable to adopt the metaheuristic,
which is known as particularly efficient in solving combinatorial optimizations (which
this research seeks to solve) by searching over a large set of feasible solutions with less
computational effort, especially with incomplete or imperfect information or limited com-
putation capacity [23]. Metaheuristics sample a subset of solutions that is otherwise too
large to be completely enumerated or otherwise explored [24]. We performed a thorough
investigation of the literature on metaheuristics, including the tabu search (TS) [25], ran-
dom swaps [26], genetic algorithm [27], simulated annealing (SA) [28], ant colony [29],
and memetic algorithms [30].

3. Problem Formulation

Here is how our problem is uniquely defined. The optimal locations of EV chargers
will be found via solving an FLP [11]. We modify the traditional FLP such that it can further
accommodate a wide diversity of factors (including economic, societal, human behavioral,
etc.) depending on the context, to which the problem is applied.

3.1. Spatial Setup

We characterize the distribution of EV chargers as a homogeneous Poisson point process
(PPP) over a finite two-dimensional space R2. As shall be detailed in Section 5.1, we
deploy EV chargers and demanding areas, and find the connections from an EV charger to (a)
demanding area(s). Predicated on the assumption of PPP, the locations of the chargers and
demanding areas follow a uniform distribution on both X and Y axes.

This spatial setup forms the foundation for the key optimization problems that this
paper targets to solve, viz., FLP for the optimal location.

3.2. Formulation to Capacitated FLP

Suppose there are n facilities and m customers. One wishes to choose (i) which of the
n facilities to open, and (ii) which of the open facilities to use to supply the m customers,
in order to satisfy some fixed demand at minimum cost. We propose to modify the canonical
form of capacitated FLP [11] into an MINLP, which is given by
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min

Classical capacitated FLP︷ ︸︸ ︷
n

∑
i=1

m

∑
j=1

vijdijyij +
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∑
i=1

sixi (1)

+
m

∑
i=1

n

∑
j=1

E−1
ij +

m

∑
i=1

n

∑
j=1

Θij(θ1, · · · , θN) + · · ·︸ ︷︷ ︸
This work

s.t. ∑n
i=1 yij ≤ 1

yij ≥ 0, ∀i, j = 1, · · · , n
xi ∈ {0, 1}, ∀i = 1, · · · , n

Classical capacitated FLP

Cminxi ≤ ∑m
j=1 djyij ≤ Cixi, ∀i = 1, · · · , n

0 ≤ E−1
ij ≤ 1, ∀i, j = 1, · · · , n

Any additional constraints on θ1, · · · , θN

This work

We identify the parameters of our modified FLP as below:

• i and j are indexes for an EV charging facility and a demanding area (or, equivalently,
a customer), respectively.

• vij gives the variable cost to obtain the electricity supplied to serve customer j.
• dj gauges the demand from customer j.
• yij quantifies the fraction of the demand made by customer j and fulfilled by facility i.
• xi indicates whether facility i opens or not.
• si denotes the sunken cost (also known as “fixed” cost) of opening a charging facility i.
• Ei,j defines the equity achieved at customer j via service from facility i.
• Ci and Cmin indicate the capacity of facility i and the required minimum capacity of

any facility, respectively, both in the unit of kWh.

To elaborate on a few key variables, Eij measures the equity by using the Gini coeffi-
cient, which ranges from 0 (i.e., complete equality) to 1 (i.e., complete inequality). As a
measurement for the inequality of wealth or income [31], the Gini coefficient has also been
used to measure how evenly the resource is allocated to the participants in a network [32].
We propose to use the coefficient as a gauge of how many of the demands around a facility
are addressed.

As another means to pursue the equity, we propose a constraint with the minimum
capacity for any charger, Cmin. In fact, the State of Georgia has also adopted this idea in
their EV charger deployment plan [33]. Moreover, it has been found that integrating a
multitude of chargers at a single facility can contribute to lowering the sunken cost si [34].

By Θij, we leave some room for the possible addition of new variables as the formulation
evolves to reflect the reality more accurately. As an MINLP, the formulation given in
Equation (1) can accommodate Θij either in the linear or nonlinear form. Furthermore, each
variable θ1, · · · , θN can either be discrete or continuous.

3.3. Unique Challenges

We are aware that the MINLP has been a well-studied area over the last few decades.
In particular, the size and complexity of IP problems being successfully solved have
increased, mostly thanks to the continued development of relevant algorithms—e.g., branch
and bound [35].

Nonetheless, we consider this research novel and significant, owing to the extreme
complexity of the target problem. This complexity is mainly attributed to the following key
reasons [36]:



Appl. Sci. 2024, 14, 5092 5 of 19

• C1: Large search spaces for domain and other variables;
• C2: Inexistence of polynomial-time numerical solving. techniques

In regard to challenge C1, the focus of this research is to deal with a a large number of
variables, which will be unavoidable to precisely quantify the equity Eij reflecting all the
demographic, geographic, and economic factors. The challenge here is the dissimilarity
among the different data. As a remedy, we build on the literature of coupled matrix and tensor
factorization (CMTF), which jointly factorizes multiple datasets in the form of higher-order
tensors and matrices by extracting a common latent structure from the shared mode [37].

Another focal point of this work is addition of constraints as a means to (i) cut off
infeasible solutions [38] and/or (ii) linearization [39]. However, we will be especially
sensitive in adding cuts to Equation (1)—which is already NP-hard. The reason is that,
while it removes integer infeasibility, it can incur more constraints in each node of a
branch-and-bound process, which can cause a higher delay in solving [20].

As a response to challenge C2, we focus on keeping our optimization framework in a
flexible form, which is quintessential to accommodate more variables (some of which are
even unknown!) as the framework evolves to reflect the real-world characteristics of our
problem. In reality, many factors gauging the societal/economic/demographic equities can
dynamically change both spatially and temporally as the society evolves [40]. This crucial
necessity of flexibility significantly compounds the complexity to our formulation, to which
we propose to understand the feasibility of countermeasure techniques including iterative
methods [41], hierarchically structured space [42], sensitivity analysis [43], fuzzy decision
analysis [44], and Monte-Carlo selection methods [45].

Particularly, in our problem, the factors forming the objective and constraints can
dramatically change both spatially and temporally. That is, many factors gauging the
societal/economic/demographic equities [40] are subject to form “temporality” and hence
change over time as the society evolves [40]. This makes a strong case that the optimization
problem and the solving method must be formulated into flexible forms so they can
accommodate any addition/removal/change of parameters. It is another critical factor that
makes our formulation more complicated.

4. Solving Techniques Development
4.1. Unique Challenges and Proposed Approaches

Recall that the FLP formulated as (1) is an NP-hard problem [46,47]. This entails
critical challenges in solving the problem.

We have already identified the metaheuristic as the primary method to implement our
problem (1), which would be the most suitable option considering the unique challenges of
our problem C1 and C2. In our problem, it is particularly important to find an approximate
global optimum than to find a precise local optimum in a fixed amount of time, which
makes a compelling case where the SA is preferable to exact algorithms (such as gradient
descent, branch, and bound, etc.) [48].

Furthermore, algorithms with an aim to solve large-size instances of such combinato-
rial optimization problems apply parallelism for an expedition of both exact methods (e.g.,
the branch-and-bound algorithms) [49] as well as heuristics [20]. A representative example
of the latter is parallelization of the objective function evaluation during a tabu search [50],
for which graphical processing units (GPUs) [51] as well as the Compute Unified Device
Architecture (CUDA) platform [52] have been used. As a means to efficient memory man-
agement [53], this research also seeks the feasibility of cooperative heuristics with a particular
aim of improving the solution’s speed and accuracy. The parallel instances can be executed
via a global memory [54] or via distributed-memory systems [49]. It is noteworthy that the
latter is efficient when the algorithms are independent among the parallel instances, and
thus, no exchange of information across the memories is critical.

Many variants of the integer program (IP) are acknowledged to be NP-hard [55].
With this noted, this paper is devoted to developing computational tools for solving the
proposed FLP problem, a well-acknowledged NP-hard IP problem [56].
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4.2. Comparison among Solving Techniques

For a dedicated purpose of comparing a variety of numerical optimization solving
techniques, we propose to modify Equation (1) into an abstract form of the integer NLP.
Especially, we notice that the complexity is particularly induced by the nonlinearity. Thus,
it is of critical importance to come up with a test function that suits to test the nonlinear-
ity accurately.

We identify the Rastrigin function [57] that has long been known as a representative
example, through which the performance comparison among the multitude of solving
techniques can be clarified [58]. Considering the unique nature of containing a large number
of variables defining the objective and constraints, we expand the Rastrigin function such
that n is a sufficiently large number:

fras(x) = An +
n

∑
i=1

[
x2

i − A cos(2πxi)
]

(2)

where A = 10 and xi ∈ [−5.12, 5.12].

4.3. Alternative Techniques

We shed light on alternative approaches, considering that combinatorial optimization
is notorious for being highly complex, and thus, one may end up having to find an
“approximate” solution to the global optimal. Yet, we reiterate that SA, the method that
we propose to adopt to solve the proposed optimization problem, is acknowledged for its
ability to solve very complicated optimization problems even when exact methods fail [59].
Thus, it can still suffice what this research is looking for, in a practical sense.

Even despite this safe selection of method, in the event the optimal solution varies
too widely, we plan to adopt statistical techniques that will help uphold the reliability of
the proposed SA mechanism. An example technique is the principal component analysis
(PCA) [60], which seeks to identify a certain set of factors that particularly dominate the
solution of the QAP.

Parallel computing has also been attracting a considerable amount of research interest,
thanks to its ability to distribute an extremely complex (and thus hopelessly challenging to
solve) optimization problem into smaller instances and solve them instead. As such, it can
be deemed an efficient strategy to utilize a parallel computing cluster. As an option for a
further scale-up to a larger pool of servers, we suggest using the MATLAB (Ver. R2022b)
Parallel Server [61].

Moreover, we highlight that this paper investigates a set of machine learning-based
optimization techniques, which will be presented in Section 6.1. As shall be detailed in
the section, such machine learning-based techniques turn out to be particularly efficient
in finding optimal solutions in a very complicated problem, which often necessitates a
numerical solving approach in lieu of a closed-form, theoretical one.

5. Case Study 1: Region with Average EV Density

Now, we lay out a case study through computational experiments. The first scenario
that we investigate is a region with an average EV density. We identify the State of Georgia
in the U.S. as an adequate geographic area for the case study, owing to its current density
of EV charging infrastructure [62].

5.1. Case-Specific Refinement of Solving Method

Our first method to solve the FLP [11] is using an ILP solver. Figure 1 depicts an
example mapping between 20 chargers and 40 demand areas, which are generated at
random locations following a homogeneous PPP. The purple lines indicate which charger
serves which demand areas. Note that the focus of this particular simulation is put showing
how the problem is solved, rather than how to generate optimal facility locations. We used
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MATLAB(Ver. R2022b)’s intlinprog solver, which finds the minimum of a constrained
integer linear multivariate optimization.

Figure 1. Example mapping of 20 EV chargers and 40 demand areas on the map of the State of Georgia.

As an effort to lay out a broader perspective on solving our problem, we make a
comparison among a variety of numerical optimization methods. It is noteworthy that we
refer to the Rastrigin function that has earlier been shown in Equation (2) with n = 10 as an
effort to reflect the “many-variable” nature of our problem. Table 2 lays out the comparison.
Note that the column labeled “Objective Value” shows the optimal value of the objective
function, and columns x1 through x10 indicate the values of xi’s in Equation (2) yielding
the optimum.

Table 2. Comparison among several representative optimization solvers.

Solver x1 x2 · · · x10 Objective Value Number of Iterations

Integer Linear Programming 4.4409× 10−16 4.4409× 10−16 · · · 4.4409× 10−16 0 0

Pattern Search 0 0 · · · 0 0 204

Genetic Algorithm −0.062657 0.042974 · · · −0.041941 1.4801 3907

Particle Swarm −7.2517× 10−7 2.5503× 10−8 · · · 1.7757× 10−6 7.3× 10−10 4320

Simulated Annealing 6.4039× 10−5 −1.99 · · · 0.00018799 3.9798 3008

Surrogate Optimization 0.99678 1.9937 · · · 1.9832 8.9671 200

5.2. Results and Discussion

We expand the perspective of the proposed problem to taking route minimization into
consideration. We propose to characterize route minimization as a traveling salesperson
problem (TSP). Figures 2 and 3 demonstrate the EV chargers’ locations on the map of the
State of Georgia. The agent (i.e., salesperson) has to visit n = 50 points created on a map of
the State of Georgia. The map is with shorter connections as iterations progress through
the course of SA. Through the two figures, our SA algorithm (which has been shown as
Algorithm 1) optimizes the route covering all the chargers and coming back to the starting
point. The initial state in our algorithm is a connection to a completely random neighbor.
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However, as the temperature is updated in each iteration, each node becomes able to
connect to a closer neighbor. We notice here that our algorithm defines the temperature as
the distance between two stops on the map.

Figure 2. Solving a TSP by using SA (After 1 iteration).

Figure 3. Solving a TSP by using SA (After 300 iterations).
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Algorithm 1 SA implemented in this work
1: s = s0
2: for k ≤ kmax do
3: T←− temperature((1− (k + 1)/kmax))
4: snew ←− neighbor(s)
5: if P(E(s),E(snew),T) ≥ U (0, 1) then
6: s←− snew
7: end if
8: end for

Algorithm 1 presents the pseudocode for the SA implementation in this simulation.
The following parameters are used: T for the temperature, k for the index in the loop,
P(·) for the acceptance probability, E(·) for the energy of a state, and U for the uniform
random variable. The name of the algorithm “annealing” comes from the metallurgy
process, through which a metal cools and freezes into a crystalline structure with minimum
energy [59]. SA starts with an initial solution at a higher temperature T, where the changes
are accepted with a higher probability P. Hence, the exploration capability of the algorithm
is high, and the search space can be explored widely. As the algorithm continues to run,
T decreases gradually, like the annealing process, and the acceptance probability of a
non-successful move P decreases.

Figure 4 displays how the traveling distance converges as the iteration progresses via
Algorithm 1.
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Figure 4. Convergence of total traveling distance.

6. Case Study 2: Region with High EV Density

In contrast to Section 5, this section is dedicated to presenting a case study of a region
with a high EV density. We chose Jeju Island of South Korea, one of the places with
a significantly higher level of EV penetration and thus the highest level of EV charger
deployment [63,64].

Specifically, this section will elaborate our proposition to adopt a machine learning-
aided approach as a means to solve the optimization problem with such an extremely large
number of data points [19].
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6.1. Case-Specific Refinement of Solving Method

In the proposition of the machine learning-based solving technique, several assump-
tions were established: (i) the currently installed charging stations are in the optimal
location, and (ii) the selected locations of the current charging stations are influenced
by various factors in the vicinity. Thus, in this study, the correlation between collected
geographical or environmental data and the data of currently installed charging stations
will be analyzed and compared to determine the optimal location selection.

6.1.1. Data Collection and Preprocessing

This case study features the use of QGIS [65], an open-source geographic information
platform, in data preprocessing and visualization during the research.

We collect data on factors that are anticipated to influence the demand for charging
stations and the data on currently installed EV charging stations. The collected data types
include point, line, polygon, and grid data, totaling four types. For subsequent data
merging, the line data will be divided into multiple point data with uniform values based
on the point data as the reference. The polygon and grid data will be converted into point
data with values at the center points of the grid based on a 250 m grid. Furthermore,
considering that different types of buildings have varying impacts on charging station
demand, we will group the building data based on the charging station utilization by
building type data provided by the Korea Power Exchange [63]. EV charging stations can
be broadly classified into fast-charging stations and regular charging stations, and this
study focuses on public fast-charging stations for location selection.

Figure 5 illustrates the data collected in Jeju Island visualized in QGIS. The points in
the figure have the same attribute values based on their colors, and it is assumed that a
single EV charging station data point (shown in yellow) is influenced by nearby data points.
Accordingly, the study will proceed with training based on this assumption.

Figure 5. Partial visualization of the data in QGIS.

6.1.2. Data Integration

In [66], the authors conduct machine learning after setting a buffer, which represents
the area where the reference data has a valid influence from its surrounding factors. A buffer
indicates the extent of the category in which the reference data influences the surrounding
data. Previous studies on site selection have used merged data based on grid cells, leading
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to the limitation of data having an influence only on the grid cell it belongs to. In contrast,
the buffer-based approach considers the possibility of overlapping influences of data in the
vicinity, making it a more reasonable method. Therefore, in this study, we proceed with
the research by setting a buffer. The initial size of the buffer is determined based on the
range of influence [64], which suggests that one charging station has an impact area of
4 km2. Accordingly, we set the buffer radius to 1.13 km. Figure 6 illustrates the buffer with
a radius of 1.13 km set around the charging station data (yellow dots).

Figure 6. Visualization of the buffer in QGIS (See Figure 5 for the legend of each data dot).

Based on this buffer, we merge the data considering the data within the area has a
valid influence on the charging station site selection. Additionally, to obtain sufficient
training data, we add 10,000 random point data and merge them in the same manner as the
charging station data.

6.1.3. Training Methods

As a means to train the machine learning models, we follow these steps:

1. Data Preparation: The collected and merged dataset undergoes preprocessing to ensure
its suitability for training, including handling missing values, data normalization,
and feature engineering.

2. Model Selection: The decision tree (DT) [67], support vector machine (SVM) [68],
and random forest (RF) [69] models are considered as potential candidates for training
due to their widespread usage in site selection problems.

3. Training Process: Each selected model is trained using the prepared dataset, which is
divided into training and validation sets. Performance evaluation metrics such as
accuracy, precision, recall, and F1 score are utilized to assess the model’s performance
during training.

4. Model Evaluation: After training, the models are evaluated using the validation set
to assess their predictive capabilities. The evaluation metrics are used to compare
the models’ performance and identify the model with the highest accuracy or other
desired performance metrics.
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5. Model Selection: Based on the evaluation results, the model demonstrating the best
performance is selected as the final machine learning model for the site selection task.

Following these steps ensures effective training of the machine learning models,
enabling them to provide reliable predictions for optimal charging station locations.

To determine the model used for training, we compare the performance of commonly
used models in site selection problems, namely, DT, SVM, and RF. Each model is trained
with the data, and their performance is compared. (We justify the adoption of the three
techniques as follows. This case study particularly targets to solve an optimal location
problem in a region with a very high EV density. We found it adequate to rely on the
methods that were proven to be computationally efficient in processing such an extremely
large number of data points.)

For comparing the predicted optimal charging station locations using our proposed
technique, we introduce the variable “consistency.” Consistency measures the agreement
between the predicted locations obtained through our approach and the current locations of
installed charging stations in Jeju Island. It is normalized, ranging from 0 to 1. A consistency
value of 1 indicates a perfect match, while 0 signifies no agreement between the predicted
and actual locations. For instance, a consistency value of 0.8 means that our technique’s
predicted charging station locations match 80% of the current charging station distribution
in Jeju Island, while the remaining 20% differ from our optimal predictions.

Table 3 presents the evaluation matrix for each model after training with the merged
data. Based on these results, we select the Random Forest model, which exhibits the highest
performance, to proceed with the site selection process. Using the selected model, we
follow the steps outlined in Figure 7’s flowchart to identify the conditions for site selection
that yield high consistency.

Figure 7. Algorithm of site selection.
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Table 3. Evaluation matrix.

Model Name Decision Tree Support Vector Machine Random Forest

Consistency 0.6583 0.4295 0.7580

Precision 0.6712 0.1845 0.7580

Recall 0.6583 0.4295 0.7580

F1-Score 0.6593 0.2581 0.7509

The conditions for each branching point are as follows:
(a) Charging Station Type: We examine the influence of the charging station type,

which serves as the basis for training, on consistency. A comparison is made between
training using only level-2 chargers or DC fast chargers and training with a mix of both.

(b) Uniform Distribution of Reference Data: The reference data initially set consists of
charging station data which is not uniformly distributed across Jeju Island. To assess the
impact of non-uniform data distribution on consistency, we compare the results of training
based on 250 m grid points that are uniformly distributed as reference data with the results
obtained from the original training.

(c) Buffer Size: We investigate the influence of the buffer size, which determines
the scope of the reference data, and the resulting level of data duplication on consistency.
To find the optimal buffer size, the previously used 1.13 km buffer size is set as the maximum
value, and the buffer size is changed to measure the change in consistency. Figure 8
represents the buffers with a radius of 1.13 km (gray), 500 m (yellow), and 50 m (red).

Figure 8. Size comparison of buffers.

6.2. Results and Discussions

Table 4 summarizes the configuration conditions and consistency results for each
condition. The implications of these results are as follows:

1. Installation criteria differ between DC fast chargers and level-2 chargers. Significant
differences in consistency are observed when training separately based on each charg-
ing station type or when training with both types together. Consequently, it can be
concluded that chargers have been installed at locations that meet their respective
criteria for both DC fast chargers and level-2 chargers.
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2. Non-uniform distribution of reference data does not significantly affect training
results. There is no significant difference in consistency between training based on
non-uniformly distributed chargers and training based on grid points uniformly
distributed at regular intervals. Thus, it can be concluded that the non-uniform
distribution of data does not impact the training results.

3. Buffer size influences data consistency. Decreasing the buffer size results in increased
consistency. The reason for the decrease in consistency at buffer sizes below 125 m is
that the polygon data used for learning is 250 m× 250 m grid data, resulting in buffers
that do not contain data from the 125 m radius buffer size. This problem can be solved
by using smaller grid data than 250 m × 250 m grid data during data preprocessing.
In conclusion, this result shows that larger buffer sizes increase data redundancy and
affect consistency.

Table 4. Setting conditions and results of learning by condition.

Setting Condition Buffer Size Consistency

Baseline Public DC fast chargers and random point 1.13 km 0.7580

a. Charging Station Type
Public level-2 chargers and random point 1.13 km 0.7678

Public DC fast chargers and public level-2 chargers and random point 1.13 km 0.6284

b. Uniform Distribution of Reference Data Center point of grid data 1.13 km 0.7649

c. Buffer size Public DC fast chargers and random point

700 m 0.8176

600 m 0.8355

500 m 0.8611

400 m 0.8743

300 m 0.9003

200 m 0.9182

150 m 0.9348

125 m 0.9395

100 m 0.9293

50 m 0.8969

Based on the evaluation results, the Random Forest model demonstrates the highest
consistency and is selected as the final machine learning model for the site selection
task. Several conditions for site selection are analyzed, including the charging station
type, uniform distribution of reference data, and buffer size. The results indicate that EV
charging stations should be installed based on their respective criteria for both fast chargers
and slow chargers. Furthermore, the non-uniform distribution of reference data does not
significantly affect the training results, providing flexibility in data selection. Adjusting
the buffer size influences data consistency, with smaller buffer sizes leading to increased
consistency. By adjusting various conditions, we propose a method to achieve higher
consistency in site selection through machine learning.

The final location selection is conducted based on the facts found from the setting
conditions and results of the learning. First, since this study considers only public DC
fast chargers, learning is conducted using only public DC fast chargers’ data. In addition,
the distribution of reference points for generating buffers was set as random points to
give diversity in learning, considering that the plane data used for learning is uniformly
distributed as 250 m × 250 m grid data. Moreover, despite the highest consistency obtained
when the size of the buffer is 125 m, there are many areas that the buffer cannot cover.
Therefore, a buffer of 500 m size, which has the highest match among the buffer sizes that
include the whole of Jeju Island, is selected. Figure 9 shows the area containing 125 m and
500 m buffer.



Appl. Sci. 2024, 14, 5092 15 of 19

Figure 9. Area with 125 m (blue) and 500 m (red) buffers.

Machine learning was performed using the selected 500 m size buffer, and each
importance is measured through the result of learning and used in the final location
selection. Table 5 illustrates the importance of each calculated data.

Table 5. Variable importance.

Data Variable Importance [%]

POI 16.9264

Surface 12.9745

Building0 11.3435

Work_Population 9.4463

Building3 8.1137

Traffic 7.3983

Building1 6.768

Flow_Population 5.7931

Car 5.4492

EV_Car 5.3769

Parking 4.2025

Tour 3.563

Building2 2.6447

To make the final selection, the ranking is calculated by measuring the score based on
variable importance and the data included in the buffer. The reference point for creating
buffers to be used in the final location selection is the center point of the 250 m × 250 m
grid to proceed with site selection for the entire Jeju Island. To calculate location ranking,
normalize the data and measure the ranking based on the sum of the normalized data
multiplied by the variable importance. If the values are the same, they are calculated in
the same rank. Figure 10a shows the ranking of demand for public DC fast chargers across
the entire Jeju Island based on the importance of each variable obtained from the machine
learning results. Figure 10b presents the current DC fast charger locations added to the
location rank distribution.
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(a)

(b)
Figure 10. Location rank distribution. (a) Rank distribution, (b) EV charging stations installed in Jeju
Island (white).

It shows that the current public DC fast charger installments and the high-ranking
red and orange points generally match. Based on the above results, among the red points,
which are the highest-ranking group, areas that do not overlap with the white points
where public DC fast chargers are installed can be considered as target areas for additional
installation of new public DC fast chargers.

7. Conclusions and Future Work

This paper has formulated an optimal EV charger location problem into the capacitated
FLP. Then, it laid out an efficient method to solve the NP-hard problem. Via the first case
study, we presented the feasibility of using an ILP solver to solve the proposed problem.
The second case study presented the effectiveness of machine learning for selecting optimal
locations for EV chargers and predicted the demand for EV chargers and compared it
with the existing EV charger installations. As such, this study provides a foundation for
conducting site analysis and selection research in the field of EV charger installations. In fact,
Case Study 1 showed that our numerical solving method converged within 300 iterations
even for a TSP, which is a well-known NP-hard problem. Moreover, Case Study 2 revealed
that our machine learning-based optimization technique resulted in higher than 75% of
consistency with the real deployment of EV chargers in the region.
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The resultant response and management framework based on this paper’s findings will
provide a quantitative platform to balance the local, regional, and nationwide sustainability
transition and resilience to fast EV expansion along the urban and rural continuum, thereby
significantly contributing to balanced urban–rural EV charging infrastructure preparedness.
As such, the findings will enlighten broader societies on a wide variety of practical issues
that will likely be encountered during the broader deployment of EVs throughout the globe.

Considering this work’s broad contribution, we will set the future work to expand
onto various relevant avenues. One example can be revising the optimization problem
reflecting the improvement in design of EVs and batteries. A longer-range coverage by a
single EV may have potential to affect our problem formulation.
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