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Abstract: This study investigates the performance of YOLOv8, a Convolutional Neural Network 
(CNN) architecture, for multi-crop classification in a mixed farm with Unmanned Aerial Vehicle 
(UAV) imageries. Emphasizing hyperparameter optimization, specifically batch size, the study’s 
primary objective is to refine the model’s batch size for improved accuracy and efficiency in crop 
detection and classification. Using the Google Colaboratory platform, the YOLOv8 model was 
trained over various batch sizes (10, 20, 30, 40, 50, 60, 70, 80, and 90) to automatically identify the 
five different classes (sugarcane, banana trees, spinach, pepper, and weeds) present on the UAV 
images. The performance of the model was assessed using classification accuracy, precision, and 
recall with the aim of identifying the optimal batch size. The results indicate a substantial 
improvement in classifier performance from batch sizes of 10 up to 60, while significant dips and 
peaks were recorded at batch sizes 70 to 90. Based on the analysis of the obtained results, Batch size 
60 emerged with the best overall performance for automatic crop detection and classification. 
Although the F1 score was moderate, the combination of high accuracy, precision, and recall makes 
it the most balanced option. However, Batch Size 80 also shows very high precision (98%) and 
balanced recall (84%), which is suitable if the primary focus is on achieving high precision. The 
findings demonstrate the robustness of YOLOv8 for automatic crop identification and classification 
in a mixed crop farm while highlighting the significant impact of tuning to the appropriate batch 
size on the model’s overall performance. 
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hyperparameter; multi-crop classification; unmanned aerial vehicles 
 

1. Introduction 
Agriculture has been the platform from which human sustainability evolves over 

time, even with the spontaneous increase in population in recent time to over seven billion 
[1]. The activities of farming have changed, and are still changing, from the known 
traditional ways to a more sophisticated approach with the aid of evolving technology 
[2]. Planting one kind of crop on a single area of land is changing to a system of mixed 
cropping on the same area of land (mixed farming), which is gradually becoming a 
common practice [3]. Mapping out crops in mixed farming for effective management to 
meet the purpose of better harvest is a crucial component of precision agriculture. 
Therefore, the task of optimized multi-crop classification in mixed farms has been a 
subject of interest for many agricultural researchers worldwide [4]. This task involves the 
identification and classification of multiple crop types in a single agricultural field.  

The classification of multiple crops in mixed farming systems is a challenging yet 
vital task which provides insights into the dynamics of crop combinations and their 
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impact on yields and sustainability [5]. While early studies on multi-crop classification 
focused on traditional rule-based methods and required enormous resources and time to 
execute [6], with advancements in remote sensing technologies, machine learning, and 
deep learning the approach to this task has evolved significantly [7]. Modern techniques, 
including the use of satellite imagery, drones, and deep learning algorithms, have 
revolutionized multi-crop classification because these methods offer higher accuracy and 
scalability [8].  

The benefits of accurate crop classification are multifaceted. It enables optimized 
resource allocation, where farmers can efficiently distribute resources such as water, 
nutrients, and pesticides to specific crops based on their individual needs. This approach 
supports precision agriculture practices, allowing for site-specific management and data-
driven decision-making [9]. Furthermore, accurate classification aids in yield prediction, 
helping farmers to estimate and plan for future harvests more accurately [10]. 
Nonetheless, crop classification comes with its own set of challenges. Crops evolve over 
time, and change in appearance as they progress through different growth stages. This 
can make classification difficult, especially if the same field is used to plant different crops 
in various seasons. Additionally, mixed planting nearby can lead to overlapping canopies, 
making it more challenging to identify and classify crops accurately [11]. A range of tools 
and technologies are available for crop classification in mixed farming. High-resolution 
satellite imagery can provide an overview of the entire farm, assisting in large-scale 
classification [12]. Drones equipped with cameras or sensors can capture detailed images 
of crops from a closer vantage point. Spectral imaging, such as hyperspectral or 
multispectral sensors, can capture the unique spectral signatures of different crops, aiding 
in their identification [2].  

In recent years, deep learning models such as Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs) have become useful models in precision 
agriculture [7]. They can distinguish between different crops and even assess their health 
and growth stage based on training data [2,12]. YOLOv8 is a popular CNN architecture 
released on 10 January 2023, and has shown promising results in object detection and 
classification [13]. It is a rapid, precise, and user-friendly model designed for tasks such 
as object detection, segmentation, classification, and pose estimation. However, the 
performance of YOLOv8, like other architectures, is highly dependent on 
hyperparameters, which means that the choice of hyperparameters can significantly affect 
its performance. The algorithm has several hyperparameters that can be tuned to improve 
its performance, including the learning rate, batch size, number of epochs, and number of 
anchors.  

Several studies have investigated the effect of hyperparameters on the performance 
of deep learning models for object detection and classification, but only a few have 
focused on performance for multi-crop classification in a mixed farm context. For 
example, in [14] the authors investigated the effect of different hyperparameters on the 
performance of YOLOv3 for crop classification using remote sensing data. They found 
that increasing the batch size improved the accuracy of the algorithm. The authors also 
found that increasing the number of anchors improved the recall rate of the algorithm. 
Similarly, a study by [15] investigated the effect of hyperparameters (training epochs) on 
the performance of YOLOv5 for multi-crop classification in a mixed farm. The authors 
used remote sensing data to classify five crop types and tuned the number of training 
epochs from 100 to 1000. They found that increasing the number of epochs improved the 
accuracy of the algorithm until the algorithm became saturated at the 700th epoch, when 
the model performance began to decline. Several studies have investigated the impact of 
batch size on the performance of deep learning models. In [16], the authors found that 
increasing batch size can lead to better generalization performance, while [17] found that 
larger batch sizes can lead to lower generalization errors. However, other studies have 
shown that the optimal batch size varies depending on the dataset and network 
architecture [18–20]. Several studies have investigated the impact of batch size on the 
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performance of YOLOv3 and YOLOv4. In a study by [21], the authors found that larger 
batch sizes can lead to better performance on the COCO dataset. Similarly, [22] found that 
increasing batch size can lead to improved accuracy and speed in object detection tasks. 
Hence, this study focuses on investigating the effect of varying batch sizes on the 
performance of YOLOv8 for multi-crop classification in a mixed farm. 

Study Area 
The study area is mixed-crop farmland situated in the Lapan Gwari neighborhood of 

Minna, the capital city of Niger State in Nigeria. Covering approximately 2.8 hectares, the 
site is geographically located between (9°31′33″ N, 6°30′02″ E) and (9°31′37″ N, 6°30′05″ E) 
at an elevation of about 250 m above sea level [15]. The farmland predominantly features 
loamy soil. The crops grown on the farm include Banana (Musa spp.), Pepper (Capsicum 
spp.), Spinach (Spinacia oleracea), and Sugarcane (Saccharum officinarum) [23,24]. Figure 
1 describes the study area, providing a context from the broader region of Nigeria to the 
specific site in Lapan Gwari. 

 
Figure 1. The study area in Lapan Gwari, Minna, Niger State, Nigeria [15,23]. 

2. Materials and Methods 
The methodological approach adopted for the execution of this study is made up of 

four important steps: (i) data collection and preparation, (ii) preprocessing, (iii) model 
training, and (iv) evaluation metrics. The detailed breakdown of the approach used is 
outlined as follows: 

i. Acquisition of a diverse dataset of UAV images capturing various crop types found 
in the mixed farm and preparation of a labelled dataset from the acquired images.  

ii. Image resizing to standardized dimensions for compatibility with YOLOv8 input 
requirements. The initial 4000 × 3000-pixel images were resized to 416 × 416 pixels. 

iii. Implementation of the YOLOv8 architecture, known for its efficiency in object 
detection tasks, for crop classification and experimenting with different training 
batch sizes (10, 20, 30, 40, 50, 60, 70, 80, and 90) to investigate their impact on model 
performance. 
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iv. Systematically analyzing results across various batch sizes to identify trends and var-
iations in performance. 
The procedure for developing and implementing a YOLOv8 architecture is described 

in Figure 2. 

 
Figure 2. Procedure for developing and implementing YOLOv8 model. 

2.1. Data Acquisition 
The data used for this study was the same used by [15,23,24]. The data were acquired 

with the aid of a DJI Phantom 4 UAV (DJI, Shenzhen, China) equipped with an on-board 
RGB camera with 12 megapixels of camera resolution and a focal length of 5.74 mm. The 
drone was deployed at a flight altitude of 30 m and an average airspeed of 5 m/s with a 
front overlap of 75% and a side overlap of 65%. A total of 1488 images were collected for 
this study, out of which about 393 images were used, as these images were successfully 
annotated by the Computer Vision Annotation Tool (CVAT) (https://www.cvat.ai/), an 
interactive video and image annotation web-based tool for computer vision. 

2.2. Image Preprocessing  
The preprocessing procedures executed on the obtained images (Figure 3) are as dis-

cussed below. 
Image resizing: Image resizing is a fundamental step aimed at standardization, which 

facilitates the storage of images in a NumPy array format suitable for input into a deep 
learning network. YOLOv8 typically requires input images to adhere to specific dimen-
sions. In this case, the original images, initially sized at 4000 × 3000 pixels, were resized to 
416 × 416 pixels. This process ensures uniformity in input dimensions, a prerequisite that 
enhances the ability of the YOLOv8 model to learn features effectively. 

Normalization of Data: Normalizing pixel values is important for training deep learn-
ing models. It involves scaling pixel values to a standardized range, often between 0 and 
1. This step helps to stabilize training while avoiding saturation of activation functions, 
improving model robustness, and mitigating sensitivity to initial weights. It prevents is-
sues related to convergence and ensures that input features are on a similar scale. This 
contributes to the stability, efficiency, and generalization ability of the YOLOv8 model 
during training, which promotes optimal performance on real-world data. 

Data Augmentation: We artificially increased the diversity of the training dataset by 
applying a transformation function to the images. This helps the model to generalize bet-
ter and improve its robustness. This diversification helps the YOLOv8 model to learn 
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more invariant features, which makes it more resilient to variations in real-world scenar-
ios. Essentially, data augmentation acts as a regularization technique that prevents over-
fitting and ensures that the model performs well on unseen data by exposing it to a 
broader range of variations during training. 

Data Splitting: The dataset, consisting of 393 images, was divided into three subsets: 
80% for training, 13% for validation, and 7% for testing (https://app.roboflow.com/final-
year-project-avilz/image-annotation-vv5yx/1 (accessed on 21 September 2023)). The vali-
dation subset was used to evaluate the model’s performance during the training phase, 
while the test subset was employed to measure the model’s effectiveness after training. 
Figure 3 describes the workflow for the UAV image data preprocessing.  

 
Figure 3. Workflow for the data preprocessing. 

2.3. Implementation Architecture 
The model design of YOLOv8’s network architecture is presented in Figure 4. The 

model employs a feature extraction backbone network, typically the CSPDarknet53 archi-
tecture, to capture hierarchical features from UAV images. This feature extraction is im-
portant for identifying and classifying different crops, in this case including sugarcane, 
banana trees, spinach, pepper, and weeds [23,24]. To refine features obtained from the 
backbone, it incorporates a neck architecture such as Path Aggregation Network (PANet). 
This refinement process facilitates feature aggregation across different scales, allowing the 
model to effectively handle objects of varying sizes within the dataset. Anchor boxes, 
which are predefined bounding box shapes learned during training, enhance object local-
ization and ensure accurate prediction of bounding box coordinates for each crop type. 
During the training process, YOLOv8 learns from labelled images and ground truth an-
notations, minimizing a loss function that considers both localization accuracy and classi-
fication performance [25,26]. After obtaining predictions, the model applies postpro-
cessing techniques to filter out low-confidence detections and refine the final set of pre-
dictions for different crop types. This is essential for ensuring the accuracy of crop classi-
fication in precision agriculture [27]. 
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Figure 4. The design of YOLOv8’s network architecture (adapted from https://github.com/ultralyt-
ics/ultralytics/issues/189 (accessed on 19 April 2024)). 

2.4. Training Process 
Before commencing model training, meticulous data preparation was carried out. 

The dataset, which included annotated images with labelled objects, was divided into 
three fundamental subsets: the training set, validation set, and test set, as described earlier. 
Each batch size variant underwent this same data partitioning process to ensure equitable 
training conditions. The YOLOv8 model’s configuration files were tailored to accommo-
date the distinct requirements of each batch size. Each variant was configured to reference 
the appropriate dataset directories and batch size. The training process began with the 
initialization of the YOLOv8 model within the Google Colab environment. Importing the 
model and its dependencies ensured the availability of essential libraries and configura-
tions. For the learning and identification tasks, a T4 GPU with 12 GB of RAM was used 
(NVIDIA GeForce GTX TITAN X). The study was conducted on a workstation operating 
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on Ubuntu 18.04 with GPU acceleration using a virtual machine setup, while Python (Py-
thon 3.8) programming was employed for coding. The dataset consisted of images anno-
tated with labelled bounding boxes to identify the crops and weeds. As the primary ob-
jective of this study was to examine the impact of batch size on the model’s performance, 
a dedicated training script was executed for each batch size variant, referencing its specific 
dataset directories and configuration files. The training process entailed a set number of 
epochs, during which the model adapted and learned from the data. The batch sizes used 
were 10, 20, 30, 40, 50, 60, 70, 80, and 90, allowing for comparative analysis. Comprehen-
sive monitoring and metric analysis were conducted to assess the effect of batch size on 
the training process. Loss, an essential metric, was monitored continuously. The Tensor-
Board (https://www.tensorflow.org/tensorboard) tool facilitated real-time visualization of 
training metrics. The trained models for each batch size variant were evaluated using ded-
icated validation sets, which assessed their ability to generalize and detect objects accu-
rately. Subsequently, the test set was employed to further validate the models’ perfor-
mance. 

2.5. Performance Evaluation 
Several accuracy metrics are available to evaluate the performance of a deep learning 

model. In this study, the performance of the YOLO v8 algorithm was evaluated using both 
the testing and validation datasets. The metrics used for this assessment included recall 
(R), accuracy (A), F1 score (F1), and precision (P). According to [28,29], these metrics are 
commonly employed in deep learning applications. The metrics used to assess the perfor-
mance of the YOLOv8 model are discussed as follows: 

i. Accuracy (ACC): Accuracy is a fundamental metric that quantifies the model’s over-
all correctness in its predictions. It is defined as the ratio of correctly classified objects 
to the total number of objects. 

ACC = 𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 ା 𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝑻𝒐𝒕𝒂𝒍 𝑶𝒃𝒋𝒆𝒄𝒕𝒔
 (1)

ii. Precision (PR): Precision gauges the model’s ability to make correct positive predic-
tions. It is calculated as the ratio of true positive predictions to the total number of 
positive predictions. 

PR = 
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 ା 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
 (2)

iii. Recall (RC): Recall, also known as sensitivity or true positive rate, measures the 
model’s capability to identify all relevant instances. It is defined as the ratio of true 
positive predictions to the total number of actual positive instances. 

RC = 
்௥௨௘ ௉௢௦௜௧௜௩௘௦

்௥௨௘ ௉௢௦௜௧௜௩௘௦ ା ி௔௟௦௘ ே௘௚௔௧௜௩௘௦
 (3)

iv. F1 Score (F1): The F1 score balances precision and recall to provide a single metric 
that quantifies the model’s accuracy in detecting and classifying positive instances. 

F1 = 2 ⋅ ௉௥௘௖௜௦௜௢௡.  ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ ା ோ௘௖௔௟௟ (4)

v. Precision Average (PR-AVG): The precision average is calculated as the arithmetic 
mean of precision values for each class or category in the classification problem: 

Precision Average (PR-AVG) =  
ଵ

 ே
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜

ே
௜ୀଵ  (5)

where N represents the number of classes. 
vi. Recall Average (RC-AVG): Similarly, the recall average is computed as the average 

of recall values for each class. 
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Recall Average (RC-AVG) = 
ଵ

ே
∑ 𝑅𝑒𝑐𝑎𝑙𝑙௜

ே
௜ୀଵ  (6)

For this study, precision, recall, and mean average precision (mAP) were employed 
to evaluate the performance of the model under different batch size conditions. mAP is 
derived from the precision–recall curve. 

3. Results 
The precision confidence curves for various batch sizes were analyzed in order to 

evaluate the performance of the network training process. The network was trained with 
batch sizes of 10, 20, 30, 40, 50, 60, 70, 80, and 90. The results indicated that the highest 
precision of 0.984 was achieved at a batch size of 80. This was followed by batch sizes of 
30 with a precision of 0.964, 10 with 0.950, 70 with 0.937, 60 with 0.897, 40 with 0.870, 20 
with 0.835, and finally batch size 50 with the lowest precision confidence of 0.821. Figure 
5 shows the precision confidence training and validation output across the experimented 
batch sizes. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) (h) 

 
(i) 

Figure 5. Precision confidence of the training and validation output across (a) batch size 10, (b) batch 
size 20, (c) batch size 30, (d) batch size 40, (e) batch size 50, (f) batch size 60, (g) batch size 70, (h) 
batch size 80, and (i) batch size 90. 

3.1. Recall Confidence 
It is essential to understand that setting the appropriate confidence threshold de-

pends on the specific application and the trade-off between missing detections (false neg-
atives) and accepting false positives. Figure 6 shows how the recall confidence level de-
creases as the batch sizes are increased. The obtained recall confidence values for each of 
the batch sizes were 0.840, 0.820, 0.780, 0.790, 0.750, 0.830, 0.770, 0.840, and 0.77 for batch 
sizes 10, 20, 30, 40, 50, 60, 70, 80, and 90, respectively. The highest recall confidence was 
recorded at batch size 10 and 80. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

 
(i) 

Figure 6. Recall confidence of batch size training and validation at (a) batch size 10, (b) batch size 
20, (c) batch size 30, (d) batch size 40, (e) batch size 50, (f) batch size 60, (g) batch size 70, (h) batch 
size 80, and (i) batch size 90. 

The confusion matrices obtained for all the batch sizes are presented in Figure 7a–i. 
In the confusion matrices, the diagonal elements, running from the top left to the bottom 
right represent the number of true positive (TP) predictions for each class. Figure 7a pre-
sents the confusion matrix for batch size 10. Specifically, it shows that 67% of items in the 
“banana” class, 30% in the “pepper” class, 46% in the “spinach” class, 59% in the “sugar-
cane” class, and 6% in the “weed” class were correctly classified. 

Conversely, 33%, 70%, 54%, 41%, and 94% of objects belonging to the banana class, 
pepper class, spinach class, sugarcane class, and weed class, respectively, were classified 
as “unknown.” These are instances where the classifier could not confidently assign these 
objects to any specific class. 
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(a) (b) 

  
(c) (d) 

 
(e) (f) 

  
(g) (h) 
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(i) 

Figure 7. Confusion Matrix for (a) batch size 10, (b) batch size 20, (c) batch size 30, (d) batch size 40, 
(e) batch size 50, (f) batch size 60, (g) batch size 70, (h) batch size 80, and (i) batch size 90. 

Tables 1–9 present the crop-specific performance of the model at different batch sizes. 
In these tables, the precision values span from 0 (indicating no precision) to 1 (perfect 
precision), while the recall values also range from 0 (no recall) to 1.0 (ideal recall). For 
batch size 10 (see Table 1), among the different classes ‘banana’ exhibited the highest pre-
cision at approximately 0.884, making it the most precise class. This was followed by ‘spin-
ach’, ‘pepper crops’, ‘sugarcane crops’, and finally ‘weeds’ with approximately 0.278 pre-
cision, ranking as the least precise. For recall, the ‘banana’ class achieved the highest recall 
value at approximately 0.778, making it the best recognized class. In descending order, 
the classes ‘sugarcane crops’, ‘spinach’, ‘pepper crops’, and ‘weeds’ followed, with 
‘weeds’ having the lowest recall value at approximately 0.118. This suggests that the clas-
sifier identified fewer positive samples of ‘weeds’ compared to ‘spinach’, ‘bananas’, ‘pep-
per crops’, and sugarcane’. 

Table 1. Details of the precision and recall obtained at batch size 10. 

Class Images Instances Precision Recall mAP50 mAP50-95 
Banana Tree 52 9 0.884 0.778 0.874 0.553 
Pepper 52 10 0.536 0.578 0.577 0.226 
Spinach 52 37 0.561 0.595 0.554 0.219 
Sugarcane 52 37 0.29 0.676 0.431 0.15 
Weeds 52 17 0.278 0.118 0.0962 0.0422 

The confusion matrix obtained at batch size 20 for the multi-class classification is il-
lustrated in Figure 7b. Specifically, it shows that 44% of items in the “banana” class, 80% 
in the “pepper” class, 57% in the “spinach” class, 59% in the “sugarcane” class, and 6% in 
the “weed” class were correctly classified. Conversely, 56%, 20%, 43%, 41%, and 88% of 
objects belonging to the banana, pepper, spinach, sugarcane, and weed classes, respec-
tively, were classified as “unknown.”  

As shown in Table 2, ‘banana’ also exhibited the highest precision at approximately 
0.826, making it the most precise. This was followed by ‘pepper crops’, ‘weeds’, and ‘spin-
ach’, in that order, with ‘sugarcane’ ranking as the least precisely detected with approxi-
mately 0.511 precision. Notably, the ‘pepper’ class achieved the highest recall, with an 
approximate value of 0.634. In descending order, ‘sugarcane crops’, banana’, ‘spinach’, 
and finally ‘weeds’, with an approximate recall value of 0.118 followed, indicating that 
the classifier identified fewer positive instances of ‘sugarcane’, ‘spinach’, ‘bananas’, and 
‘pepper crops’ and the least positive instances of ‘weeds’. 
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Table 2. Details of the precision and recall obtained at batch size 20. 

Class Images Instances Precision Recall mAP50 mAP50-95 
Banana Tree 52 9 0.826 0.530 0.694 0.436 
Pepper 52 10 0.612 0.634 0.733 0.275 
Spinach 52 37 0.513 0.486 0.508 0.226 
Sugarcane 52 37 0.511 0.568 0.509 0.202 
Weeds 52 17 0.528 0.118 0.121 0.0703 

The confusion matrix obtained at batch size 30 for the classification (see Figure 7c) 
shows that 78% of items in the “banana” class, 60% in the “pepper” class, 65% in the “spin-
ach” class, 59% in the “sugarcane” class, and 6% in the “weed” class were correctly clas-
sified. Conversely, 22%, 40%, 35%, 41%, and 94% of objects belonging to the banana class, 
pepper class, spinach class, sugarcane class, and weed class, respectively, were classified 
as “unknown.” These instances could not be confidently assigned to any specific class by 
the classifier. 

Table 3 shows that ‘banana’ exhibited the highest precision at approximately 0.882, 
making it the most precise. This was followed by ‘spinach’, ‘pepper’, ‘weeds’, and finally 
‘sugarcane crops’ with approximately 0.439 precision ranking as the least precise. In ad-
dition, the ‘banana’ class achieved the highest recall, with an approximate value of 0.778. 
In descending order, ‘spinach’, pepper’, and ‘sugarcane’ followed, with ‘weeds’ returned 
the lowest recall with an approximate value of 0.0588, indicating that the classifier identi-
fied few or no positive instances. 

Table 3. Details of the precision and recall obtained at batch size 30. 

Class Images Instances Precision Recall mAP50 mAP50-95 
Banana Tree 52 9 0.882 0.778 0.833 0.571 
Pepper 52 10 0.503 0.609 0.695 0.237 
Spinach 52 37 0.669 0.622 0.617 0.246 
Sugarcane 52 37 0.439 0.529 0.445 0.195 
Weeds 52 17 0.485 0.0588 0.0923 0.0437 

Figure 7d presents the confusion matrix obtained at batch size 40 for the crop classi-
fication. Specifically, it shows that 56% of items in the “banana” class, 50% in the “pepper” 
class, 65% in the “spinach” class, 51% in the “sugarcane” class, and 12% in the “weed” 
class were correctly classified. Conversely, 44%, 50%, 35%, 49%, and 88% of objects be-
longing to the banana class, pepper class, spinach class, sugarcane class, and weed class, 
respectively, were classified as “unknown.”  

Table 4 also shows that ‘banana’ exhibited the highest precision at approximately 
0.635, which was followed by ‘spinach’, ‘weeds’, ‘pepper crops’, and finally ‘sugarcane 
crops’ with approximately 0.304 precision ranking as the least precise. On the other hand, 
the ‘spinach’ class achieved the highest recall, with an approximate value of 0.595. In de-
scending order, ‘banana’, sugarcane crops’, ‘pepper crops’, and ‘weeds’, with an approx-
imate recall value of 0.118 followed, indicating that the classifier identified few positive 
instances of ‘sugarcane’, ‘spinach’, ‘bananas’, and ‘pepper crops’ and the least positive 
instances of ‘weeds’. 

Table 4. Details of the precision and recall obtained at batch size 40. 

Class Images Instances Precision Recall mAP50 mAP50-95 
Banana Tree 52 9 0.635 0.582 0.712 0.483 
Pepper 52 10 0.423 0.442 0.441 0.135 
Spinach 52 37 0.521 0.595 0.538 0.262 
Sugarcane 52 37 0.304 0.514 0.368 0.152 
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Weeds 52 17 0.496 0.118 0.185 0.0807 

The confusion matrix obtained at batch size 50 for the classification (see Figure 7e) 
shows that 56% of items in the “banana” class, 30% in the “pepper” class, 65% in the “spin-
ach” class, 46% in the “sugarcane” class, and 12% in the “weeds” class were correctly clas-
sified. Conversely, 44%, 70%, 35%, 54%, and 88% of objects belonging to the banana class, 
pepper class, spinach class, sugarcane class, and weed class, respectively, were classified 
as “unknown.” 

Of all the classes presented in Table 5, ‘banana’ exhibited the highest precision at 
approximately 0.857, making it the most precise. This was followed by ‘spinach’, ‘pepper 
crops’, ‘sugarcane’, and finally ‘weeds’ with approximately 0.292 precision ranking as the 
least precise. The ‘spinach’ class also achieved the highest recall, with an approximate 
value of 0.703. In descending order, ‘banana’, pepper crops’, ‘sugarcane crops’, and 
‘weeds’ followed, the latter with an approximate recall value of 0.176, indicating that the 
classifier identified few or no positive instances. 

Table 5. Details of the precision and recall obtained at batch size 50. 

Class Images Instances Precision Recall mAP50 mAP50-95 
Banana Tree 52 9 0.857 0.665 0.777 0.540 
Pepper 52 10 0.465 0.600 0.495 0.129 
Spinach 52 37 0.519 0.703 0.660 0.268 
Sugarcane 52 37 0.344 0.568 0.428 0.209 
Weeds 52 17 0.292 0.176 0.201 0.0628 

Figure 7f presents the confusion matrix obtained at batch size 60 for the multi-class 
classification. It shows that 67% of items in the “banana” class, 70% in the “pepper” class, 
57% in the “spinach” class, 59% in the “sugarcane” class, and 12% in the “weed” class 
were correctly classified. Conversely, 33%, 30%, 43%, 41%, and 88% of objects belonging 
to the banana class, pepper class, spinach class, sugarcane class, and weed class, respec-
tively, were classified as “unknown”.  

Table 6 shows that ‘pepper’ exhibited the highest precision at approximately 0.796, 
making it the most precise. This was followed by ‘banana’, ‘spinach’, ‘weed’, and finally 
‘sugarcane crops’ with approximately 0.306 precision ranking as the least precise. The 
‘pepper crops’ class also achieved the highest recall, with an approximate value of 0.800, 
making it the class with the best recall. In descending order, ‘banana’, spinach’, ‘sugarcane 
crop’, followed, while ‘weeds’, with an approximate recall value of 0.118, yielded the low-
est recall. 

Table 6. Details of the precision and recall obtained at batch size 60. 

Class Images Instances Precision Recall mAP50 mAP50-95 
Banana Tree 52 9 0.758 0.700 0.879 0.517 
Pepper 52 10 0.796 0.800 0.762 0.190 
Spinach 52 37 0.595 0.597 0.580 0.240 
Sugarcane 52 37 0.306 0.568 0.500 0.264 
Weeds 52 17 0.425 0.118 0.162 0.0532 

The confusion matrix obtained at Batch size 70 for the crop classification is illustrated 
in Figure 7g, showing that 67% of items in the “banana” class, 80% in the “pepper” class, 
62% in the “spinach” class, 70% in the “sugarcane” class, and 6% in the “weed” class were 
correctly classified. Conversely, 33%, 20%, 38%, 30%, and 94% of objects belonging to the 
banana class, pepper class, spinach class, sugarcane class, and weed class, respectively, 
were classified as “unknown”.  
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As shown in Table 7, The ‘banana’ class exhibited the highest precision at approxi-
mately 0.870, making it the most precise. This was followed by ‘spinach’, ‘pepper’, ‘sug-
arcane crops’, and finally ‘weeds’ with approximately 0.172 precision ranking as the least 
precise. Notably, the ‘banana’ class also achieved the highest recall, with an approximate 
value of 0.745, making it the class with the best recall. In descending order, ‘sugarcane 
crop’, spinach’, ‘pepper crop’, and ‘weeds’ followed, the latter with an approximate recall 
value of 0.0588, indicating that the classifier identified fewer positive instances of ‘sugar-
cane’, ‘spinach’, ‘bananas’, and ‘pepper crops’ and the least positive instances of ‘weeds’. 

Table 7. Details of the precision and recall obtained at batch size 70. 

Class Images Instances Precision Recall mAP50 mAP50-95 
Banana Tree 52 9 0.870 0.745 0.818 0.524 
Pepper 52 10 0.393 0.600 0.391 0.102 
Spinach 52 37 0.555 0.649 0.593 0.234 
Sugarcane 52 37 0.349 0.723 0.546 0.249 
Weeds 52 17 0.172 0.0588 0.101 0.0509 

The confusion matrix obtained at batch size 80 for the multi-crop classification (see 
Figure 7h) shows that 78% of items in the “banana” class, 40% in the “pepper” class, 68% 
in the “spinach” class, 57% in the “sugarcane” class, and 6% in the “weeds” class were 
correctly classified. Conversely, 22%, 60%, 32%, 43%, and 94% of objects belonging to the 
banana class, pepper class, spinach class, sugarcane class, and weeds class, respectively, 
were classified as “unknown.” In Table 8, it can be observed that ‘banana’ exhibits the 
highest precision at approximately 0.717, making it the most precise. This is followed by 
‘spinach’, ‘pepper’, ‘sugarcane crops’, and finally ‘weeds’ with approximately 0.211 pre-
cision ranking as the least precise. The ‘banana’ class also achieves the highest recall, with 
an approximate value of 0.847, followed in descending order by ‘spinach’, ‘sugarcane 
crops’, ‘pepper crops’, and finally ‘weeds’ with an approximate recall value of 0.0588, in-
dicating that the classifier identified fewer positive instances of ‘sugarcane’, ‘spinach’, ‘ba-
nanas’, and ‘pepper crops’ and the least positive instances of ‘weeds’ at this batch size. 

Table 8. Details of the precision and recall obtained at batch size 80. 

Class Images Instances Precision Recall mAP50 mAP50-95 
Banana Tree 52 9 0.717 0.847 0.878 0.561 
Pepper 52 10 0.505 0.510 0.598 0.157 
Spinach 52 37 0.543 0.676 0.648 0.25 
Sugarcane 52 37 0.389 0.655 0.407 0.206 
Weeds 52 17 0.211 0.0588 0.110 0.048 

Figure 7i presents the confusion matrix obtained at batch size 90 for the multi-class 
classification. It shows that 78% of items in the “banana” class, 30% in the “pepper” class, 
59% in the “spinach” class, 65% in the “sugarcane” class, and 6% in the “weed” class were 
correctly classified. Conversely, 22%, 70%, 41%, 35%, and 94% of objects belonging to the 
banana class, pepper class, spinach class, sugarcane class, and weed class, respectively, 
were classified as “unknown.” As shown in Table 9, ‘banana’ exhibited the highest preci-
sion at approximately 0.965, followed by ‘spinach’, ‘sugarcane’, ‘weeds’, and then ‘pep-
per’ with approximately 0.397 precision. Likewise, the ‘banana’ class achieved the highest 
recall, with an approximate value of 0.778. In descending order, ‘sugarcane crops’, ‘spin-
ach’, ‘pepper crops’, and ‘weeds’ followed, indicating that the classifier identified fewer 
positive instances of ‘sugarcane’, ‘spinach’, ‘bananas’, and ‘pepper crops’ and the least 
positive instances of ‘weeds’. 
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Table 9. Details of the precision and recall obtained at batch size 90. 

Class Images Instances Precision Recall mAP50 mAP50-95 
Banana Tree 52 9 0.965 0.778 0.860 0.525 
Pepper 52 10 0.397 0.300 0.423 0.117 
Spinach 52 37 0.566 0.493 0.505 0.221 
Sugarcane 52 37 0.497 0.614 0.475 0.196 
Weeds 52 17 0.452 0.101 0.155 0.0601 

3.2. Overall Model Performance 
The overall accuracy, precision, recall, and F1 score results recorded at each batch 

size, depicting the overall performance of the model in automatic crop classification, are 
presented in Table 10. 

Table 10. Overall performance of the model (non-crop-specific). 

Batch Size Accuracy (%) Precision (%) Recall (%) F1 Score (%) 
10 50.60 95 84 18 
20 51.30 84 82 34 
30 53.60 96 78 29 
40 44.90 87 79 20 
50 51.20 82 75 8 
60 57.70 89 83 18 
70 49.00 93 77 17 
80 52.80 98 84 23 
90 48.40 95 82 25 

4. Discussion 
Throughout the tested batch sizes, ‘banana’ exhibited superior performance accord-

ing to most of the assessment metrics. In contrast, ‘sugarcane’ and ‘weeds’ showed rela-
tively low precision rates, while ‘spinach’ and ‘pepper’ yielded average precision. Nota-
bly, at batch size 20 all crops returned above average precision. Additionally, the best 
precision for ‘pepper’ was recorded at batch size 60. The impressive performance of the 
model in automatic classification of the banana class, despite using the same quantity and 
quality of training data as other classes, can be attributed to several factors. First, the dis-
tinct visual features of banana leaves, such as their shape, size, and texture, set them apart 
from other plants on the farm. Although the colors of the other plants, including weeds, 
are similar, these unique visual characteristics make it easier for the model to distinguish 
bananas from other classes. Additionally, the banana class exhibited less variability within 
itself, meaning that the appearances of bananas in the images were more consistent. This 
consistency allowed the model to learn and recognize them more accurately. In addition, 
the banana plants were likely less obstructed by other objects or plants, making their fea-
tures more visible. This clear visibility aids in more accurate classification by the model. 
Furthermore, bananas tend to have a higher contrast with their background and neigh-
boring crops, which makes their features stand out more prominently in the images. This 
high contrast enhances the model’s ability to detect and classify them accurately. 

The poor performance of the model in terms of precision when classifying certain 
classes, such as ‘weeds’ and ‘sugarcane’, can be attributed to several factors. One signifi-
cant issue is the lack of distinct visual features in these classes compared to others such as 
bananas. In particular, weeds tend to have a wide variety of appearances, making it diffi-
cult for the model to learn a consistent set of characteristics for accurate identification. 
This high intra-class variability means that weeds can look very different from one an-
other, leading to more classification errors. Another factor is the similarity in color and 
texture between weeds and the other crops in the dataset. This similarity can confuse the 
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model, as it struggles to differentiate between weeds and certain crops, especially in 
mixed-crop environments. These overlapping visual features lead to lower precision, as 
the model incorrectly identifies non-weed objects as weeds and vice versa. 

For sugarcane, the performance issues could stem from the physical characteristics 
and growing patterns of the plant. Sugarcane plants are often tall and densely packed, 
which can result in significant occlusion. This occlusion means that parts of the sugarcane 
plants are blocked from view, preventing the model from seeing the complete structure 
and reducing the accuracy of classification. Additionally, the repetitive and similar ap-
pearance of sugarcane stalks can make it challenging for the model to identify unique 
features that distinguish sugarcane from other classes. 

Furthermore, spinach leaves are typically smaller and can be more variable in shape 
and size, which can make it difficult for the model to learn a consistent set of features by 
which to identify them accurately. Spinach often grows close to the ground and can be 
covered by other vegetation, resulting in occlusion that makes it challenging for the model 
to acquire a clear view of the entire plant. Similarly, pepper plants often have leaves and 
fruits that blend in with the surrounding foliage, making it harder for the model to distin-
guish them from other plants or background elements. 

The overall accuracy obtained for batch sizes 10, 20, 30, 40, 50, 60, 70, 80, and 90 was 
50%, 51%, 54%, 44%, 51%, 58%, 49%, 53%, and 48%, respectively, as shown in Table 10. 
This trend indicates a steady improvement in accuracy from batch sizes 10 to 30, a dip at 
batch size 40, and a peak at batch size 60, followed by a fluctuating pattern. Batch size 10 
achieved average precision, recall, and F1 scores of 95%, 84%, and 18%, respectively, while 
batch size 20 scored 84%, 82%, and 34%. At batch size 30, results of 96%, 78%, and 29% 
were obtained, whereas batch size 40 scored 87%, 79%, and 20%. For batch size 50, the 
metrics were 82%, 75%, and 8%, while batch size 60 recorded results of 89%, 83%, and 
18%. Batch size 70 yielded results of 93%, 77%, and 17%, while batch 80 achieved scores 
of 98%, 84%, and 23%. Finally, batch size 90 scored 95%, 82%, and 25%. The accuracy of 
the predictions fluctuated up to batch size 40, then improved consistently from batch sizes 
50 to 80, supporting the findings of [26,27], which affirmed that increased batch size en-
hances model accuracy. This is also corroborated by [30,31], which used YOLOv8 for veg-
etable disease and wheat seed detection, respectively. 

The marginal increase in accuracy from batch size 10 (50.6%) to batch size 20 (51.3%) 
suggests a positive trend. However, the average precision drops significantly from 95% to 
84%, implying a higher likelihood of false positives at batch size 20 despite only a modest 
decrease in recall from 84% to 82%. The F1 score improved notably from 18% to 34%, 
indicating better balance in minimizing false positives and negatives. Batch size 30 
showed a slight improvement in accuracy (53.6%) over batch size 20 (51.3%). The precision 
increased significantly from 84% to 96%, while the recall decreased from 82% to 78%, sug-
gesting more false negatives. The F1 score decreased from 34% to 29%, reflecting this 
trade-off. 

At batch size 40, the accuracy dropped to 44.9%, with precision at 87% and recall at 
79%. The F1 score further decreased to 20%, indicating a less optimal balance. Batch size 
50 saw the accuracy rise to 51.2%, although precision and recall dropped to 82% and 75%, 
respectively, with the F1 score plummeting to 8%. Batch size 60 marked an accuracy peak 
at 57.7%, with precision and recall at 89% and 83%, respectively. The F1 score improved 
to 18%, indicating better balance. However, the accuracy at batch size 70 fell to 49% de-
spite high precision (93%) and lower recall (77%), resulting in an F1 score of 17%. 

Batch size 80 saw improved accuracy of 52.8%, with exceptional precision (98%) and 
higher recall (84%), yielding an F1 score of 23%. This batch size achieved a commendable 
balance, which is crucial for minimizing false positives and negatives. Finally, the accu-
racy at batch size 90 decreased to 48.4%, with precision, recall, and F1 scores of 95%, 82%, 
and 25%, respectively, indicating a slight overall improvement in balance despite the 
lower accuracy. 
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The initial transition from batch sizes 10 to 60 suggests a consistent trend of increas-
ing accuracy, which indicates that the model benefits from larger batches during training 
up to a certain point. This progression implies that larger batch sizes contribute positively 
to the model’s ability to identify and classify crop types accurately. However, at batch size 
70 a sudden dip in accuracy disrupts the upward trend, prompting a re-evaluation of the 
relationship between batch size and accuracy. This finding challenges the conventional 
expectation that increasing batch sizes consistently lead to improved model performance 
[21,22,24]. The subsequent batch sizes of 80 and 90 showed a resurgence in accuracy, in-
troducing a sinusoidal-like oscillation to the results.  

In general, this study demonstrates that increasing batch size does not always lead 
to better performance. Batch size 30 showed notable improvements in certain metrics, but 
optimal performance was observed at batch sizes 60 and 80 with a more balanced high 
precision and recall, which aligns with the findings of [32]. The pattern of the results from 
our model suggests that factors beyond batch size alone influence the YOLOv8 model’s 
performance. The characteristics of the dataset, neural network architecture, and specifics 
of the training process all contribute to this multifaceted dynamic. These variations high-
light the model’s sensitivity to hyperparameter tuning and the importance of carefully 
tuning batch sizes based on the specific objectives and requirements of each project. Ad-
ditionally, trade-offs between evaluation metrics (accuracy, precision, recall, and F1 score) 
should be considered when selecting the most suitable batch size for crop classification 
tasks. 

5. Conclusions 
This study evaluated the performance of YOLOv8, a Convolutional Neural Network 

(CNN) model, for automatic crop classification in a mixed crop farmland using drone-
acquired images. The model’s performance was systematically assessed across various 
training batch sizes using diverse metrics, including loss function graphs, precision and 
recall graphs, confusion matrices, and validation metrics such as F1 score, accuracy, recall, 
and precision.  

Based on our analysis, batch size 60 stands out with the highest accuracy, indicating 
that this batch size provides the best overall performance for automatic crop detection and 
classification. Although the F1 score is moderate, the combination of high accuracy, pre-
cision, and recall makes it the most balanced option. However, batch size 80 also shows 
very high precision (98%) and balanced recall (84%), which might be suitable if the pri-
mary focus is on achieving high precision. This implies that for optimal results in terms 
of balanced performance across all metrics, batch size 60 is recommended, while if preci-
sion is the primary concern, then batch size 80 would be a suitable alternative. 

In summary, YOLOv8 maintains comparable detection accuracy in identifying and 
classifying crops within a mixed crop farmland. Given the limited dataset of approxi-
mately 393 image pairs used in this study, future research endeavors should explore the 
model’s performance with a more extensive collection of crop images to better evaluate 
the model’s capabilities and limitations in diverse agricultural scenarios.  
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