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Abstract: Research on the quality of the air in rural areas is essential for determining base emissions 
of air pollutants, evaluating the effects of dust pollutants particular to rural areas, modeling the 
dispersion of pollutants, and developing appropriate pollution mitigation systems. The absence of 
a systematic review based on the assessment of air quality levels in agricultural seĴings based on 
integrated weather variables and air pollutants in the literature draws aĴention to the deficiencies 
and the necessity of further research in this area. Hence, our study aimed to develop an Arduino 
monitoring system with related sensors to acquire some air pollutants and weather parameters. Ad-
ditionally, we proposed an innovative solution to compare air quality levels by suggesting a new 
criterion called an integrated indicator for air quality assessment (IAQA). It was created based on 
the weighted average method to combine the investigated air pollutants and weather parameters. 
This criterion was evaluated while conducting field measurements in 29 environmentally different 
agricultural regions located within the Kingdom of Saudi Arabia. To determine the integrated indi-
cator, all the values of the variables were normalized between 0 and 1. The agricultural seĴing with 
the lowest integrated indicator was the best environmentally. The lowest and highest values of the 
integrated indicator ranged from 37.03% and 66.32%, respectively, with an arithmetic average of 
48.24%. The developed criterion can change its value depending on the change in the weight value 
of the variables involved, and it is suitable for application to any other agricultural or non-agricul-
tural seĴing to evaluate the pollution level in the air. Although similar research has been published, 
this paper presents novelty findings based on integrated values of air pollutants and weather vari-
ables for defining a new criterion called IAQA. Additionally, this paper presents original results for 
air pollutants and weather aspects in different agricultural seĴings. 
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1. Introduction 
Environmental issues related to pollution have become more important; this is par-

ticularly the case with air pollution in the indoor environment because most individuals 
spend about 90% of their time indoors [1]. Nonetheless, environmental contamination is 
a major concern for the majority of developing countries worldwide [2]. Human health, 
ecosystems, and financial development are all at risk because of environmental deteriora-
tion, including noise, air, water, and land pollution [3]. 

Researchers and governments everywhere are deeply concerned about the causes of 
health issues and their associated expenses. To alleviate these concerns, it is crucial to 
consider air pollution and other forms of environmental pollution. One major factor driv-
ing rising healthcare expenses is air pollution [4]. To gauge the degree of environmental 
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contamination, numerous studies have already looked into the physical and chemical 
characteristics of the contaminated soil, water, and air [5]. Furthermore, there are many 
different sources, forms, and consequences of the contamination that farming produces, 
but one of the most common and significant is air pollution [6]. Agriculture can pollute 
the air in a number of ways, such as by using heavy machinery, burning crop residues, 
raising animals, applying fertilizers, and raising poultry and birds. In agriculture produc-
tion, different pesticides are utilized, which can pollute the air. In addition to lowering air 
quality, these activities may also be a factor in global warming and climate change [6]. To 
reduce the environmental impacts resulting from agricultural actions, we must under-
stand the behavior of agricultural emissions and the subsequent transformations. This can 
be achieved by conducting actual measurements of the emissions that cause a reduction 
in air quality in the agricultural environment. The purpose was to determine what should 
be performed to improve the quality while taking into consideration the diversity of agri-
cultural actions. However, agricultural seĴings are affected by environmental factors such 
as ambient temperature and relative humidity, so it is important to monitor these varia-
bles in the environment by making effective use of modern technologies in designing and 
implementing systems that can monitor these variables.  

Monitoring air quality in different places through various sensors in portable devices 
is a new area of research [7], especially concerning the capabilities that enable the design, 
deployment, and management of such sensors, which can measure gaseous and non-gas-
eous air pollutants. For the monitoring of air quality in areas with large population den-
sities, making real-time data available to decision-makers is important and beneficial [8]. 
Some researchers have aĴempted to use Arduino boards and related sensors to monitor 
air pollutants and meteorological variables [9,10]. Air pollutants, which can be measured 
by sensors that can be linked to an Arduino board, are carbon monoxide (CO), which can 
be detected by the MQ7 sensor [11–13]. Moreover, dust concentration in the air can be 
detected by Sharp’s optical dust sensor, GP2Y1010AU0F, which can be linked to an Ar-
duino board [12,14]. Additionally, weather variables of the surroundings, such as air tem-
perature and relative humidity, can also be monitored using related sensors of DHT11 
[15–17]. Moreover, air pressure can be detected using the BMP180 Barometric Pressure 
Sensor [17,18]. All these sensors measure the pollutants and weather variables in the air 
and generate real-time data, which can either be seen on a computer or an Android device 
using the Bluetooth module [12]. 

Research on air quality in rural areas is essential for determining base emissions of 
air pollutants, evaluating the effects of dust pollutants particular to rural areas, modeling 
the dispersion of pollutants, and developing appropriate pollution mitigation systems. 
The absence of a systematic review based on the assessment of the approaches and proce-
dures used for the evaluation of air quality levels in agricultural seĴings in the literature 
draws aĴention to the deficiencies and the necessity of further research in this area [19]. 
The air quality was based only on parameters related to air pollutants, and it neglected 
the effect of weather parameters such as air temperature, air relative humidity, and at-
mospheric pressure. Considering these limitations in the literature, the research problem 
for this study can be summarized as follows: In light of the quest to provide the best en-
vironment within agricultural spaces, how can modern technological means contribute to 
the measurement and monitoring of air quality in the agricultural environment and to the 
enhancement of air quality in the agricultural environment. The importance of this study 
from an applied perspective is that it may contribute to scientific efforts aimed at measur-
ing air pollutants in agricultural seĴings. It may also contribute to the opening of new 
horizons for conducting further research aimed at predicting air quality standards, which 
may be useful in preserving the environment; this research would add information that 
may help in detecting the levels of pollution in various agricultural environments in the 
Kingdom of Saudi Arabia or other places with similar conditions. This study contributes 
to the literature in two ways. (1) This study utilizes a large sample covering different ag-
ricultural environments to reflect the general circumstances in agricultural seĴings. (2) 
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This research further examines the possible moderating effects of the integration between 
climate factors and some air pollutants on the level of air quality in different agricultural 
seĴings.  

Kaur et al. [20] used sensors to measure the levels of carbon dioxide and carbon mon-
oxide, temperatures, and relative humidity in the environment; these readings were trans-
miĴed to a smartphone that gave a warning message if the measured levels were higher 
than the recognized limit. A study by Husain et al. [12] used the GP2Y1010AU0F sensor 
to determine the concentration of dust particles in the air. The sensor was connected to an 
Arduino Mega 2560 board, and data could be transferred to an Android phone using a 
Bluetooth connection with a device or computer through the COM port. Balta et al. [21] 
used a sensor to measure carbon dioxide levels in classrooms with a Raspberry PI board. 
Temperatures and relative humidity were also measured with their sensors, and the read-
ings were transferred to a site on a server connected to the internet, where the user could 
view the air quality inside the classroom. They showed that the developed system was 
low-cost. 

Gunawan et al. [22] showed that there has been an increasing public awareness of 
real-time air quality recently because air pollution can have serious impacts on human 
health and the environment. In their study, they presented a cost-effective and portable 
air quality measurement system using an Arduino Uno microcontroller and four low-cost 
sensors. This device allows the concentration of carbon monoxide, ground-level ozone, 
and particulate maĴer (PM10 and PM2.5) in the air to be measured anywhere. In their study, 
Biswal et al. [15] showed that the Raspberry Pi microcontroller, to which different sensors 
such as the MQ7 and DHT11 and dust density sensors were connected, plays an important 
role in checking the status of the environment. It detects the level of carbon dioxide and 
carbon monoxide, temperature, relative humidity, and dust particles present in the envi-
ronment. Furthermore, probe data were stored and digitally analyzed when necessary, 
and various results were extracted. In a study by Taştan [23], sensors were used to measure 
carbon monoxide and carbon dioxide levels, dust density, and nitrogen oxide concentra-
tion. These sensors were connected to an Arduino board, and the measurements were 
used to determine air quality; these data were sent to a smartphone. 

For use in time series studies of acute health consequences, a robust methodology 
was devised to compute population-weighted daily measurements of ambient air pollu-
tion [24]. Therefore, the present study aimed to develop a portable device to quantify the 
amount of air contaminants in the atmosphere, which were measured using an MQ7 sen-
sor and a GP2Y1010AU0F sensor; however, all sensors were linked to an Arduino board. 
Moreover, weather variables were measured by a DHT11 temperature and relative hu-
midity sensor and a BMP180 barometric pressure sensor. Additionally, this study aimed 
to develop an integrated indicator of the air quality pollution level called an integrated 
indicator for air quality assessment (IAQA). It was dependent on weather variables and 
other variables related to air quality. The IAQA can be used to compare agricultural envi-
ronments in terms of their air quality. The calculation depends on the value of the weight 
assigned to each of the variables, such as carbon monoxide concentration, dust concentra-
tion in the air, air temperature, air relative humidity, and atmospheric pressure. These 
variables were measured using sensors connected to an Arduino board. The novel aspect 
is to link indicators of air pollutants to meteorological parameters for the development of 
a new criterion, represented by the Integrated Indicator for Air Quality Assessment 
(IAQA). It was also proposed that the indexes of air pollutants and climatic parameters be 
linked to assess air quality under certain agricultural conditions. Finally, it also reports 
new outcomes on the integration of different types of farm activities with air pollutants 
and weather parameters, thus showing their contribution to the levels of air quality. 
Hence, the novel methodology serves as a contribution to the existing literature as it gives 
new insight into the estimate and improvement of air quality in agricultural environ-
ments. 
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2. Materials and Methods 
2.1. Laboratory Procedures 

Various units make up the air quality monitoring system. A regulator and a DC jack 
make up the power supply unit, which is the first unit. The control unit included a pre-
programmed Arduino Mega 2560 microcontroller.  

However, there are no special versions of Arduino boards released in specific geo-
graphical regions. All Arduino boards are assembled in Italy. 

The Arduino Mega is powered by the ATmega2560 processor. The board has 54 in-
puts/outputs (14 of which can be used as Pulse-Width Modulation outputs), 16 analog 
inputs, 4 Universal Asynchronous Receiver-TransmiĴer, a 16 MHz quarĵ, a USB connec-
tion, a power supply socket, an In-Circuit Serial Programming) port, and a reset buĴon 
[25]. It serves as the system’s brain, carrying out the mathematical calculations required 
to compare the analog signals from the sensors with the preset value. This microcontroller 
also coordinates tasks with other parts of the system. A real-time clock and an integrated 
communication interface were used with an Arduino board.  

The concentration of air contaminants in the atmosphere was shown on a 16 × 2 LCD 
monitor. However, the units of the air quality monitoring system were put together in a 
plastic box with ventilation holes built into it that act as a window to allow air in. In addi-
tion, a smartphone was used to obtain the site’s geographical coordinates. The Integrated 
Development Environment (IDE) of the Arduino, which has a wealth of code libraries for 
creating measurement and control systems, is one of its advantages. The Arduino.cc-in-
troduced IDE is an official program used primarily for editing, building, and uploading 
code to the Arduino device. The Arduino IDE 2 was used to implement the software for 
this study. Additionally , IDEwas used for coding, seĴing up, and testing the components. 
Kelechi et al. [26] outline the software configuration steps. Figure 1 depicts the parts and 
steps involved. 

 
Figure 1. The components and procedures of air quality monitoring system. 

The sensing unit to quantify the amount of air contaminants in the atmosphere was 
measured using an MQ7 sensor to determine carbon monoxide concentration in the air 
and a sharp GP2Y1010AU0F sensor to measure dust density. Moreover, the sensing unit 
also had sensors to measure weather variables; however, a DHT11 sensor was used to 
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measure temperature and relative humidity in the air, and a BMP180 sensor was used to 
measure barometric pressure in the air. 

The MQ7 gas sensor was used to measure the amount of carbon monoxide present in 
the atmosphere. The MQ7 gas sensor operates in the temperature range of −20 to 50 °C. 
This sensor requires less than 150 mA of electricity at a 5 V rating and is capable of accu-
rately detecting gas concentrations ranging from 100 to 10,000 ppm [27].  

The Sharp GP2Y1010AU0F sensor is a common selection for low-cost particle maĴer 
monitoring because of its high obtainability and simple interfacing [28]. The manufac-
turer’s documentation [29] describes the basic interfacing of the sensor. However, the sen-
sor description can be seen in [28]. More information about the assembly and process 
principle of the Sharp GP2Y1010AU0F sensor was provided in an earlier study [30]. The 
GP2Y1010AU0F sensor comprises an infrared light-emiĴing diode transmiĴer, a photodi-
ode receiver, and an amplifier circuit [28]. The manufacturer’s directions on the under-
standing of the sensor readout are established in the datasheet [29]. The voltage at that 
particular moment can be converted to a concentration in µg/m3 in a chart given in the 
datasheet [29]. As specified by the manufacturer, the sensitivity of the Sharp 
GP2Y1010AU0F sensor is (0.5 V/0.1 mg/m3) [31]. 

Barometric pressure (also known as atmospheric pressure) is the pressure caused by 
the weight of air pressing down on the Earth. This pressure varies with both altitude and 
weather. Barometric pressure will change according to local weather conditions, but it will 
also change depending on our altitude. The BMP180 sensor is regularly used to measure 
atmospheric pressure. It is manufactured by Bosch Sensortec company. The BMP180 sensor 
is a piezoresistive sensor that detects pressure. Piezoresistive sensors are made up of a 
semiconducting material (usually silicon) that alters resistance when a mechanical force, 
such as atmospheric pressure, is applied [32].  

The manufacturer provides datasheets and libraries to help with a BMP180 sensor 
integration. The BMP180 can deliver exact pressure measurements with a resolution of up 
to 0.01 hPa (hectopascals) [32]. The BMP180 sensor has a measuring range from 300 to 
1100 hPa [32]. 

The DHT11 comprises two sensors: a temperature sensor and a humidity sensor. Its 
temperature readings range from 0 to 50 °C, and its humidity readings range from 20 to 
90%. The sensor for measuring air temperature and air relative humidity has a simple 3-
pin connection, enabling programming and connectivity with other sensors. It has two 
power supply pins and one pin for data decoding between the sensor and the Arduino 
board [33]. DHT11 sensor is small and has an operating voltage of 3 to 5 V. 

2.2. Sensors Calibration and Software Implementation 
When using the MQ sensors for the first time, it needs to be calibrated. The MQ sensor 

datasheet describes the ppm ratio using the terms Rs/Ro, where Rs is the internal re-
sistance of the MQ sensor in time, and Ro is the value of Rs in clean air. The datasheets 
have graphs of MQ sensor performance for some gases using the Rs/Ro ratio, allowing 
information to be acquired on how to measure each type of gas [34].  

Analyzing the various sensitivity curves given in the relevant datasheets of MQ sen-
sors is a necessary step in the sensor calibration procedure [35]. MQ7 sensor (Hanwei Elec-
tronics CO., Ltd., Zhengzhou, China) has a sensitivity curve where the x-axis is the detected 
concentration of the CO gas in parts per million (ppm), while the y-axis is the voltage that 
the sensor receives. In this study, we derived an equation (Equation (1)) using Plotdigitizer 
software (version 2.6.8), which is an online data extraction tool that allows users to extract 
data from images in numerical format; however, it is inserted into a code to obtain the values 
of concentration of the CO gas directly in ppm unit: 

CO_ppm_1 = 2.6357×exp(1.0994× ((CO_rawValue_1×5)/1023))] (1)

Using the sensitivity curve of the Sharp GP2Y1010AU0F sensor (Manufacturer: 
SHARP/Socle Technology), where the x-axis is the detected concentration of the dust in 
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mg/m3, while the y-axis is the output voltage (V), the values of dust concentration were 
directly obtained as the sampled voltage correlated to the dust density [28]. Thus, the 
Sharp GP2Y1010AU0F sensor was calibrated according to the chart given in its datasheet 
[29] as we wrote the following codes (Equations (2) and (3)) to obtain the values of dust 
density directly in µg/m3  

calcVoltage = vo Measured× (5.0/1024) (2)

Dust Density = 170×calc Voltage−0.1] (3)

Each BMP180 sensor (Brand: Bosch Sensortec) is separately calibrated during manu-
facturing [36], and these calibration data are stored in the sensor’s onboard memory. How-
ever, 1013.25 hPa is the standard sea-level pressure. However, all barometric pressure val-
ues reported by news and weather stations add a certain amount of pressure to the read-
ings to make it appear that the measurement was taken from sea level [32].  

The temperature and humidity sensors were calibrated after being mounted on top 
of the Arduino board to ensure that they were operating correctly. For the DHT11 tem-
perature and relative humidity sensor (Manufacturer: Winson), a commercial Testo 625 
device (Testo SE & Co., Titisee-Neustadt, Germany) was used to measure air temperature 
and humidity and to compare the values with those that were read from the developed 
device. Measurements were made for half an hour. The calibration formulas for tempera-
ture and relative humidity were inserted into the Arduino programming to obtain the 
readings of temperature and relative humidity directly. 

To verify the readings from the weather sensors in this study, the average values from 
the meteorological stations on the web pages for the values of air temperature, atmos-
pheric pressure, and air relative humidity were compared with the general average of the 
actual measurements using the developed device and the relative error (RE, %) was com-
puted as follows: 

RE (%) =
(AV − WV)

(AV) × 100 (4)

where AV is reading from the developed device, and WV is the reading from the web 
pages for the investigated locations. 

2.3. Experimental Agricultural SeĴings 
The experiments were conducted in different agricultural seĴings located in the 

Kingdom of Saudi Arabia. We chose just agricultural seĴings because there are different 
research papers focused on the air pollutants in urban environments, and in the literature, 
the air pollutant levels in agricultural seĴings are uncommon. The description and geo-
graphical coordinates of the agricultural seĴings, the measurement times (start and end), 
the measurement dates, the description of agricultural actions, the experimental periods, 
and the No. of recorded data items are shown in Table A1 in Appendix A. The investigated 
agricultural seĴings had different actions, such as raising animals, applying fertilizers, 
and raising birds. The agricultural seĴings were located in different areas of the Kingdom 
of Saudi Arabia, such as the Riyadh, Shaqra, Al-Taiff, Al-Kharj, and Al-Zulfi regions. It is 
clear that the agricultural actions differed, as sheep farms were three denotes by F1, F10, 
and F22. Animal and bird farms were denoted by camel pastures (F2), dairy cows (F4), 
duck farms (F7), and typical and traditional pigeon farms (F8, F24, and F9), respectively. 
Fish farms are denoted by F5 and F6. However, other farm activities belong to agricultural 
production, such as palm farms (F11), vegetable farms (F25, F26, and F28), greenhouses 
for tomatoes (F12), cucumbers (F13), eggplants (F14 and F18), seeds (F16), bell peppers 
(F17), and strawberries (F21). For open farms, the agricultural actions included pomegran-
ate farms (F19), corn farms (F20), vineyards (F24), Persian fig farms (F29), and finally, pub-
lic gardens (F3). Furthermore, the investigation sites were located between 40.31968 N° 
and 47.19306 N° and between 21.12037 °E and 26.17933 °E. Moreover, the experimental 
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period was between 20 December 2021 and 16 July 2022. Furthermore, measurement times 
were different; some measurements were taken in the morning, and others were taken 
around 1.00 pm. Additionally, Figure 2 shows some images of the agricultural activities 
in this research; these included a sheep farm (F1), a camel pasture (F2), fish tanks for fat-
tening (F6), and a duck farm (F7). 

 
A sheep farm (F1). A camel pasture (F2). 

  
Fish tanks for fattening (F6). A duck farm (F7). 

Figure 2. Some images of the agricultural actions in this research. 

2.4. Derivation of Integrated Indicator of Air Quality 
The integrated indicator for air quality assessment (IAQA) was developed to com-

pare the selected agricultural seĴings based on the measured variables. The calculations 
were performed using a Microsoft Excel spreadsheet. Initially, to develop the IAQA, the 
readings had to be modified as their units of measurement were different. To adjust the 
readings between zero and one, Equation (5) was used [37]. 

XN = (ଡ଼୧ିଡ଼୫୧୬)
(ଡ଼୫ୟ୶ିଡ଼୫୧୬)

  (5)

where XN is the normalized reading value, Xi is the original reading value, Xmin is the 
lowest value among the original readings for one variable, and Xmax is the largest value 
among the original readings for one variable. This method (Equation (5)) gives no dimen-
sion to these original data. Additionally, the rationale behind the assigned weights to each 
variable should be elaborated upon to justify their selection. A weight of 1 to 5 was as-
signed to each variable, depending on its importance. Additionally, the rationale behind 
the assigned weights to each variable should be elaborated upon to justify their selection. 
A weight of 5 was used for the dust concentration (particulate maĴer) in the air because 
of its major role in pollution; however, particulate maĴer is an important parameter in 
determining air quality, affecting visibility [38], human health [39,40], and global climate 
[41]. However, particles vary in size, shape, and composition. Moreover, particulate mat-
ter is the most commonly monitored indoor air pollutant, which is defined as a mixture 
of solid or liquid particles suspended in air [42]. Additionally, a weight of 4 was used for 
the carbon monoxide concentration as CO is produced indoors by combustion sources 
(cooking and heating) and is also introduced through the infiltration of carbon monoxide 
from outdoor air into the indoor environment [43,44]. Moreover, a weight of 2 was used 
for the air temperature variable and a weight of 3 for the air relative humidity. Finally, a 
weight of 1 was used for the atmospheric pressure. According to the IAQA values, the 
environment with the lowest value is the best environmentally, and the equation that cal-
culated the IAQA is as follows: 

IAQA = (∑ (ଡ଼୒౤
౟సభ ୈ×ହାଡ଼୒େ୓×ସାଡ଼୒ୖୌ×ଷାଡ଼୒୘×ଶାଡ଼୒୔×ଵ)

(ହାସାଷାଶାଵ)
) × 100  (6)
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Then, the arithmetic average of the IAQA (%) is averaged over the monitoring period.  

Where XND is the reading value after adjusting for the dust concentration in the air; 
XNCO is the reading value after adjusting for the carbon monoxide concentration; XNRH 
is the reading value after adjusting for the air relative humidity; XNT is the reading value 
after adjusting for the air temperature; XNP is the reading value after adjusting for the 
variable of atmospheric pressure, and n is the number of reads per site. In a previous 
study, the weighted linear combination method was used by Yin et al. [45] to assess the 
appropriateness of agricultural land. 

3. Results and Discussion 
3.1. Evaluation Example 

The IAQA can be determined as shown in Table A2 in Appendix A, which presents 
raw data of parameters for farms numbered F1, where the number of readings was 44. It 
is clear from Table A2 that the average values of air relative humidity, air temperature, 
atmospheric pressure, dust concentration in the air, and CO were 39.55%, 21.40°, 945.69 
hPa, 167.66 µg/m3, and 13.81 ppm, respectively. Moreover, Table A3 in Appendix A shows 
normalized data according to Equation (5) of the parameters for the farms numbered F1, 
where the number of readings was 44. Furthermore, Table A4 in Appendix A depicts the 
normalized data multiplied by the corresponding parameters for the farms numbered F1, 
where the number of readings was 44. 

3.2. Data Analysis of Sensors Calibration  
The relationship between the readings of air temperature from the developed device 

and the Testo 625 device is shown in Figure 3, and the relationship between the readings 
of air relative humidity from the developed device and the Testo 625 device is shown in 
Figure 4. It was found that the relationship between the readings was strong and linear, 
with coefficients of determination (R2) equal to 0.963 for air temperature and 0.987 for air 
relative humidity. Therefore, it became clear that it was possible to rely on the readings 
produced by the developed device to know the temperature and relative humidity of the 
atmosphere. 

 

Figure 3. Relationship between the readings of air temperature from the developed device and the 
Testo 625 device. 
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Figure 4. Relationship between the readings of air relative humidity from the developed device and 
the Testo 625 device. 

To verify the readings of the weather sensors placed on the Arduino board, a com-
parison was made with what was available on the web pages of the measurements of 
weather conditions, such as air temperature, air relative humidity, and atmospheric pres-
sure (Table A5) in Appendix A; it was noted that there were differences in the heights at 
which the measuring devices were placed; these devices included both the developed de-
vice and the standard devices in meteorological stations; the measurement locations also 
differed as they could be indoors or outdoors. The average values from the meteorological 
stations on the web pages for the values of air temperature, atmospheric pressure, and air 
relative humidity were compared with the general average of the actual measurements. The 
relative error (RE) between the readings was calculated, and the computed average relative 
error was about −13.22% for atmospheric pressure, 10.04% for air temperature, and 21.01% 
for air relative humidity from data shown in Table A4 in Appendix A. 

3.3. Analyzing of Recorded Data 
Given that the statistical dispersion of measurements of a quantity under identical 

circumstances defines precision, the standard deviation calculated from each sensor’s 
readings is steady and repeatable. The standard deviation is a metric used to assess how 
dispersed data are in relation to their average value; a larger range for this parameter in-
dicates a higher degree of measurement uncertainty. However, data from all sensors were 
subjected to descriptive statistical analysis to obtain the mean, minimum, maximum, 
standard deviation (SD), and coefficient of variation (CV, %). The percentage value of CV 
was categorized as low (CV < 12%), medium (if CV = 12–24%), and high (when CV > 24%) 
[33]. However, the average values for air temperature, relative humidity, atmospheric 
pressure, air dust concentration, and carbon monoxide concentration are displayed in Ta-
ble 1 for the different sites. Meanwhile, Table 2 shows the maximum and minimum values, 
the coefficient of variation, and the standard deviation of these data on the variables of 
carbon monoxide concentration (CO) and dust concentration in the air (DC). 
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Table 1. Average daily air relative humidity, air temperature, atmospheric pressure, dust concen-
tration in the air, and carbon monoxide concentration recorded at different sites. 

Site Symbol 
Air Relative Hu-

midity 
Air Temperature 

Atmospheric Pres-
sure 

Dust Concentra-
tion in the Air 

Carbon Monoxide 
Concentration 

(%) (°C) (hPa) (μg/m3) (ppm) 
F1 39.5 21.4 945.7 167.7 13.8 
F2 28.9 27.8 944.7 167.9 9.7 
F3 33.9 24.0 946.6 170.1 7.5 
F4 13.1 21.2 949.4 197.0 12.7 
F5 15.3 41.1 940.1 243.7 8.1 
S6 43.0 37.7 941.3 258.2 13.2 
F7 12.4 38.2 940.8 248.2 12.1 
F8 12.3 38.2 940.8 261.3 11.6 
F9 13.0 39.6 940.3 245.0 10.7 

F10 15.6 44.3 938.6 234.6 10.7 
F11 13.4 40.2 938.7 256.2 11.5 
F12 38.3 32.2 962.2 247.8 13.4 
F13 40.0 29.3 962.1 246.5 12.2 
F14 37.2 29.6 963.1 161.6 11.6 
F15 30.7 36.5 962.8 262.6 11.0 
F16 18.1 34.5 839.8 242.6 11.2 
F17 23.8 40.1 839.1 254.8 15.7 
F18 26.0 39.5 840.0 252.7 15.1 
F19 15.9 35.6 840.1 258.9 13.6 
F20 38.4 31.4 840.8 255.8 12.7 
F21 32.4 33.3 850.4 245.3 12.6 
F22 13.4 37.2 850.0 256.5 10.2 
F23 14.8 35.2 850.8 238.3 12.4 
F24 12.8 38.9 850.3 246.7 10.5 
F25 28.8 31.1 844.6 247.3 10.0 
F26 32.3 29.5 844.6 197.8 9.9 
F27 18.7 33.7 829.6 227.8 13.4 
F28 13.8 36.7 829.7 239.8 10.4 
F29 15.4 31.3 795.8 242.9 10.3 

Overall average 23.8 34.1 895.3 233.6 11.6 
Overall minimum 12.3 21.2 795.8 161.6 7.5 
Overall maximum 43.0 44.3 963.1 262.6 15.7 

Table 2. Coefficient of variation, maximum and minimum values, and standard deviation of data 
on variables of carbon monoxide concentration (CO) and dust concentration in the air (DC, µg/m3 
of air). 

Site Symbol 
Coefficient of Variation (%) Maximum Minimum Standard Deviation 

CO DC CO DC CO DC CO DC 
(%) (%) (ppm) (μg/m3) (ppm) (μg/m3) (ppm) (μg/m3) 

F1 15.6 27.3 18.9 303.3 11.1 114.0 2.2 45.83 
F2 13.9 18.7 13.5 246.4 8.0 120.7 1.3 31.35 
F3 4.3 15.7 8.5 228.1 7.1 124.0 0.3 26.77 
F4 18.6 14.3 17.3 261.3 8.5 131.1 2.4 28.08 
F5 23.2 11.1 13.0 291.6 4.8 172.6 1.9 27.10 
S6 29.0 10.5 19.0 306.2 7.8 211.5 3.8 27.12 
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F7 7.1 9.9 15.4 302.1 10.7 212.0 0.9 24.48 
F8 8.2 10.4 15.1 307.0 8.9 214.1 0.9 27.06 
F9 5.4 11.3 11.9 298.7 7.8 198.3 0.6 27.60 

F10 7.1 17.9 12.9 298.7 8.7 129.8 0.8 41.87 
F11 7.6 11.3 14.7 305.4 10.5 199.9 0.9 28.89 
F12 17.6 11.3 17.1 308.2 7.8 210.4 2.4 28.03 
F13 12.9 9.6 17.4 305.4 10.3 213.2 1.6 23.61 
F14 23.0 21.9 15.8 248.9 5.5 102.8 2.7 35.35 
F15 12.8 10.2 14.6 307.9 5.8 209.0 1.4 26.68 
F16 28.9 7.4 15.4 274.7 4.8 208.2 3.2 18.07 
F17 15.3 8.4 18.3 299.6 11.0 211.5 2.4 21.31 
F18 10.9 8.9 18.8 309.5 11.2 213.7 1.6 22.51 
F19 9.8 10.1 17.9 302.9 10.5 204.5 1.3 26.02 
F20 13.1 8.8 17.6 295.4 10.9 207.9 1.7 22.54 
F21 10.0 10.2 16.3 297.9 11.3 187.1 1.3 25.04 
F22 8.6 8.9 12.4 292.9 8.9 213.2 0.9 22.78 
F23 10.9 9.7 17.6 297.1 10.9 191.7 1.4 23.06 
F24 6.5 9.7 12.0 297.9 7.9 202.4 0.7 23.90 
F25 9.1 8.4 14.4 304.5 9.2 209.9 0.9 20.74 
F26 5.4 16.9 11.4 262.2 7.8 133.2 0.5 33.46 
F27 17.6 13.3 19.2 285.5 8.1 171.3 2.3 30.38 
F28 7.6 11.1 12.5 295.4 7.8 149.7 0.8 26.55 
F29 10.6 13.0 15.0 306.2 9.2 158.4 1.1 31.50 

It is clear from Table 1 that the overall average dust concentration in the air and car-
bon monoxide concentration recorded at different sites were respectively 233.6 µg/m3 and 
11.6 ppm. In addition, the overall average of air relative humidity, air temperature, and 
atmospheric pressure were respectively 23.8%, 34.1 °C, and 895.3 hPa. Furthermore, low 
air relative humidity (<30%) can affect human health [46]. Moreover, the overall average 
CO value was 11.6 ppm (Table 1); the obtained CO level in this study was at a bad level 
according to Loganathan et al. [47], who stated two levels of CO, normal in the range of 
0.0~9.0 ppm and bad in the range of 9.1~15.0. In the study of Bakri et al. [11], they recorded 
values of 28.38 ppm and 35.40 ppm in a residential area using an MQ7 sensor connected 
to an Arduino board for detecting CO concentration using two sensors. Additionally, on 
the main road (commercial area), the averages of 44.10 ppm and 35.40 ppm for CO con-
centration were detected by these two sensors. The duration of monitoring measurements 
of Bakri et al. [11] study was set at 3 min.  

The overall average dust concentration in the air in this study was 233.6 µg/m3 (Table 
1); however, particulate maĴer exposure is generally considered hazardous and danger-
ous because of the potential for some negative health effects, including irritation of the 
eyes, nose, and throat, worsening of symptoms associated with respiratory and heart dis-
eases, and even an increased risk of premature mortality in individuals with lung or heart 
illness [48]. So, several authorities have published recommendations for permissible limits 
for particulate maĴer in the air. The recommended level of PM10 was identical by 50 µg/m3 
and not to be exceeded more than 35 times a year with an annual average limit of 40 µg/m3 
[49]. The World Health Organization also recommended a limit of PM2.5, which is 25 µg/m3 
[49]. It is also clear from Table 1, which shows the concentrations of carbon monoxide gas 
in different environments, that the largest arithmetic average was equal to 15.7 ppm inside 
a greenhouse planted with bell peppers (F17) and that the lowest value was 7.5 ppm in a 
public garden (F3); it is known that the concentration of carbon monoxide gas within un-
healthy limits has the values of 9–15 ppm. The values of CO varied during the measure-
ment times; this phenomenon was also observed in a study by Karamchandani et al. [50], 
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in which they found that the concentration of carbon monoxide varied with the measure-
ment time. In addition, the arithmetic average of the dust concentration in the air was 
determined for different agricultural seĴings; the largest arithmetic average was equal to 
263 µg/m3 in a palm farm (F11), and the lowest value was 162 µg/m3 in a greenhouse 
planted with eggplant (F14). However, some selected areas in this study were located at a 
level of high pollution based on dust concentration in the air, which was in the range of 
150–250 µg/m3 (micrograms per cubic meter of air). In a study by Beyaz [14], using the 
GP2Y1010AU0F sensor and an Arduino board to determine the dust concentration on a 
poultry farm, they found that the dust concentration value was 74.69 µg/m3, and it varied 
over time, as the dust concentration value in the fourth week of rearing reached about 
242.55 µg/m3.  

It is clear from Table 1 that the overall average, overall minimum, and overall maxi-
mum of air relative humidity in investigated seĴings were 23.8%, 12.3%, and 43.0%, re-
spectively. Moreover, the overall average, overall minimum, and overall maximum air 
temperature in investigated seĴings were 34.1 °C, 21.2 °C, and 44.3 °C, respectively, and 
for atmospheric pressure, the values were 895.3 hPa, 795.8 hPa, and 963.1 hPa, respectively 
(Table 1). Finally, by exploring Table 2, the range of coefficient of variation for carbon 
monoxide concentration was 4.3% to 29.0%, the maximum range was 8.5 ppm to 19.2 ppm, 
and the minimum range was 4.8 ppm to 11.3 ppm. Moreover, the range of coefficient of 
variation for dust concentration in the air was 7.4% to 27.3%, the maximum range was 
228.1 µg/m3 to 309.5 µg/m3, and the minimum range was 102.8 µg/m3 to 214.1 µg/m3.  

3.4. Correlation Analyzing of Recorded Data 
The variations in air temperature, relative humidity, and atmospheric pressure and 

their influences on pollutant concentrations in the ambient air were analyzed using Spear-
man correlation annually. The results show that the CO concentrations had a weak nega-
tive correlation with atmospheric pressure, but a weak positive correlation with air tem-
perature and air relative humidity, as shown in Table 3, was observed. Additionally, the 
dust concentrations in the air had a weak negative correlation with atmospheric pressure 
and air relative humidity, but a strong positive correlation (r = 0.723, p ≤ 0.01) with air 
temperature, as shown in Table 3, was observed. However, the observed correlation coef-
ficient ranges from 0.00 to 0.10, which means a negligible correlation; from 0.10 to 0.39, 
which means a weak correlation; from 0.40 to 0.69 means a moderate correlation; from 
0.70 to 0.89 means a strong correlation, and from 0.90 to 1.00 means very strong correlation 
as reported by [51]. In a study by Tasić et al. [52], they recommended that there be a study 
to clarify the effect of changes in air temperature and humidity on the concentration of 
PM2.5 dust particles. They used a GP2Y1010AU0F sensor connected to an Arduino board 
to measure the concentration of dust particles in an indoor environment. They chose this 
sensor because of its low cost and its quality in measuring dust concentration. They com-
pared their readings with the approved readings and found a strong correlation between 
the readings and the measurements for 15 min. Moreover, in the study of Ulutaş et al. [53], 
a strong positive correlation was reported between CO and PM10 and PM2.5. Additionally, 
they revealed that the changes in the meteorological parameters significantly affect the 
behavior of air pollutant parameters. Furthermore, during the winter and summer, there 
were significant correlations between particle maĴer and air relative humidity. These re-
sults add to our knowledge of how weather paĴerns affect air quality in agricultural set-
tings and highlight the crucial role that meteorological factors play in shaping the dynam-
ics of air pollution throughout the nation [54]. 
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Table 3. Correlation coefficients of the air temperature, air relative humidity, atmospheric pres-
sure, and concentration values of air pollutants (CO and dust concentration in the air) during the 
investigation periods. 

Variables CO 
Dust Concentration in 

the Air 
Atmospheric 

Pressure 
Air Tem-
perature 

Air Relative 
Humidity 

CO 1.000     
Dust concentration in the air 0.255 1.000    

Atmospheric pressure −0.145 −0.312 1.000   
Air temperature 0.061 0.723 −0.152 1.000  

Air relative humidity 0.194 −0.321 0.269 −0.481 1.000 

3.5. Analyzing Data of Integrated Indicator of Air Quality 
For the whole set of data, Figure 5 shows the average values of IAQA. According to 

the index values of IAQA, the environment with the lowest value is the most environmen-
tally friendly; its lowest and highest values ranged from 37.03%, which occurred on a veg-
etable farm, and 66.32%, which occurred on a traditional pigeon farm, respectively (Figure 
5), with an arithmetic average of 48.24%.  

 
Figure 5. Values of average IAQA for different farm activities. 

As is clear from Figure 5, the two sheep farms (F1 and F22) had IAQA values of 42.04 
and 46.88%, respectively. However, the pigeon farms (F24 and F9) had IAQA values of 
55.95% and 66.32%, respectively, while the typical pigeon farm (F8) had an IAQA value 
of 44.79%. In addition, the seed greenhouse (F16) had an IAQA value of 54.66%, the bell 
pepper greenhouse (F17) had an IAQA value of 55.82%, and the eggplant greenhouse 
(F18) had an IAQA value of 43.75%. Given their considerable effects on pollutant disper-
sion and/or transformation, air temperature, and air relative humidity may be the primary 
factors influencing year-round air quality; they account for the variation in IAQA values. 
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The term air quality refers to how clean the air is in relation to the level of pollution [21]. 
The air quality of monitoring farms F24 and F9 are seriously dangerous. An early warning 
should be issued to the farm workers in such environments, and the working hours 
should be reduced. Then, a statement should be formed following prescribed procedures, 
and work can continue after the pollution concentrations are reduced. If left untreated, 
the occupational health of farm workers can be endangered, causing human and property 
losses [33]. It can also be seen in Figure 5 that the air quality of the monitoring farms’ 
public garden (F3), duck farm (F7), and corn farm (F20) is good compared with other mon-
itoring farms. The reason for this might be that safer activities are used in such farms. The 
created IAQA model will suitably emphasize the impact on the air quality level when one 
of the examined indicators has a greater scale. Interactions and synergies between differ-
ent pollutants and atmospheric parameters happen when the scale of all indicators in-
creases, and this has a major effect on the level of air quality. 

The purpose of this study was to monitor and assess different air pollutants and at-
mospheric factors in agricultural contexts using the weighted average scale index evalua-
tion technique. Initially, it is possible to measure the atmospheric parameters and air qual-
ity indicators in an agricultural seĴing. Second, the weighted average scale index evalua-
tion methodology can precisely and swiftly manage the variables that cause environmen-
tal fall and reflect the governance status following action. These measurement data can be 
used as a guide for air quality assessment and agricultural environment structure design. 
Although similar research has been published, this paper presents novelty findings from 
combined values of air pollutants and weather parameters for defining a new criterion 
called an integrated indicator. Additionally, this paper presents original results for air pol-
lutants and weather parameters in different agricultural activities. 

4. Conclusions 
This study performed measurements to comprehensively assess air pollution levels 

in different regions of the Kingdom of Saudi Arabia. For this purpose, a portable device 
was developed and designed that employed different sensors connected to an Arduino 
board. Measurements in 29 environmentally different agricultural regions located within 
the Kingdom of Saudi Arabia were obtained. Atmospheric pressure, air temperature, and 
air relative humidity were evaluated during the experiments. The utilized dust concentra-
tion in the air and the carbon monoxide concentration served as indicators of air pollution. 
However, we selected the concentration of dust in the air to represent air pollutants, as 
dust storms are important weather occurrences that affect air quality, public health, and 
visibility—especially in desert Saudi Arabia. Moreover, we selected the concentration of 
carbon monoxide due to car emissions of carbon monoxide having a negative impact on 
human health in addition to causing environmental pollution and climate change. A vital 
tool was established, offering both the public and the decision-makers an understandable 
gauge of air quality. The unequivocal success of these two indicators of air pollutants was 
not sufficient to compare the agricultural activities in the selected area; thus, a new indi-
cator was developed and utilized to compare the pollution levels of the agricultural envi-
ronments under study by assigning a weight to each variable according to its role in the 
pollution of the agricultural environment. The agricultural environment with the lowest 
indicator was the best environmentally, as the lowest and highest values of the integrated 
indicator ranged from 37.03% and 66.32%, respectively, with an arithmetic average of 
48.24%. This indicator can change depending on the change in the weights of the variables 
involved, and it is suitable for application to any other agricultural or non-agricultural 
seĴings to evaluate the pollution level in the air. Our research has yielded insights that are 
broadly applicable and offer prospects for tackling air quality issues worldwide. We cre-
ated the conditions for a more sustainable agricultural practice and advanced monitoring 
of the environment that utilizes both air pollutant indicators and the commonly available 
meteorological parameters. This study is of great worth for improving the air quality in 
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agricultural environments. Finally, technological advancements continue, and future re-
search could explore the integration of real-time data transmission capabilities into the 
developed portable device. Incorporating such capabilities would enable continuous 
monitoring and timely dissemination of air quality information, providing an even more 
dynamic and responsive approach to addressing environmental concerns in agricultural 
and non-agricultural seĴings.  Finally, the limitations in this study are related to the meas-
urement period, which can be increased in a future study. In addition, the results pre-
sented here were not related to the different seasons of the year. 
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Appendix A 

Table A1. The description of the investigated sites, no. of recorded data items, measurement time, 
longitude, latitude, and measurement dates. 

Site 
Symbol 

Description 
No. of Rec-
orded Data 

Items 

Measurement Time 
Longitude 

(N°) 
Latitude 

(°E) 
Measurement Dates 

Start End    
F1 Sheep farm 44 08:19:28 a.m. 08:49:59 a.m. 46.52015 24.80666 20 December 2021 
F2 Camel pasture 44 08:55:21 a.m. 09:24:23 a.m. 46.52015 24.80666 20 December 2021 
F3 Public garden 46 10:19:08 a.m. 10:51:52 a.m. 46.61954 24.73749 20 December 2021 
F4 Dairy cows 59 12:07:59 p.m. 12:35:31 p.m. 44.84347 26.17933 25 January 2022 
F5 Fish hatchery 42 10:33:30 a.m. 10:59:33 a.m. 45.33346 25.39403 11 May 2022 
F6 Fish tanks for fattening 42 11:18:21 a.m. 11:47:23 a.m. 45.33346 25.39403 11 May 2022 
F7 Duck farm 51 11:52:37 a.m. 12:03:02 p.m. 45.33397 25.39733 11 May 2022 
F8 Typical pigeon farm 44 12:39:05 p.m. 01:06:37 p.m. 45.33097 25.39836 11 May 2022 
F9 Traditional pigeon farm 42 01:16:04 p.m. 01:45:51 p.m. 45.33097 25.39836 11 May 2022 

F10 Sheep farm 39 01:57:48 p.m. 02:23:56 p.m. 45.33175 25.40089 11 May 2022 
F11 Palm farm 42 02:38:00 p.m. 03:05:33 p.m. 45.33747 25.39903 11 May 2022 
F12 Tomato greenhouse 34 01:19:26 p.m. 01:43:16 p.m. 47.19306 24.28836 17 May 2022 
F13 Cucumber greenhouse 43 02:03:52 p.m. 02:34:23 p.m. 47.19306 24.28836 17 May 2022 
F14 Eggplant greenhouse 54 07:57:26 a.m. 08:36:13 a.m. 47.19531 24.28456 19 May 2022 
F15 Palm farm 50 08:54:44 a.m. 09:30:29 a.m. 47.19061 24.28553 19 May 2022 
F16 Seed greenhouse  48 09:14:34 a.m. 09:48:53 a.m. 40.42283 21.30019 12 July 2022 
F17 Bell pepper greenhouse 50 09:58:41 a.m. 10:29:57 a.m. 40.42283 21.30019 12 July 2022 
F18 Eggplant greenhouse 46 10:38:00 a.m. 11:15:21 a.m. 40.42283 21.30019 12 July 2022 
F19 Pomegranate farm 41 11:22:06 a.m. 11:51:08 a.m. 40.42475 21.29889 12 July 2022 
F20 Corn farm 47 10:03:52 a.m. 10:38:06 a.m. 40.42778 21.32617 13 July 2022 
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F21 Strawberry greenhouse 43 11:22:54 a.m. 11:53:25 a.m. 40.55652 21.33177 13 July 2022 
F22 Sheep farm 43 12:10:02 p.m. 12:41:18 p.m. 40.55728 21.31911 13 July 2022 
F23 Poultry farm 40 01:11:21 p.m. 01:40:23 p.m. 40.55863 21.34044 13 July 2022 
F24 Typical pigeon farm 49 01:44:23 p.m. 02:18:38 p.m. 40.55867 21.34073 13 July 2022 
F25 Vegetable farm 41 03:31:52 p.m. 04:00:09 p.m. 40.46499 21.32615 13 July 2022 
F26 Vegetable farm 40 04:05:09 p.m. 04:33:26 p.m. 40.46499 21.32615 13 July 2022 
F27 Vineyard 65 10:16:26 a.m. 11:03:19 a.m. 40.36954 21.24056 16 July 2022 
F28 Vegetable farm 46 11:12:17 a.m. 11:51:32 a.m. 40.36954 21.24056 16 July 2022 
F29 Persian fig farm 49 01:56:45 p.m. 02:28:00 p.m. 40.31968 21.12037 16 July 2022 

Table A2. Raw data of parameters for farms numbered F1, where the number of readings was 44. 

No. 
Air relative Hu-

midity 
Air Temperature Atmospheric Pressure 

Dust Concentration in 
the Air 

CO 

(%) (°C) (hPa) (μg/m3) (ppm) 
1 40 22.1 945.8 129.4 11.3 
2 39 22.1 945.7 190.8 11.2 
3 40 22.0 945.7 127.3 11.1 
4 40 22.1 945.6 154.1 11.6 
5 40 22.1 945.7 165.9 11.5 
6 40 22.1 945.8 154.8 11.4 
7 40 22.1 945.7 212.4 11.7 
8 40 21.9 945.7 176.7 11.9 
9 40 21.9 945.7 165.9 11.9 
10 40 21.8 945.7 145.7 12.0 
11 40 21.7 945.7 145.2 12.0 
12 40 21.7 945.6 302.9 12.3 
13 41 21.7 945.7 119.0 12.3 
14 41 21.6 945.7 301.2 12.7 
15 41 21.5 945.7 303.3 12.7 
16 41 21.5 945.7 153.9 13.1 
17 41 21.4 945.7 137.7 13.1 
18 41 21.4 945.7 151.0 13.4 
19 41 21.2 945.7 191.7 13.6 
20 41 21.3 945.8 155.6 13.6 
21 41 21.2 945.7 233.2 13.9 
22 41 21.1 945.7 143.1 14.2 
23 41 21.1 945.6 167.6 14.4 
24 41 21.1 945.7 148.6 14.6 
25 40 21.0 945.7 146.5 15.0 
26 40 20.9 945.7 146.0 15.1 
27 40 20.9 945.6 151.0 15.7 
28 40 20.8 945.7 134.8 16.2 
29 40 20.8 945.7 163.4 16.6 
30 40 20.8 945.6 168.4 17.0 
31 40 20.8 945.7 128.1 17.9 
32 39 20.7 945.6 175.9 18.3 
33 39 20.8 945.7 159.3 11.5 
34 39 20.8 945.8 123.1 12.0 
35 38 20.9 945.7 160.1 12.7 
36 38 21.1 945.7 241.6 13.6 
37 38 21.1 945.7 145.2 14.5 



Appl. Sci. 2024, 14, 5713 17 of 22 
 

38 38 21.3 945.7 15.06 15.9 
39 38 21.4 945.7 130.6 17.9 
40 37 21.4 945.7 150.1 12.1 
41 37 21.5 945.6 205.8 14.7 
42 36 21.6 945.6 160.9 18.9 
43 36 21.7 945.6 139.4 15.1 
44 36 21.8 945.6 114.0 15.5 

Average 39.55 21.40 945.7 167.66 13.81 
Standard deviation 1.47 0.45 0.06 45.83 2.14 

Minimum value 36 20.7 945.6 114 11.1 
Maximum value 41 22.1 945.8 303.3 18.9 

Table A3. Normalized data according to Equation (5) of parameters for farms numbered F1, where 
the number of readings was 44. 

No. 
Air Relative Hu-

midity 
Air Temperature 

Atmospheric Pres-
sure 

Dust Concentra-
tion in the Air 

CO 

1 0.800 1.000 0.882 0.081 0.031 
2 0.600 1.000 0.529 0.406 0.015 
3 0.800 0.929 0.588 0.070 0.000 
4 0.800 1.000 0.000 0.212 0.070 
5 0.800 1.000 0.176 0.274 0.054 
6 0.800 1.000 1.000 0.215 0.038 
7 0.800 1.000 0.471 0.520 0.078 
8 0.800 0.857 0.176 0.331 0.102 
9 0.800 0.857 0.294 0.274 0.110 
10 0.800 0.786 0.176 0.167 0.118 
11 0.800 0.714 0.235 0.165 0.118 
12 0.800 0.714 0.000 0.998 0.151 
13 1.000 0.714 0.353 0.026 0.151 
14 1.000 0.643 0.471 0.989 0.202 
15 1.000 0.571 0.294 1.000 0.211 
16 1.000 0.571 0.647 0.211 0.255 
17 1.000 0.500 0.412 0.125 0.255 
18 1.000 0.500 0.588 0.195 0.291 
19 1.000 0.357 0.471 0.410 0.318 
20 1.000 0.429 0.824 0.219 0.318 
21 1.000 0.357 0.706 0.629 0.365 
22 1.000 0.286 0.647 0.153 0.394 
23 1.000 0.286 0.059 0.283 0.423 
24 1.000 0.286 0.235 0.183 0.453 
25 0.800 0.214 0.647 0.172 0.493 
26 0.800 0.143 0.353 0.169 0.514 
27 0.800 0.143 0.118 0.195 0.588 
28 0.800 0.071 0.353 0.110 0.653 
29 0.800 0.071 0.529 0.261 0.709 
30 0.800 0.071 0.059 0.287 0.755 
31 0.800 0.071 0.353 0.075 0.874 
32 0.600 0.000 0.059 0.327 0.924 
33 0.600 0.071 0.235 0.239 0.054 
34 0.600 0.071 0.765 0.048 0.118 
35 0.400 0.143 0.706 0.244 0.211 
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36 0.400 0.286 0.353 0.674 0.328 
37 0.400 0.286 0.235 0.165 0.433 
38 0.400 0.429 0.176 0.222 0.620 
39 0.400 0.500 0.294 0.088 0.874 
40 0.200 0.500 0.176 0.191 0.134 
41 0.200 0.571 0.059 0.485 0.463 
42 0.000 0.643 0.000 0.248 1.000 
43 0.000 0.714 0.059 0.134 0.514 
44 0.000 0.786 0.059 0.000 0.566 

Table A4. Normalized data multiplied by the corresponding parameters for farms numbered F1 and 
IAQA values, where the number of readings was 44. 

CO 
Dust Concentra-
tion in the Air 

Air Relative 
Humidity 

Air Tempera-
ture 

Atmospheric 
Pressure 

Sum IAQA = [sum/(5 + 4 + 3 + 2 + 1)] 

0.122 0.122 0.122 0.122 0.122 5.811 0.387 
0.061 0.061 0.061 0.061 0.061 6.419 0.428 
0.000 0.000 0.000 0.000 0.000 5.196 0.346 
0.279 0.279 0.279 0.279 0.279 5.736 0.382 
0.216 0.216 0.216 0.216 0.216 6.163 0.411 
0.153 0.153 0.153 0.153 0.153 6.630 0.442 
0.310 0.310 0.310 0.310 0.310 7.780 0.519 
0.407 0.407 0.407 0.407 0.407 6.354 0.424 
0.439 0.439 0.439 0.439 0.439 6.219 0.415 
0.472 0.472 0.472 0.472 0.472 5.457 0.364 
0.472 0.472 0.472 0.472 0.472 5.359 0.357 
0.604 0.604 0.604 0.604 0.604 9.421 0.628 
0.604 0.604 0.604 0.604 0.604 5.517 0.368 
0.808 0.808 0.808 0.808 0.808 10.509 0.701 
0.843 0.843 0.843 0.843 0.843 10.280 0.685 
1.019 1.019 1.019 1.019 1.019 6.861 0.457 
1.019 1.019 1.019 1.019 1.019 6.056 0.404 
1.163 1.163 1.163 1.163 1.163 6.728 0.449 
1.274 1.274 1.274 1.274 1.274 7.509 0.501 
1.274 1.274 1.274 1.274 1.274 7.052 0.470 
1.461 1.461 1.461 1.461 1.461 9.028 0.602 
1.577 1.577 1.577 1.577 1.577 6.562 0.437 
1.694 1.694 1.694 1.694 1.694 6.739 0.449 
1.812 1.812 1.812 1.812 1.812 6.532 0.435 
1.974 1.974 1.974 1.974 1.974 6.308 0.421 
2.056 2.056 2.056 2.056 2.056 5.939 0.396 
2.350 2.350 2.350 2.350 2.350 6.130 0.409 
2.612 2.612 2.612 2.612 2.612 6.055 0.404 
2.836 2.836 2.836 2.836 2.836 7.213 0.481 
3.020 3.020 3.020 3.020 3.020 7.058 0.471 
3.497 3.497 3.497 3.497 3.497 6.765 0.451 
3.695 3.695 3.695 3.695 3.695 7.188 0.479 
0.216 0.216 0.216 0.216 0.216 3.589 0.239 
0.472 0.472 0.472 0.472 0.472 3.421 0.228 
0.843 0.843 0.843 0.843 0.843 4.252 0.283 
1.311 1.311 1.311 1.311 1.311 6.804 0.454 
1.733 1.733 1.733 1.733 1.733 4.562 0.304 
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2.480 2.480 2.480 2.480 2.480 5.821 0.388 
3.497 3.497 3.497 3.497 3.497 6.429 0.429 
0.538 0.538 0.538 0.538 0.538 3.269 0.218 
1.852 1.852 1.852 1.852 1.852 6.077 0.405 
4.000 4.000 4.000 4.000 4.000 6.525 0.435 
2.056 2.056 2.056 2.056 2.056 4.213 0.281 
2.265 2.265 2.265 2.265 2.265 3.895 0.260 

Total sum 18.495 
No. of readings 44 

Average IAQA (%) =(18.495/44) ×100 = 42.035 

Table A5. Data from web pages and data from the developed device for air temperature, atmos-
pheric pressure, and air relative humidity during the experimental periods in the investigated loca-
tions. 

Data from the Developed Device Data from Web Pages 
Atmospheric 

pressure 
Air Tempera-

ture 
Air Relative 

Humidity 
Average Air 
Temperature 

Minimum Air 
Temperature 

Maximum Air 
Temperature 

Atmospheric 
Pressure 

Air Relative 
Humidity 

(hPa) (°C) (%) (°C) (°C) (°C) (hPa) (%) 
946.6 21.4 39.5 20.5 16 25 1019 48 
949.4 27.8 28.9 20.5 16 25 1019 48 
940.1 24.0 33.9 20.5 16 25 1019 48 
941.3 21.2 13.1 18.0 16 20 1017 24 
940.8 41.1 15.3 29.0 28 30 1009 14 
940.8 37.7 43.0 29.0 28 30 1009 14 
940.3 38.2 12.4 37.0 36 38 1005 8 
938.6 38.2 12.3 37.0 36 38 1005 8 
938.7 39.6 13.0 37.0 36 38 1005 8 
962.2 44.3 15.6 37.0 36 38 1005 8 
962.1 40.2 13.4 37.0 36 38 1005 8 
963.1 32.2 38.3 36.5 35 38 1012 12 
962.8 29.3 40.0 36.5 35 38 1012 12 
839.8 29.6 37.2 34.0 26 42 1014 21 
839.1 36.5 30.7 34.0 26 42 1014 21 
840.0 34.5 18.1 29.0 25 33 1018 15 
840.1 40.1 23.8 29.0 25 33 1018 15 
840.8 39.5 26.0 29.0 25 33 1018 15 
850.4 35.6 15.9 29.0 25 33 1018 15 
850.0 31.4 38.4 29.5 26 33 1017 19 
850.8 33.3 32.4 29.5 26 33 1017 19 
850.3 37.2 13.4 32.0 30 34 1015 20 
844.6 35.2 14.8 32.0 30 34 1015 20 
844.6 38.9 12.8 32.0 30 34 1015 20 
829.6 31.1 28.8 32.0 30 34 1015 20 
829.7 29.5 32.3 32.0 30 34 1015 20 
795.8 33.7 18.7 29.5 25 34 1015 17 
895.3 36.7 13.8 29.5 25 34 1015 17 
795.8 31.3 15.4 32.5 31 34 1015 12 
895.3 34.1 23.8 27.8 33.6 30.7 1013.6 18.8 
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