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Abstract: Extraction techniques are continuously developed by the scientific community. Meanwhile,
avocado peel is a by-product of avocado processing and a source of bioactive compounds. The
purpose of this review was to summarize the use of advanced techniques for extracting bioactive
compounds from avocado peel to help understand which techniques have and have not been applied
to avocado peel. Three primary databases were used to collect the information, including Google
Scholar, Scopus, and Web of Science, by using the keywords “avocado”, “peel”, and “extraction”.
Additional keywords related to the extraction technique were also used, including “Microwave-
Assisted Extraction”, “Ultrasound-Assisted Extraction”, “Enzyme-Assisted Extraction”, “Pressurized
Liquid Extraction”, “Supercritical Fluid Extraction”, “Natural Deep Eutectic Solvents”, “Three-phase
partitioning (TPP)”, “Pulsed-Electric Field”, “High Voltage Electric Discharge Plasma”, “Centrifugal
Partition Extraction”, and “Surfactant-Mediated Extraction”. The results show that microwave-
assisted extraction, ultrasound-assisted extraction, enzyme-assisted extraction, pressurized liquid
extraction, supercritical fluid extraction, TPP, and natural deep eutectic solvent extraction have been
used to retrieve bioactive compounds from avocado peel. Other techniques have not yet been applied
for the extraction of bioactive compounds from avocado peel. This article is the first review discussing
the advanced extraction technique for retrieving bioactive compounds from avocado peel. This article
creates a paradigm for future studies.

Keywords: avocado peel; high voltage electric discharge plasma; natural deep eutectic solvent
extraction; pulsed-electric field; three phase partitioning

1. Introduction

The use of bioactive compounds extracted from various plants in the food and pharma-
ceutical industries has gained high interest recently. The incorporation of phenol-rich plants
and extracts in food generally aims at improving its health-promoting properties [1,2]. Over
the years, numerous methods have been developed to recover bioactive molecules from
different agricultural products. An appropriate extraction method is essential for desorbing

Appl. Sci. 2024, 14, 6018. https://doi.org/10.3390/app14146018 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14146018
https://doi.org/10.3390/app14146018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6551-5812
https://orcid.org/0000-0001-5356-6890
https://orcid.org/0000-0001-9130-1957
https://orcid.org/0000-0002-5225-8703
https://orcid.org/0000-0001-7199-3220
https://doi.org/10.3390/app14146018
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14146018?type=check_update&version=1


Appl. Sci. 2024, 14, 6018 2 of 17

compounds of interest from the plant matrix’s active spots. This is because the extract’s
yield and quality are strongly linked to the effectiveness and selectivity of the extraction
methods used [3,4].

Nowadays, scientists are making tremendous efforts to extract bioactive compounds
from food by-products. In the context of sustainability and the circular economy, food
by-products have been an emerging issue because 30–40% of the total food produced
annually is wasted worldwide. About 40–50% of the food waste is from fruits, vegetables,
and root crops [5]. The global consumption of fruit results in a vast quantity of solid
waste, including peel, skin, and seeds. These materials still contain valuable, economically
viable constituents.

Avocado (Persea americana Mill.) is a tropical fruit with economic significance in many
countries [6]. Avocado has been used in several industries, including food and cosmetics.
Thus, using avocado on an industrial scale brings a consequence in which the process
generates a considerable number of by-products, such as peels and seeds. According to
Figueroa et al. [7], the avocado peel is about 13% of the fruit weight. Avocado peel is
a source of bioactive compounds. In their report, about 53 compounds were detected
from the avocado peel, including phenolic content, and some of the compounds exhibited
antioxidant activity. This implies that avocado peel is potentially further processed by
appropriate extraction methods for retrieving its bioactive constituents.

Some established methods to obtain bioactive compounds from various plants include
maceration, Soxhlet extraction, solvent–solvent extraction, and decoction. The aforemen-
tioned techniques are effective in retrieving bioactive compounds from avocado peels
(Table in Section 4.7). The techniques, however, are considered traditional or conven-
tional extraction methods because they are time-consuming and tedious and require large
amounts of environmentally unfriendly organic solvents with low extraction yields. In re-
cent decades, alternative environmentally friendly techniques have received more attention.
Moreover, the advanced methods are faster, more selective, and automated, and they are
able to preserve the quality of the extract. The advanced, so-called non-conventional meth-
ods include microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE),
enzyme-assisted extraction, supercritical fluid extraction, and subcritical water extraction
(SWE) for the quality of extracted molecules [8–11]. For this reason, developing a technique
that aims to preserve the nature, quality, and quantity of molecules of interest and, thus, the
success of the following steps is promising. This paper, therefore, discusses the advantages
of the emerging techniques for extracting bioactive compounds from avocado peel. This
paper also covers the advanced extraction techniques that have yet to be applied in avocado
peel but may be interesting to conduct in future studies.

2. Method

To examine the research trend regarding the extraction of avocado peels, Google
Scholar was used as the search engine. The search was limited to the last ten years, from
2014 onwards, by including patents and excluding citations. Three central databases
were used to collect information for deeper discussion, including Google Scholar, Scopus,
and Web of Science, by using the keywords “avocado”, “peel”, and “extraction”. Addi-
tional keywords related to the extraction technique were also used, including “Microwave-
Assisted Extraction”, “Ultrasound-Assisted Extraction”, “Enzyme-Assisted Extraction”,
“Pressurized Liquid Extraction”, “Supercritical Fluid Extraction”, “Natural Deep Eutectic
Solvents”, “Three-phase partitioning”, “Pulsed-Electric Field”, “High Voltage Electric Dis-
charge Plasma”, “Centrifugal Partition Extraction”, and “Surfactant-Mediated Extraction”.
No specific duration was used to collect the information.

3. Research Trends in Extraction of Bioactive Compounds from Avocado Peel

Avocado is a source of nutrition and various bioactive compounds. The compounds
may exhibit bioactivity, which may be beneficial for human health. The potential bioactivity
of avocado lies not only in its flesh but also in its seeds and peels. Figure 1 illustrates the
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potential bioactivity of avocado, including antioxidant, antimicrobial, anticancer, and anti-
inflammatory activity. It is widely known that the bioactivity of each part is determined by
its components inside the flesh, seed, peel, or extract [4].
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Figure 1. Illustration of avocado structure and its potential bioactivity. References: Alkhalaf et al. [12],
Jimenez et al. [13], and Araujo et al. [14].

Flesh is the main product of avocado. However, nowadays, great attention is given
to the bioactive compounds in the avocado’s residue, including its peels, which are about
13% of the fruit’s weight. As shown in Figure 2, the research trends regarding avocado peel
extraction have increased significantly in the past ten years. In 2014, the publications on the
topic of avocado peel extraction were about 811 articles, and in 2023, it increased to almost
three times that, at 3080 publications. Various methods have been applied by scientists to
extract bioactive compounds from avocado peels. It includes microwave-assisted extraction
(MAE), ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), pressur-
ized liquid extraction (PLE), supercritical fluid extraction (SFE), natural deep eutectic
solvents (NaDESs) extraction, and three phase partitioning (TPP).
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4. Advanced Methods for Extraction of Bioactive Compounds from Avocado Peel
4.1. Microwave-Assisted Extraction (MAE)

Microwave-assisted extraction (MAE) is an improved maceration method for extract-
ing bioactive compounds that use microwave energy. Typically, this method uses less
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energy, less time, less water, and less cost. As in maceration, a separation step (filtration) is
necessary to separate the matrix from the extraction medium at the end of the extraction [15].
It is important to note that microwave-generated temperatures can degrade heat-sensitive
components. Even though the thermal deterioration of the compounds cannot be avoided,
it is still lower than any traditional extraction method. However, microwave extraction
is also limited by the higher investment cost than conventional extraction. According
to Figueroa et al. [7], MAE has been successfully used to extract polyphenols from avo-
cado peel. Temperature, duration, ethanol concentration, and solvent–sample ratio played
significant roles in the yield of extractable phenols. The optimal MAE conditions were
reported at the temperature of 130 ◦C, extraction time of 39 min, ethanol concentration of
36%, and solvent–sample ratio of 44 mL/g. The extract was reported to have contained
53 polar compounds. MAE extracted eight-fold higher phenols within similar conditions
than conventional solid–liquid extraction. In addition, Araujo et al. [16] demonstrated that
avocado peel extract contained procyanidins, catechin, and phenolic acids, exhibiting high
antioxidant capacity. MAE can be conducted independently and be combined with another
method, such as ultrasound-assisted extraction.

4.2. Ultrasound-Assisted Extraction (UAE)

Ultrasound-assisted extraction (UAE) is one of the most straightforward extraction
techniques and an efficient method to extract metabolites from plants in shorter times
than other extraction methods [17,18]. The main reasons why UAE is a favored extrac-
tion technique for extracting active compounds are its adaptability and the possibility
of using less or no organic solvent, its nature as a physical extraction technique, its sim-
plicity of operation, its extraction effectiveness, its capacity to preserve the biological
activity of extracted substances, its reduced reliance on time, and its industrial application,
among other things [19,20]. The type of plant material, extraction solvent, and micro-
environmental extraction factors significantly impacted UAE outcomes. This means that the
extraction technique must be optimized for each plant material and ultrasonic equipment
employed to provide the optimum outcomes regarding extraction yields and biological
activity preservation.

In the study of Hefzalrahman et al. [21], UAE was used to retrieve phenols from
avocado peel. It was reported that the major polyphenolic compounds identified in the
extracts were benzoic acid, vanillic acid, resveratrol, and syringic acid. The most effective
conditions for recovering phenols from the avocado peel were reported to be a solid-to-
solvent ratio of 1:20 (w/v), ultrasonic intensity of 20%, and duration of 30 min. This study
concluded that the UAE was more efficient than enzyme-assisted extraction. As was well-
stressed in the study of Rodríguez-Martínez et al. [22], the application of UAE resulted in
avocado peel extract containing phenolic and flavonoid compounds, which presents high
antioxidant activity and low cellular toxicity in normal cells, indicating that avocado peel
extract is safe for human consumption.

UAE has been proven to retrieve bioactive compounds from avocado peel successfully.
However, more studies are necessary to comprehend the effect of UAE on the extract
composition and to understand the structure and functional changes before and after the
extraction processes by comparing them with the controls. This can aid in determining
the impact of chemicals on degradation and the amounts of certain compounds in extracts.
In addition, to determine the process’s safety for usage in foods and other applications,
researchers must investigate the degradative effects of UAE on bioactive compounds and
their intermediary products, as well as their biological impacts in vitro and in vivo. In
this context, ion-based liquid, also called ion-based liquid ultrasound-assisted extraction
(ILUAE), is now an emerging extraction technology that could replace conventional solvents
in the UAE.

In recent years, IL-based extraction strategies have been employed to extract phenolic
chemicals from plant sources [23,24]. Ionic liquids (ILs) are simple molten salts that are
liquid at or near room temperature and include a relatively significant organic cation and an
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inorganic anion. Ionic liquids provide potential advantages over ordinary organic solutions,
such as a low melting point, a vast liquid temperature range, low vapor pressure, and
extended, specialized solvent characteristics [25]. One of the advantages of this technology
is the ability to optimize their properties for a specific application by changing the nature of
the anion/cation pair; also, the speed of reactions, selectivity, and yield are frequently more
incredible in ionic liquids. The non-volatility of ionic liquids is employed in many chemical
processes because it prevents operators from being exposed to solvent vapors. At ambient
temperatures, ionic liquids have no vapor pressure and are thus non-volatile, eliminating
the hazards and pollution of solvent evaporation. Salts dissolve well in ionic liquids and
are miscible with other solvents. The organic reaction product can be removed easily from
the ionic liquids containing the catalysts. As a result, the catalyst can be extracted from the
products and reused. Although an organic solvent is required for extraction, the catalyst
and solvent are still recycled and environmentally friendly. Currently, no study has applied
ILUAE to extract metabolites from the avocado peel. Therefore, a trajectory study in this
area may be interesting.

4.3. Enzyme-Assisted Extraction (EAE)

The enzyme-assisted extraction (EAE) technique utilizes hydrolytic enzymes to deteri-
orate the structural integrity of cell walls, exposing intracellular components for increased
extraction yield. Cellulase and pectinase enzymes are usually used as a pre-treatment step
before solvent extraction. Cellulase breaks down the 1,4-d-glycosidic bonds in cellulose in
plant cells’ major cell walls. Pectinase, likewise, destroys pectic compounds and pectin in
the middle lamella and primary cell walls [26]. The use of enzymes is an exciting alterna-
tive to environmentally damaging methods. One of the most valuable advantages of this
technique is the possibility of reusing the enzymes, which makes the technique somewhat
economical and facilitates the application of enzymes in medical analysis [27].

The enzymatic extraction of bioactive compounds has been used for a long time for
some materials, but its use for extracting bioactive compounds from the avocado peel is
scarcely reported. So far, Hefzalrahman et al. [21] reported that EAE was less effective than
UAE. Therefore, it has to be improved or integrated with other techniques to boost efficiency,
reduce processing time, and make the procedure competitive. Also, the most prevalent
enzymes are unspecified enzymes like proteases, which might result in the extraction of
other components [28]. EAE can be enhanced by combining it with other environmentally
friendly approaches such as ultrasonic extraction, supercritical fluid extraction, ionic liquid
extraction, three-phase partitioning, and microwaves.

4.4. Pressurized Liquid Extraction (PLE)

Pressurized liquid extraction (PLE) is also well-known as accelerated solvent extrac-
tion (ASE), pressurized hot solvent extraction (PHSE), high-pressure solvent extraction
(HPSE), and high-pressure high-temperature solvent extraction (HPHTSE). This method is
a constant high-pressure extraction that facilitates the improvement of cell permeability,
intermolecular physical interactions, and penetration of the extraction solvent or solvents,
thus improving the extraction efficiency.

PLE was first presented at the Pittcon Conference in 1995 by Dionex Corporation, and it
is today a considerably more well-established technology. This approach has recently been
integrated into the food field, which is a recent example. Figueroa et al. [29] demonstrated
that PLE was successfully employed to extract phenols from avocado peel dominated by
phenolic acid. It was reported that the most effective extraction conditions were at 200 ◦C
with a solvent containing 1:1 v/v as ethanol/water ratio.

Subcritical water above the standard boiling temperature of 100 ◦C, also called com-
pressed hot water (CHW), is another solvent commonly used in PLE. This method is also
well-known as accelerated water extraction (AWE). This extraction procedure is considered
a green, non-toxic, and environmentally friendly technique involving subcritical water
as the appropriate solvent for extracting solid and semi-solid samples. The use of water
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in the subcritical region as a “green” solvent has attracted the interest of many scientists
worldwide. It is a solid–liquid extraction technique in which organic or aqueous solvents
are used to extract compounds from a solid or semi-solid material at high temperatures and
pressures [30]. To the best of our knowledge, no study focuses on avocado peel extraction
using subcritical water. In the study of Mazyan et al. [31], subcritical water extraction was
used to extract phenols from avocado fruit flesh. The extraction duration employed in this
study was 10–30 min, with the subcritical water conditions studied at 18 bar, 87 mL/min,
and 105–140 ◦C. This condition may also apply to extracting bioactive compounds from the
avocado peel.

PLE is regarded as a more environmentally friendly alternative to Soxhlet extraction.
At the same time, the enhanced pressure keeps the solvent below its boiling point, allowing
the sample to become more soluble and attain a higher diffusion rate. Solvents penetrate
solid samples more efficiently at higher pressures and temperatures, thus reducing solvent
usage [32]. Compared to traditional Soxhlet extraction, PLE achieved a considerable reduc-
tion in analysis time with improved recoveries for more pollutants, with no discrepancies
in the data [33]. Thus, further exploration of this technique for extracting biological active
compounds from avocado peel is still required.

4.5. Supercritical Fluid Extraction (SFE)

Supercritical fluid extraction (SFE) is also considered an environmentally friendly
process. This is an efficient technique for extracting thermolabile compounds from a solid
or liquid matrix, using supercritical CO2 (SC-CO2) as an extraction solvent. SFE obtained
the most significant number of patents filed (7550 patents) for extracting compounds.
Furthermore, SFE can operate at low temperatures without oxygen or light, which is critical
for maintaining the purity and integrity of the extract prior to analysis. SFE has been used
to extract alkaloids, phenolic chemicals, anthocyanins, flavonoids, carotenoids, saponins,
and oils [34,35]. It may be applicable to the avocado peel as well.

Carbon dioxide is primarily capable of extracting non-polar molecules due to its
polarity. To circumvent this problem, another solvent could be used in conjunction with
CO2 at deficient concentrations to improve the polarity of the supercritical fluid. Co-
solvents have included ethanol or methanol and, more recently, ethyl lactate, vegetable oils,
and ethyl acetate combined with less than 10% total CO2 [35]. Using supercritical CO2 has
several advantages over traditional approaches. SC increased CO2’s diffusion coefficient
and reduced viscosity, allowing it to quickly penetrate the pores of complex matrices,
increasing extraction efficiency. Furthermore, because the depressurization process quickly
separates CO2, the extracts obtained via SFE are highly concentrated, leaving no trace of
harmful organic solvents in the final product. Also, since CO2 gas may be recycled, the
disruption of cells by a quick depressurization treatment can be performed in the SFE
equipment, which optimizes extraction by lowering the time and labor requirements [36].
Hitherto, PLE was compared to SFE to extract phytoactive compounds in buckwheat in
a single case. The two types of extraction gave very similar results [36]. In the study of
Restrepo-Serna et al. [37], SFE was used to retrieve bioactive compounds from avocado
peels and seeds. Before extraction, the dried avocado peels and seeds are milled to a particle
size of 0.4 mm. Then, the SFE was performed using CO2 as a supercritical solvent with
operating conditions of 80 ◦C and 250 bar for 30 min. Ethanol was presented as a co-solvent
in a ratio of 1:1.5 S:L.

Thus, SFE is an alternative method for extracting valuable analytes from various ma-
trices [38]. SFE is a selective and environmentally friendly technology primarily employed
in large-scale industrial applications. However, it has also been examined as an unusual
sample preparation technique because it decreases the usage of organic solvents while
increasing yield [39,40]. Although various solvents can be used as supercritical fluids for
extraction, carbon dioxide is the most popular due to its numerous advantages [41]. It is
GRAS (Generally Recognized as Safe) for use in the food industry, inexpensive, and readily
available; it enables the reuse of CO2 generated in other industrial processes, thus meeting
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some Green Chemistry principles. Its characteristics are essential because it enables the
extraction of a solvent-free extract following depressurization, which is especially useful
when the extract contains chemicals that are prone to degradation [34]. Carbon dioxide is
widely known as an eco-friendly solvent, and several comprehensive reports have shown
its benefits as a green solvent [41,42]. From the point of view of environmental analysis,
CO2 is the second green solvent, followed by water [43].

4.6. Natural Deep Eutectic Solvents (NaDESs) Extraction

Deep eutectic solvents (DESs) are an extraction method that increasingly uses solvents
as a greener alternative to ionic liquids. DESs are solvents formed by mixing two or more
compounds at an exact ratio corresponding to the eutectic point [44]. NaDES deserves
special attention because of its characteristics, which make it very promising for future
applications. Recently, NaDES has been identified as an ecological and green solvent
that has attracted significant attention from the scientific community. NaDES has several
beneficial physicochemical properties, including a liquid state across a wide temperature
range, low volatility, chemical and thermal stability, nonflammability, and nontoxicity of
constituent elements [45]. In addition, NaDES solvents are widely available in nature, easy
to obtain, and renewable [46]. Furthermore, NaDES is made up of non-toxic ingredients
that are found naturally in foods and can be employed directly in food compositions.
The solvent purification phase is not required after the extraction process, and the extract
can be used directly in food-grade applications, lowering production costs compared to
the standard organic solvent extrication procedure [45]. Nevertheless, a disadvantage of
NaDESs compared to standard organic or aqueous solvents is that NaDESs have relatively
high viscosity. The high viscosity of NADESs would make extracting food extremely
challenging. The difficulty, however, has been handled; it has been shown that adding water
to NaDESs can reduce its viscosity [47]. This approach makes applying this technology in
the industry more feasible. Rodríguez-Martínez et al. [48] reported that NaDES has been
successfully used to extract bioactive phenolic compounds from avocado peels. From five
selected DESs, it was found that the best extraction results were obtained with choline
chloride-acetic acid and -lactic acid, the extraction efficiency of which was higher than that
of ethanol. The avocado peel extract obtained by NaDES exhibited high antioxidant and
antimicrobial activity, particularly against Staphylococcus aureus, Streptococcus dysgalactiae,
Escherichia coli, and Pseudomonas putida.

4.7. Three-Phase Partitioning (TPP)

Three-phase partitioning (TPP) is a simple and effective one-step technique for sepa-
rating, purifying, and concentrating biomolecules such as enzymes, lipids, polysaccharides,
and other biomolecules from complicated mixtures. This technique is also scalable and fast
and considered an economical and efficient process for separations. In the TPP method,
a solvent, such as t-butanol, is mixed with an aqueous anti-chaotropic salt, ammonium
sulfate, at ambient temperature to generate two phases: the aqueous layer and the or-
ganic layer. It has been used to extract a wide range of biomolecules, most of which are
proteins [49,50].

The application of TPP has developed as a more ecologically friendly alternative to
hexane extraction, allowing for the separation of important biological components. As a
result, searching for new suitable salts and solvents that would allow for more appealing
and cost-effective phase systems appears promising and potentially expands the scope of
this technique’s uses [51]. Indeed, the TPP technique is still a relatively new method for
biomolecule recovery. It has yet to be widely used to extract compounds from avocado peel.
Jiménez-Velázquez and his co-workers [52] extracted the avocado peels using polyethylene
glycol with 24.9–14.5% sodium nitrate and 12.2–15.5% magnesium sulfate. They found that
the recovery was more than 82% of flavonoids, phenols, and condensable tannin from the
avocado peel.
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The possibility of incorporating external approaches into TPP, such as ultrasound high
pressure and even microwaves, to improve the separation process is very promising and
may be interesting for future research. Optimization steps can also be established and
recommended to assess the effect of various process parameters on the recovery yield and
purity of the extraction of compounds. This would bolster TPP’s advantages in biomolecule
separation and purification in the future. A summary of TPP extraction, as well as other
techniques that have been used to extract bioactive compounds from avocado peels, is
shown in Table 1.

Table 1. Various extraction methods for retrieving bioactive compounds from avocado peels.

Extraction Method Important Finding Ref.

Maceration

The extract contained 48 compounds, where the major components were
flavonoids and procyanidins. The extract inhibited platelet aggregation (at 1,
0.75, and 0.5 mg/mL) and reduced enzymatic inhibition, especially inhibition of
xanthine oxidase, hyaluronidase, and acetylcholinesterase.

[53]

Avocado peel methanolic extract contained phenolic compounds
(21.833 ± 0.118 mg/100 g extract), flavonoids (2.607 ± 0.111 mg/100 g extract),
tannins (38.357 ± 0.202 mg/100 g extract), saponins (8.874% ± 0.031%), and
alkaloids (9.95 ± 0.035 mg CE/g extract) that contributed to its antioxidant
activities. Its IC50 was 185.891 ± 1.598 ppm.

[54]

The ethanolic extract inhibited the growth of Staphylococcus. A longer extraction
time (1.5, 3, and 4 h) showed a higher antioxidant and antibacterial activity. [55]

The optimal maceration of avocado peel was obtained with 40% ethanol, 49.3 ◦C,
solvent/feed ratio of 14.3 mL/g, and 60 min process. The optimal extract
showed the highest total phenolic content (44.24 mg GAE/g peel dw), total
flavonoid content (786.08 mg QE/g peel dw), antioxidant capacity against DPPH
(564.82 µmTE/g peel dw), FRAP (1006.21 82 µmTE/g peel dw), and ABTS
(804.40 82 µmTE/g peel dw).

[56]

The total polyphenolic content of avocado peel, pulp, and seed ethanolic extract
was 200, 245, and 424 mg GAE/100 g DW, respectively. The total flavonoid
contents of avocado peel, pulp, and seed ethanolic extract were 36.06, 36.98, and
32.54 mg RE/100 g DW, respectively. The radical scavenging activity of avocado
peel, pulp, and seed extract was 4.90, 3.24, and 3.63 µg/mL, respectively.

[57]

The extract contained the phenolic compound (59.55 GAE mg/gram extract),
flavonoid (2.96 QE mg/gram extract), and tannin (22.63 TAE mg/gram extract).
The extract significantly changed hydration levels, collagen, and skin elasticity
with 2 times application per day for 4 weeks in male rats (in vivo).

[58]

The avocado peel extract contained phenolics compounds (309.95 ± 25.33 mmol
GA/100 g of extract), flavonoids (12.54 ± 0.52 mmol Cat.eq/100 g of extract),
and anthocyanins (622.37 ± 17.26 mmol Cyanidin-3-glucoside eq./100 g of
extract). The extract showed an antiproliferative effect mediated by apoptosis,
oxidative stress reduction, and antiproliferative effect.

[59]

The extracts showed a high content of Ca, Mg, Fe, Zn,ω-6 linoleic acid, and
flavonoids. The extract showed acetylcholinesterase inhibition with no
significant difference with eserine control.

[60]

The wet grinding plus maceration showed the highest value of total phenols
(2143.1 mg GAE/100 g dry weight), chlorogenic acid (244.3 mg/100 g dry
matter), and epicatechin (181.7 mg/100 g dry matter). The wet grinding plus
maceration method used accessible technology and more environment-friendly
solvent than others.

[61]
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Table 1. Cont.

Extraction Method Important Finding Ref.

Microwave-assisted extraction

The extract showed high matrix metalloproteinases inhibitory capacity and
antioxidant activity. The total phenolic content of the extract was
18.1–68.8 mg GAE/g peel DE, which was affected by time, temperature, and
solvents during extraction.

[7]

The highest antioxidant capacity was obtained by 74.48 ◦C–4.13 min and
66.37 ◦C–0.97 min extractions with 42.58% ethanol. The extract showed a high
polyphenolic content (3.79.28 ± 19.35 mg GAE/g dry extract) and high
antioxidant activity measured by DPPH, ABTS, and ORAC assay.

[16]

Vacuum microwave-assisted
aqueous extraction

The optimal extractions were temperature of 79.64 and 78.11 ◦C, time of
11.89 and 11.75 min, ratio of water and avocado peel 16.45 and 10.02%, and
microwave power of 5708.04 and 5699.10 W. The conditions showed the highest
TPC (0.352 gallic acid equivalent-GAE/g fresh avocado peel/min) and DPPH
radical scavenging activity (0.104 L/min).

[62]

Vacuum microwave-assisted
aqueous extraction

- The avocado peel extract contained flavonoids that exhibited antioxidant,
antimicrobial, and antifungal activity. [63]

Ultrasound-assisted extraction

The extract by Sonotrode extraction had higher flavan-3-ols recovery (54%) and
antioxidant activity (62–76%) than ultrasound bath extraction. Sonotrode
extraction was an alternative to non-thermal, low-time-consuming, and scalable
methods for extracting the bioactive compounds as functional ingredients.

[64]

The extract with acetone–water solvent showed higher total phenolic content
(208.5 ± 19.8 mg GAE/g DE) than the extract with ethanol (183.4 ± 6.0 mg
GAE/g DE) and ethanol–water solvent (192.6 ± 11.1 mg GAE/g DE).

[65]

The optimal extraction obtained by response surface methodology was 50.9 ◦C
of temperature, 49.5% of ethanol/water, and 61.8 min. The extract contained
124.050–125.187 mg GAE/g of phenolic content.

[66]

The ethanol concentration higher than 40% decreased phenolic content. The
optimized extract was obtained with 38.46% of ethanol, 44.06 min, and 50 ◦C.
The extract contained high phenolic and flavonoid compounds. It influenced the
metabolic activity of normal and cancer cells, but the extract had positive effects
on metabolic activity and inhibited cancer (Caco-2, A549, and HeLa) cells. The
extract showed low cellular toxicity in normal cells but negatively affected
cancer cells, particularly HeLa cells.

[22]

The avocado peel extract had higher phenolic content and antioxidant activity
but lower IC50 value (59 ppm) than cocoa bean, coconut, and cactus pear extract.
The avocado peel extract showed inhibitory activity against
Staphylococcus aureus, Shigella dysenteriae, and Candida albicans.

[67]

Ultrasound–microwave
combined extraction

The avocado extract had higher phenolic compounds and antioxidant activity
than the aqueous fraction and the acid-microwave hydrolyzed fraction. The
extract inhibited growth of Pseudomonas aeruginosa and Bacillus cereus,
Staphylococcus aureus, Salmonella spp., and Salmonella spp.

[68]

Ultrasound-assisted
deep eutectic solvent

extraction

The optimal extraction conditions were a matrix/solvent ratio of 1:30 (w/v), an
extraction time of 15 min, and a temperature of 25 ◦C. The phenolic compounds
of 8.29 ± 0.07 g GAE/100 g of dry avocado peel were extracted by the optimal
extraction above.

[69]

Ultrasound-assisted extraction
and enzyme-assisted extraction

The major polyphenolic compounds of the extract were benzoic acid, vanillic
acid, syringic acid, and resveratrol. The ultrasound-assisted extraction yielded
phenolic extraction equal to that of enzyme-assisted extraction. The extract of
ultrasound-assisted extraction showed a solid-to-solvent ratio of 1:20 (w/v),
20% ultrasonic intensity, 30 min showed the highest polyphenols
(35.4 mg GAE/g of dried peel).

[21]
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Table 1. Cont.

Extraction Method Important Finding Ref.

Enzymatic-assisted extraction

The avocado peel extract treated by peptidase showed higher total phenolics
(45.46 mg GAE/g DW) and antioxidant activities (FRAP: 1547.00 µmolTE/g,
DPPH: 243.93 µmolTE/g, ABTS assay: 211.96 µmolTE/g) than the
methanolic extract.

[70]

Total phenolic content (TPC) of avocado peel (296.5–515.1 mg/100 g DM)
between TPC of avocado pulp (38.0–41.0 mg/100 g DM) and TPC of avocado
seed (395.3–663.93 mg/100 g DM). The antioxidant capacity of avocado peel
extract (ABTS: 6.407–20.96 mmol TE/g, DPPH: 9.341–22.85 µmol TE/g) was
lower than avocado seed extract (ABTS: 14.70–24.54 mmol TE/g, DPPH:
24.78–52.08 µmol TE/g), but higher than avocado pulp
(ABTS: 3.587–5.748 mmol TE/g, DPPH: 0.635–0.962 µmol TE/g) and avocado oil
(ABTS: 0.320–0.561 mmol TE/g, DPPH: 0.040–0.351 µmol TE/g).

[71]

Natural deep eutectic solvent
(NaDES) extraction

The best solvents used were choline chloride-acetic acid and -lactic acid., The
deep eutectic solvents were more efficient than ethanol. The extract contained
higher phenolics (92.03 ± 2.11 mg GAE/g DAP) and flavonoid content
(186.01 ± 3.27 mg RE/g DAP) than conventional extract with ethanol.

[48]

Pressurized liquid extraction

The extraction with pure water (without ethanol) at 100 bar and 40 ◦C obtained a
high extraction yield (26.8 ± 0.9%), antioxidant capacity (ABTS: 3350 ± 179 µmol
TE/g dry extract, ORAC: 0.14 ± 0.01 µg/mL), total phenol content (505 ± 25 mg
GAE/g dry extract), and acetylcholinesterase inhibition (33.6 ± 2.9 µg/mL).

[72]

The total phenolic content of avocado peel extract was 158.8 ± 25.9 mg GAE/g
DE—higher than the phenolic content of avocado seed tegument extract
(9.5 ± 0.16 mg GAE/g DE) but lower than avocado seed extract (11.9 ± 0.05 mg
GAE/g DE). The antioxidant capacity of avocado peel extract was
1329.4 ± 492.1 µmol TE/g DE of DPPH, 829.8 ± 445.4 µmol TE/g DE of ABTS,
and 3215.1 ± 668.4 µmol Fe2+/g DE of FRAP.

[65]

Supercritical fluid extraction
Avocado peel extract contained phenolic acid, flavonoid, quercetin, and catechin.
The production cost is 5.52 USD/kg for stand-alone extraction processes, with
profit margins of 21.14%.

[37]

The supercritical fluids extraction increased 14.20–17.14% extraction yield but
decreased catechins concentration on Lorena variety. The optimal conditions
during supercritical fluids extraction were 60 C, 0.2 mg avocado peel every liter
of solvent, 30 kHz, and 60 min. The minimum extraction cost was 8.21 USD/kg
of avocado peel extract.

[73]

Aqueous two-phase extraction
The extraction based on polyethylene glycol with 24.9–14.5% sodium nitrate and
12.2–15.5% magnesium sulfate recovered more than 82% flavonoids, phenols,
and condensable tannin from the avocado peel.

[52]

Hydrothermal
treatment

This extraction was due to increased oligosaccharides and polyphenolics
recovery. The optimal extraction obtained by 150 ◦C with the highest
oligosaccharide recovery (14.3 g oligosaccharides/100 g avocado peel) and
antioxidant phenolics recovery (3.48 g gallic acid equivalents/100 g AP and
10.80 g Trolox equivalents/100 g avocado peel measured with ABTS•+ assay).

[74]

Combination of maceration
and hydrothermal

carbonization

The extract was divided into ethanolic extract, liquid phases, and heavy bio-oils.
Ethanolic extract had the highest proanthocyanidins content. The liquid phases
were high in total phenols, flavonoids, and hydroxynamic acids. Heavy bio-oils
inhibited tyrosinase and elastase activities significantly.

[75]

5. Potential Techniques for Extraction of Bioactive Compounds from Avocado Peel

Aside from the above-mentioned extraction techniques, there are some other mod-
ern extraction methods, including (a) pulsed-electric field extraction (PEF); (b) high volt-
age electric discharge plasma (HVED); (c) centrifugal partition extraction (CPE); and (d)
surfactant-mediated extraction (SME). To the best of our knowledge, the methods have
yet to be applied to extracting the valuable compounds of avocado peels. Considering the
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characteristics of the process, these techniques could be developed for extracting biological
compounds from avocado peel.

5.1. Pulsed-Electric Field Extraction (PEF)

PEF is a non-thermal approach in which the electric potential divides molecules in
the cell membrane based on their charge due to the dipole nature of membrane molecules.
PEF has increased cell membrane permeability and improved intracellular chemical release
from plant tissue [76]. In this technique, materials are treated with PEF electrodes that
have brief(s) and high voltage pulses (kV/cm) surrounding them [77,78]. Plant tissue cell
membranes are damaged by PEF treatment at a modest electric field (500 and 1000 V/cm;
for 104–102 s) with little temperature increase [79].

PEFs can be employed for industrial purposes due to various advantages, including
a shorter extraction time, higher yield, and low process temperature [80,81]. In previous
decades, the pulsed electric field (PEF) treatment has been acknowledged as effective
in improving pressing, extraction, drying, and diffusion processes [77]. PEF destroys
the cellular membrane structure to improve mass transfer during extraction, resulting
in faster extraction. As a result, PEF can help to prevent heat-sensitive chemicals from
degrading. However, the study focusing on extracting avocado peel using PEF still needs
to be discovered. Thus, in-depth research on the application of this technique for extracting
valuable compounds from the avocado peel is required.

So far, there are some examples of successful PEF extraction. An earlier report pre-
sented that PEF was successfully employed to extract quercetin and ellagic acid from fresh
Emblica officinalis juice at 18 to 24 kV/cm with a pulsed time duration of 300 to 1000 s. The
best field strength was shown at 22 kV/cm, which resulted in a disintegration index of
0.79 in 500 s. PEF samples demonstrated a nine-fold increase in quercetin and ellagic acid
content compared to thermally treated juice [82]. Another study looked at the effects of
PEF on the extraction efficiency of fresh spearmint (Mentha × spicata L.) leaves [83] and
found that the conditions that resulted in the maximum disintegration (0.860.02) were
99 pulses, 3 kV/cm field strength, and 4,102,239 J/kg specific energy input PEF extraction
of total phenolic content (TPC), antioxidant capacity (AC), and antioxidant activity (AA),
was also comparable to heat and microwave pre-treatments, with much higher AA value
than freezing/thawing, according to the same study’s findings. In addition, compared to
untreated samples, the product kept a better color, had a deeper flavor, and had a higher
rehydration capacity [84]. PEF also effectively extracts anthocyanin monoglucosides from
grape by-products [85]. PEF can also be used as a pre-treatment technique on plant ma-
terials before traditional extraction to reduce extraction effort [86]. Before the maceration
process, a PEF treatment on the grape skin can shorten the maceration time and improve the
stability of bioactive compounds (anthocyanin and polyphenols) during vinification [87].
Another example showed that using PEF to permeabilize Merlot skin resulted in greater
extraction of anthocyanins and polyphenols [88].

5.2. High Voltage Electric Discharge Plasma (HVED)

Another new technology, high voltage electric discharge plasma (HVED), is a unique
and exciting alternative to extraction technology. HVED is a general term for pulsed
mode plasma systems. However, it is most commonly called “corona discharge” since it
resembles a crown around the cathode wire when utilizing a pulsed DC power supply. This
technology, which uses pulsed rapid discharge voltages (electric field intensity ranging
from 20 to 80 kV/cm), is based on the mechanism of electrical breakdown in liquid, which
causes physical and chemical processes that affect both cell walls and membranes while
also releasing intracellular components [89]. Moreover, during the photonic dissociation
of water, HVED forms heat and confines plasma, which emits UV light and -OH radicals.
HVED will produce shockwaves and pyrolysis due to electrohydraulic cavitation at the
same time [90,91].
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Recent research verified HVED as a practical extraction approach with a considerable
improvement in yield due to sample cell disturbances and improved mass transfer during
electrical breakdown [92]. Another study discovered that HVED is a pre-treatment strategy
that improves pectin recovery from sugar beet pulp without changing the structure or
chemical makeup of the pectin [93].

The application of HVED for extracting bioactive compounds from avocado peel has
not yet been carried out up till now. However, the extraction of proteins and polyphenols
from olive pits has been successfully conducted, and it was proven that HVED was faster
than UAE or PEF [94]. This method preserved more proteins and polyphenols during
processing [95]. PEF and HVED, as well as other electrically assisted extractions, are less
thermally damaging and are more effective for particular compound extraction. Extracts
can be obtained in less time and at lower temperatures [96,97]. Thus, this technique may
potentially extract bioactive compounds from the avocado peel.

5.3. Centrifugal Partition Extraction (CPE)

Centrifugal Partition Extraction (CPE) is a centrifugal-field-based multi-stage liquid–
liquid extraction process. The partition coefficients between the two liquid phases are used
to extract the specified components [98]. CPE is derived from centrifugal partition chro-
matography (CPC) with a column design characterized by fewer cells of larger volume. The
purification of phenolic chemicals from marine resources is the most common application of
this approach [99,100]. CPE was employed to recover bioactive phenolic compounds from
the brown seaweed Sargassum muticum. It was shown that the total phenolic content of the
CPE extract was higher than that of the PLE and SFE extracts. The total phenolic compound
content in CPE was double that of PLE, which had the second-highest concentration [101].
Still, more research is needed to investigate alternate methodologies, improve operating
conditions, and apply them to different agricultural products, including avocado peel.

There are various advantages to CPE and CPC. The essential advantage is that, unlike
HPLC, this separation technique does not necessitate changing the chromatographic column
between analyses. Furthermore, no silica must be used or recycled because the stationary
phase is a liquid. In most cases, only a tiny amount of the stationary phase is needed
for extraction. All of these benefits result in a reduction in the expenses associated with
extractions. CPC, on the other hand, is a technique known as “soft separation”. Indeed,
there is no irreversible adsorption, resulting in a 90% recovery rate. The molecules to
be removed are also subjected to minimal or no denaturation. These compounds have a
purity percentage of >99%. The CPC, on the other hand, has some limitations. It has a low
efficiency in terms of theoretical plate height, which is one of its drawbacks. Furthermore, its
extractions can only reach the milligram mass level of an analyte, whereas other separation
techniques can reach the microgram level. A robust seal is also required for the CPC to
function correctly [102].

5.4. Surfactant-Mediated Extraction (SME)

Surfactant-Mediated Extraction (SME), which uses surfactants to remove phenolic
chemicals, is also a promising new method [103]. Surfactants can produce monomolecular
layers on a liquid’s surface, lowering the interfacial tension between two liquids and
allowing them to mix. SMEs may be able to isolate molecules with a wide range of
polarities and complex chemical structures. SME was compared to EAE and PLE to isolate
total phenolic compounds and phlorotannins from the brown seaweed Lobophora variegata
by Gümüş Yilmaz et al. [104]. It was shown that SME produced more total phenolics and
phlorotannins than EAE and PLE. However, until now, no study has focused on the use of
SMEs for extracting bioactive compounds from avocado peel.

6. Conclusions and Outlook

To sum up, bioactive compounds shall be produced sustainably. Advanced techniques
have been applied to extract bioactive compounds of avocado peels to improve efficiency
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and thus minimize the extraction process’s negative impact on the environment. Advanced
techniques are more efficient in terms of extraction yield than traditional methods. For
extracting bioactive compounds from the avocado peel, there are some advanced methods
that have been applied, including (a) microwave-assisted extraction (MAE), (b) ultrasound-
assisted extraction (UAE), (c) enzyme-assisted extraction (EAE), (d) pressurized liquid
extraction (PLE), (e) supercritical fluid extraction (SFE), (f) natural deep eutectic solvents
(NaDESs) extraction, and (g) three-phase partitioning (TPP). On the other hand, some other
advanced methods have been applied to extract bioactive compounds from the avocado
peel, including (a) pulsed-electric field extraction (PEF), (b) high voltage electric discharge
plasma (HVED), (c) centrifugal partition extraction (CPE), and (d) surfactant-mediated
extraction (SME). An in-depth investigation of each extraction technique may be fascinating
for future studies. The yield may increase even more by using a mix of these strategies. A
combination of at least two new technologies may be used to increase the extractability of
compounds. Moreover, this review clearly shows that some new technologies still need
to be implemented to extract compounds from the avocado peel. Therefore, exploration
in this area may be interesting for future research. However, researchers working in this
field should consider integrating such necessary information to understand the impact
of each new extraction process on the yield and quality of compounds in the avocado
peel. Furthermore, researchers must investigate the degrading effects of each new tech-
nique on phytochemical compounds, their metabolites intermediates, and their biological
implications in vitro and in vivo.
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