
Citation: Li, J.; Li, B.; Peng, Y.; Tang,

S.; Chen, Y.; Pei, W. Monitoring and

Prediction of Ground Surface

Settlement in Kunming Urban Area

by Building GWO-LSTM Model Based

on TS-InSAR. Appl. Sci. 2024, 14, 6036.

https://doi.org/10.3390/app14146036

Received: 6 May 2024

Revised: 7 July 2024

Accepted: 8 July 2024

Published: 10 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Monitoring and Prediction of Ground Surface Settlement in
Kunming Urban Area by Building GWO-LSTM Model Based
on TS-InSAR
Jianhua Li 1,2,†, Bolin Li 1,†, Yilong Peng 3,†, Shaofan Tang 1, Yongzhi Chen 4 and Wenjuan Pei 1,*

1 School of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China;
wenniforever@126.com (J.L.); 2022210068@163.com (B.L.); tsf98888@163.com (S.T.)

2 Yunnan Field Scientific Observation and Research Station of Land Use in Luliang Mountain Basin,
Kunming 650201, China

3 Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; pengyilong009@163.com
4 Yunnan Institute of Geology and Mineral Surveying Co., Ltd., Kunming 650218, China; 15025154332@163.com
* Correspondence: 18213423200@163.com
† These authors contributed equally to this work.

Abstract: Long-term series monitoring of ground surface settlement by remote sensing has become
an effective method. Based on TS-InSAR (time series Interferometric Synthetic Aperture Radar)
interferometry, this paper proposes a new model based on the Grey Wolf Optimizer (GWO) and
Long Short-Term Memory (LSTM) to monitor and predict the ground surface settlement in Kunming
City. The results show that the MAPE (mean absolute percentage error), RMSE (root mean square
error), and MAE (mean absolute error) of GWO-LSTM are significantly reduced. R2 (goodness of
fit) in the six sub-study areas of Kunming City is improved in comparison to the LSTM model. The
problem of manual parameter selection in the LSTM model is solved by the GWO algorithm to select
parameters automatically. This approach not only significantly reduces the model’s training time but
also identifies the most suitable network parameters. This can bring the best performance. Based
on TS-InSAR data, the prediction of urban ground surface settlement by the GWO-LSTM model has
good accuracy and robustness, which offers a scientific foundation for monitoring and issuing early
warnings about urban land disasters.

Keywords: GWO-LSTM; TS-InSAR; ground surface settlement; Kunming

1. Introduction

In the process of construction and development of modern cities, ground surface
settlement has become a serious urban problem, which has widely appeared in major
cities around the world [1]. Due to the combination of factors such as the concentration of
urban buildings, over-exploitation of groundwater resources, and weak urban foundation,
the impact of ground surface settlement is increasingly significant [2]. Long-term surface
subsidence directly leads to road collapse, building tilting, and building cracking. This
causes serious geological disasters, which seriously threaten urban stability and safety,
such as through building collapse [3]. At the same time, they may also indirectly lead to
the degradation of groundwater resources and environmental pollution. Therefore, timely
monitoring of urban land surfaces is crucial for identifying potential risks of geological
disasters, which eliminates safety hazards in urban construction and development.

Traditional methods of surface subsidence monitoring, such as geodetic survey and
Global Navigation Satellite System (GNSS), have high accuracy. These are labor-intensive,
high-cost, long-cycle, and low-efficiency methods, especially for long-term series moni-
toring. The area monitored by traditional methods is easily limited, and the amount of
monitoring data generated is small [4]. With the development of global microwave remote
sensing satellite technology, large-area long-time-series monitoring has become possible.

Appl. Sci. 2024, 14, 6036. https://doi.org/10.3390/app14146036 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14146036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14146036
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14146036?type=check_update&version=2


Appl. Sci. 2024, 14, 6036 2 of 22

The Interferometric Synthetic Aperture Radar (InSAR) technique has found extensive
application in the surveillance of surface subsidence [5].

As a typical case of urban land subsidence in the western plateau faulted basin of
China, Kunming City has shown a wide subsidence range and a fast subsidence rate [6]. In
recent years, the surface settlement of the Kunming urban area has obviously expanded
and accelerated. This makes it particularly important to study the surface settlement
of the Kunming urban area, which meets the needs of the modern economic and social
construction of “one lake and four areas” [7]. Ma et al. and Xiong et al. have collected
settlement data in Kunming City with the Sentinel-1 radar by PS-InSAR and SBAS-InSAR,
analyzed the surface settlement of urban areas, and verified the effectiveness of this method
in monitoring small deformations [8,9]. However, due to the timeliness of remote sensing
technology, the formation of land surface settlement always lags behind the actual situation.
The application has limitations, meaning it cannot reflect the current actual situation and
achieve real-time monitoring [10]. The prediction of land surface subsidence trends has
become an important research subject.

With the widespread use of neural network models, Long Short-Term Memory (LSTM),
used as a dedicated neural network for processing time series data, has demonstrated its
unique advantages in feature learning [11,12]. However, the traditional LSTM may affect
the stability of model prediction due to improper parameter selection. To overcome this
challenge, Grey Wolf Optimizer (GWO) enhances the parameter selection procedure of the
LSTM model. GWO is a heuristic optimization algorithm, which mimics the social hierarchy
and hunts patterns observed in grey wolves within their natural habitat and convergence
characteristics [13]. By applying GWO to the parameter optimization of the LSTM model, the
performance and accuracy of the prediction model can be significantly improved.

This paper aims to construct GWO-optimized LSTM and a new method of Time Series-
Interferometric Synthetic Aperture Radar (TS-InSAR). Taking Kunming City as an example,
the land surface subsidence prediction is studied, based on ESA Sentinel-1A data, Precise
Orbit Determination (POD), and JAXA-published ALOS World 3D-30 m (AW3D30) data
as an external digital elevation model (DEM). These data serve as the basis for building
and analyzing the prediction model of land subsidence. In this paper, PS-InSAR and SBAS-
InSAR methods are used to obtain real-time surface deformation data of the Kunming
urban area from 2020 to 2022, and cross-verification is carried out. Based on the surface
deformation information monitored by TS-InSAR, a new surface subsidence prediction
model (GWO-LSTM) is proposed. To guarantee the precision of the forecasting model, root
mean square error (RMSE), mean absolute error (MAE), and determination coefficient (R2)
are introduced as evaluation indexes. The accuracy and applicability of the new method are
verified. This paper adopts new methods to monitor and predict land subsidence, which
provides a scientific basis for the planning and development of cities and the prevention of
geological disasters.

Despite the advancements in monitoring techniques, the ability to accurately predict
land subsidence trends remains a significant challenge. The proposed research introduces
a novel approach by integrating the strengths of Time Series-Interferometric Synthetic
Aperture Radar (TS-InSAR) with LSTM by the Grey Wolf Optimizer (GWO). This study
is the first to apply the GWO-LSTM model to predict land subsidence, specifically in
the context of Kunming City, where the complex geological conditions and rapid urban
expansion require reliable monitoring.

The novelty in the development of a hybrid methodology leverages the global search
capabilities and convergence characteristics of the GWO, which enhances the parameter
selection of the LSTM model. This optimization significantly improves the accuracy and
stability of subsidence prediction, which addresses the limitations of traditional monitoring
and prediction methods. Furthermore, the application was used for a real-world case study
in Kunming City. With its unique geological setting and rapid urban development, this
provides a critical test bed for the model’s effectiveness and applicability.
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2. Research Area and Data Source
2.1. Research Area

Kunming, the capital city of Yunnan Province in China, is located between longitudes
102◦10′ and 103◦40′ E and latitudes 24◦23′ and 26◦22′ N (Figure 1). The urban area of Kun-
ming is mainly situated in the Kunming Basin with an area of approximately 525.2 square
kilometers. The issue of ground surface settlement in Kunming has been worsening over
the years. As early as the 1970s, ground surface settlement began to appear in Kunming [14].
The geological structure is complex, primarily consisting of fault structures and sedimentary
rock layers [15]. The old urban area is mainly distributed in Wuhua District and Panlong
District, which is adjacent to Dianchi Lake. The city has expanded outward. During the
urban expansion process, the soil and strata have been affected by various factors, as well
as the degree of settlement and uplift related to geology, geomorphology, and groundwater
levels [16]. Therefore, it is challenging to assess and control ground surface settlement in
this area.
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Kunming’s urban area is rich in groundwater resources, especially along the eastern
and northern shores of Dianchi Lake, which are among the primary water supply sources
for Kunming. The continuous extraction of groundwater has not only met the living and
production needs of residents and enterprises, but it has brought economic benefits and
promoted local economic development. However, it has also led to environmental issues
such as ground surface settlement [17].

Kunming’s urban area is densely populated, with the population mainly concentrated
in Wuhua District, Panlong District, Xishan District, and Guandu District. The total
population is about 4 million, with a population density of approximately 7600 people per
square kilometer. The rapid urban expansion and extensive infrastructure construction have
further exacerbated the ground surface settlement problem, such as high-rise residential
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buildings, industrial parks, and public buildings. Settlement phenomena are particularly
severe in the northern and eastern industrial areas as well as the city center [18].

2.2. Data Source

Sentinel-1A, part of the Copernicus program by the European Space Agency, is a
satellite designed for observing Earth. It is equipped with a C-band Synthetic Aperture
Radar (SAR), which can provide users with continuous SAR images. The satellite is capable
of monitoring urban land micro-subsidence in a continuous and efficient manner, with
a revisit cycle of 12 days. In this paper, 41 Sentinel-1A TOPS SAR images were chosen
to analyze the urban region of Kunming. The selected images span from January 2020
until October 2022, which enables the assessment of both the average sedimentation rate
and temporal changes in cumulative deformation. The detailed characteristics of SAR
images can be found in Table 1. In order to remove the phase caused by topographic
relief, the ALOS World 3D-30 m (AW3D30) released by JAXA is used as an external digital
elevation model (DEM). Relevant data from the European Space Agency’s Precision Orbit
Determination (POD) enhance orbit accuracy, which adjusts phase flattening. The image
baseline reached a maximum duration of 989 days.

Table 1. Fundamental parameters of SAR images.

Parameter Value

Band (wavelength in cm) C (5.6 cm)
Imaging mode Sentinel-1A IW
Incident angle 44.01

Polarization mode VV
Spatial resolution 5 × 50
Revisit period/d 12

Number of images 41
Pass direction Ascending

Time span From 11 January 2020 to 27 October 2022

3. Research Methods
3.1. PS-InSAR

The technical approach known as PS-InSAR was introduced by Ferretti et al. [19]
and detects highly correlated and stable points, namely permanent scatterers. Based on
the amplitude and phase data of images, it can define ground objects such as buildings,
artificial structures, rocks, and ridges. This possesses the capability of sustaining prolonged
temporal sequences with elevated coherence and robust scattering. The algorithm in
question is outlined as follows. It acquires N + 1 SAR images encompassing the identical
region, which could designate a single image as the reference image. It also carries out
registration, resampling, de-flattening, and topographic phase and interference processing
to obtain N-interference images. The diagram in Figure 2 illustrates the space–time baseline.

The reference DEM and satellite orbit data are used to perform topographic correc-
tion on the interferogram. The phase of the interferogram ϕx,i at the x position of the i
interferometer pair can be expressed as Equation (1).

ϕx,i = ϕde f o,x,i + ϕtopo,x,i + ϕconst,x,i + ϕslope,x,i + ϕatm,x,i + ϕnoise,x,i (1)

The sum of the three components ϕconst,x,i, ϕslope,x,i, and ϕatm,x,i is known as the At-
mospheric Phase Screen (APS), which represents the constant phase values, the linear
phase values due to atmospheric effects, and the nonlinear atmospheric effects, respectively.
ϕdefo,x,i and ϕtopo,x,i denote the surface deformation phase in the radar line-of-sight direction
and the terrain phase due to DEM errors, respectively. ϕnoise,x,i denotes the noise phase
(errors introduced by scatterer variations, thermal noise, alignment errors, etc.).
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On 8 October 2021, the super master image was chosen. Initially, a linear model is
employed to estimate the residual height correction coefficient and average deformation
rate of the potential PS points before an initial inversion. In this process, the region is
divided into subregions of 2 m2 in size, and the selection of reference points is based on the
index of amplitude deviation. Each subregion is processed individually, and the results
from all subregions are then combined to form a complete result. In the case of the second
inversion, a linear model of first order is employed for estimating the phase component
caused by atmospheric interference. In order to isolate the nonlinear deformation phase
ϕdefo,x,i in Equation (1), one of the key issues is the need to determine the atmospheric
phase ϕatm,x,i. In the residual phase, the atmospheric phase and the nonlinear deformation
phase have different frequency characteristics in the spatial domains. This is because
the atmospheric correlation length in space is about 1 km, which exhibits a high degree
of correlation in the spatial domain, i.e., a low-frequency characteristic. However, for
an image element, the atmospheric condition can be regarded as a stochastic process at
different radar image acquisition times, and the atmospheric phase is a white noise in time,
highly uncorrelated in the time domain, i.e., a high-frequency characteristic. In contrast,
the nonlinear deformation has a small correlation length in space and a low-frequency
characteristic in the time domain. Therefore, we consider separating the atmospheric
phases ϕatm,x,i by obtaining them through temporal high-pass filtering (365 days) and
spatial low-pass filtering (1.2 km). The high-pass filtering of 365 days means that we choose
a time window of one year’s length to remove the low-frequency signals, which effectively
filters out the long-term trends and cyclical variations and preserves the high-frequency
components of the atmospheric perturbations. A spatial low-pass filter of 1.2 km was
chosen to effectively retain the low-frequency components.

Finally, the processed data were mapped to the geographic coordinate system through
geocoding. The line-of-sight deformation rate and the shape variable accumulated over time
were obtained, as shown in Figure 3. This sequence of procedures is crucial in examining
surface displacement and its associated factors. At the same time, the radar incidence angle
is utilized to convert the line-of-sight deformation into vertical deformation [20], and the
conversion formula is shown in Equation (2):

dv =
dLos
cos θ

(2)

where dLos represents the outcome of line-of-sight deformation, dv denotes the vertical
deformation result, and θ corresponds to the radar incidence angle.
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3.2. SBAS-InSAR

The proposal of SBAS-InSAR technology was put forward by Berardino et al. [21]; the
core principle of this technology is to combine all SAR image data into a small baseline
subset according to the interference pairs of spatial and temporal baselines within a certain
range. The image baseline distance within each subset is small. For each subset, the surface
deformation of the time series in each subset was calculated by the least square, which is
shown in Figure 4.
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Figure 4. SBAS-InSAR space–time baseline.

The 5 May 2021 image was selected as the reference image. The initial inversion
employs a linear model, which estimates the coefficient of residual height correction and
the average deformation rate at high-coherence points. It adopts SVD to obtain the surface
temporal deformation results combined with the small baseline data. The phase component
of atmospheric interference is estimated in the second inversion by the first-order linear
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model. To eliminate the phase component by atmospheric interference, an atmospheric
filter is utilized, which consists of a temporal high-pass filter (365 days) and a spatial
low-pass filter (1200 m). In conclusion, the geocoding process enables the acquisition of
line-of-sight deformation rate and cumulative time series deformation statistics. At the
same time, Equation (2) is employed to convert the deformation observed along the line
of sight into vertical deformation, considering the radar incidence angle. This process is
shown in Figure 5.
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3.3. Comprehensive PS-InSAR and SBAS-InSAR Methods

PS-InSAR simulates linear deformation, while SBAS-InSAR simulates nonlinear de-
formation. It has been contended that a small baseline approach with comprehensive
resolution is comparable to a persistent scatter approach, and represents a unit primarily
influenced by a single scatter [22]. However, it should be noted that the PS method offers
two distinct benefits. Firstly, by generating all interferograms with respect to a single
reference image, we can effectively minimize the noise contribution from the primary
image before unfolding the phase; this is because such noise is consistently present in all in-
terferograms. Secondly, by implementing spatial filtering, the amplification of noise caused
by the non-dominant scatter has effectively been mitigated through resolution coarsening.
Hence, a dataset comprises a sequence of pixels exhibiting scattering characteristics; it
can be inferred that these two approaches possess complementary attributes. Through
the integration of both approaches, more scattered signals can be extracted in general;
thus, the spatial sampling error can be mitigated, which leads to an enhancement in the
signal-to-noise ratio for the backscattering coefficients.

3.4. Long Short-Term Memory Network

The LSTM network as a type of RNN addressed the issue of gradient vanishing
and exploding in conventional recurrent neural networks (RNNs) while handling lengthy
sequential data [23]. LSTM incorporates gate control mechanisms to effectively retain and
modify the internal state of the network, enabling it to capture long-term dependencies
(Figure 6).
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The LSTM module is composed of a memory unit and three gates, namely the input
gate, the forget gate, and the output gate [24]. The input gate regulates the transmission
of data from the input layer to the memory unit, while the forget gate determines the
information that should be preserved or eliminated. Additionally, the output gate governs
the transfer of data from the memory unit to the output layer. These gate structures enable
LSTM to selectively remember or forget information while learning in sequences, effectively
capturing and maintaining long-term dependency.

In each time step, LSTM takes in the present input along with the hidden state and
memory unit contents from the previous time step. It then produces updates for the current
time step’s hidden state and memory unit by utilizing these gates, which finally produce
the output. These operations are implemented through nonlinear activation functions with
learnable parameters. As a result, the LSTM model can be properly trained to effectively
maintain information flow, and it performs well in applications when dealing with long
series of data.

In temporal InSAR (TS-InSAR) data analysis, the utilization of the LSTM model
enables the accurate prediction of land subsidence trends and patterns. By learning and
training historical surface subsidence data, the LSTM model can extract hidden patterns
and rules in time series information, which predicts future surface subsidence. Compared
to conventional statistical techniques, the LSTM model exhibits enhanced capability in
capturing nonlinear associations and long-term dependencies within time series data,
thereby elevating prediction accuracy.

However, the traditional LSTM may have the following limitations in the surface settle-
ment prediction [25]. (1) Long-term dependency modeling problems are shown as follows.
An unoptimized LSTM may have difficulty dealing with long-term dependencies. Long-term
dependence refers to the existence of a large time interval among a series of events. The
memory unit of the LSTM model may not be able to effectively capture information, causing
a decline in the prediction accuracy of such long-term context information. (2) Lack of data:
Surface subsidence prediction studies usually require a large amount of observational data to
train models, but real-world geological monitoring data may be missing or incomplete. Unop-
timized LSTM may be sensitive to missing data, which can affect the training and prediction
ability of the model in inaccurate prediction results. (3) Overfitting problem: Unoptimized
LSTM may have the risk of overfitting when fitting training data. The LSTM model has a
strong memory ability. It is possible to excessively fit the training dataset, which leads to
a lack of generalization when encountering new and unfamiliar data. This results in poor
performance of the predictive model in practical applications. (4) Parameter selection problem:
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Unoptimized LSTM requires careful parameter selection, including network structure, learn-
ing rate, and number of iterations. The inadequate parameter selection can result in subpar
model performance and impact the accuracy and stability of prediction outcomes.

3.5. Grey Wolf Optimization Algorithm (GWO)

The Grey Wolf Optimizer (GWO) is an optimization algorithm inspired by the col-
lective tracking and hunting behavior of grey wolves in their pursuit of prey [26]. It was
proposed by Seyedali Mirjalili and others in 2014 to address intricate optimization chal-
lenges. The algorithm is based on four levels of grey wolf groups. α (alpha), β (beta), δ
(delta), and ω (omega) are used to simulate the social hierarchy of the wolf pack.

Wolf pack hierarchy and social behavior were simulated as follows:
α (alpha) is the leader of the pack, and is responsible for deciding the direction of the

hunt. The rest of the pack usually follows its guidance. β (beta), as a secondary leader, acts
as an advisor and helper. α wolves and β wolves will take over the leadership. δ (delta), as
the wolf with a certain prestige, acts under the guidance of α and β and ensures the internal
order and safety of the group. ω (omega) is the lowest-ranking member, which mainly
follows the instructions of the first three levels to complete the task, and their information
is also helpful in finding prey.

The algorithm flow is as follows:

a. Initialization: A group of N search agents (grey wolves) is randomly generated, each
representing a potential solution to the problem.

b. Lead wolf identification: This assesses the performance of every search agent, which
identifies the optimal three agents as α, β, and δ.

c. Finding and encircling prey: The behavior of the three-tier wolf pack members
approaching prey is simulated by a mathematical model. The other members (ω)
update their positions according to the positions of the three leading wolves.

d. Attack (optimization): Constantly it updates the position of the pack in an iterative
manner in the expectation of finding prey (optimal solution to the problem).

e. Termination condition: The algorithm continues its iterations until it satisfies a
predetermined termination condition, such as reaching the maximum allowable
number of iterations or achieving a specific level of solution quality.

The GWO algorithm adopts the method of simulating wolf pack behavior to carry out
a global optimization search. The algorithm mimics the hunting, chasing, and attacking
behavior of wolves during prey pursuit. The location update formula considers the position
of the current search agent, the position of the lead wolf, and the flexible adaptation of
both exploration and exploitation tactics. The balanced exploration and utilization of
the search space are realized by calculating the distance between wolves, which updates
the position, and randomly selects the leading wolf. Compared with other optimization
algorithms, GWO has fewer tuning parameters. The algorithm is simple to implement and
easy to extend to high-dimensional problems. Furthermore, GWO proves to be applicable
in a wide range of optimization problem scenarios, including continuous, discrete, and
multi-objective optimization problems. Overall, GWO achieves a successful equilibrium
between worldwide and regional optimization through the emulation of wolves’ social
structure and hunting tactics.

3.6. GWO-LSTM Prediction Model

In order to solve the time sequence problem of land surface settlement prediction, the
problems of local optimality and slow convergence of the LSTM model are considered, and
an LSTM model combined with the Grey Wolf Optimizer (GWO) algorithm is proposed
in this study (Figure 7). GWO is an emerging swarm intelligence optimization algorithm.
It emulates the hierarchical order and predatory conduct witnessed in grey wolf popula-
tions, which guide the group to conduct a global search through alpha, beta, and delta
wolves. This also reinforces the global search capability, which minimizes the likelihood of
converging towards a suboptimal solution.
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The introduction of the Grey Wolf Optimization algorithm optimizes the weight and
bias parameters of the LSTM neural network, which applies the global search ability of
the GWO algorithm in the iterative process. This contributes to enhancing both the rate at
which the network converges and the overall precision of predictions made by the model.
In addition, the GWO algorithm can also adapt to changing problem scenarios, which
enhances the robustness of the model in dynamic environments.

In the process of modeling, the traditional LSTM model is used to establish a pre-
liminary surface settlement prediction model. Then, the GWO algorithm is employed
for the optimization of the initial parameters in LSTM. In each iteration of the GWO, it
evaluates the fitness of all individuals (solutions) in the current population, and selects the
most fit individual as the lead wolf to guide the group toward a better solution. Through
continuous iteration, the optimal solution set as the optimal weight and bias parameters
of the LSTM network is finally obtained, and a more accurate prediction model of surface
settlement is constructed.

3.7. Subsidence Zone

Previous researchers have utilized integrated PS, SBAS, and DS InSAR techniques
to monitor subsidence, which reveals multiple subsidence centers in Kunming’s urban
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area. In recent years, new subsidence funnels have continually emerged along the northern
and eastern shores of Dianchi Lake. Although these funnels are small in volume, they
cover a broad area and exhibit an outward expansion trend. Based on the preliminary
identification of subsidence zones and the distribution characteristics of the subsidence
centers, we have divided the severely affected areas into six sub-study zones by regular
rectangles to facilitate more in-depth research. The specific subsidence zones are as follows.

Subsidence zone A: Primarily located in the Rongchuang-Xinhe Community–Wangjiadui
area in Xishan District, Kunming.

Subsidence zone B: A newly identified subsidence-sensitive area, situated along Metro
Line 5, the South Connection Line Expressway, Qianwei Road, Hairun Road to Ziyuan
Road, Guangfu Road, and Haize Road.

Subsidence zone C: The largest known subsidence area in Kunming, encompassing
multiple locations in Guandu District, including Liujia Village, Caojiaqiao, Niujia Village,
Dianchi Convention and Exhibition Center, Sijia Community, Luoya Community, Wangjia
Village, and Longma Community.

Subsidence zone D: Extending from Xiaobanchiao to Guangwei Village, Hewei Village,
and Fubao Village.

Subsidence zone E: Situated in the Daloyang Community and Xiaoloyang Community
of Luoyang Street in Chenggong District.

Subsidence zone F: Includes Zhonghe Village and Luojia Village in Dayu Street, Cheng-
gong District, and areas along the East Ring Road.

Subsidence zones A, B, and C are located along the northern and eastern shores of
Dianchi Lake. These areas have experienced rapid urban development in Kunming in
recent years, and contain a significant number of industrial parks. Subsidence zones D and
E are further from the lakeshore, with more concentrated subsidence centers that began
earlier. Subsidence zone F is located in a wetland park along the Dianchi Lake shore, where
subsidence has occurred rapidly in recent years, displaying distribution characteristics
similar to zones D and E.

4. Result
4.1. Cross-Validation of PS and SBAS Method Results

The average settlement amount of each settling area at each time was calculated,
and the average settlement amount of each settling area of PS-InSAR and SBAS-InSAR in
40 periods was analyzed for correlation. The correlation coefficients of PS and SBAS are
above 0.88 in the time series of each sedimentation zone and reach 0.98 in subsidence zone
C. The p of subsidence zone F is less than 0.01. Hence, the correlation is very significant.
See Figure 8 and Table 2 for details. Combined with the characteristics of PS-InSAR and
SBAS-InSAR, PS is more suitable for dense building areas with high scattering rates and
high stability. The SBAS method has better performance in lower-frequency deformation
and nonlinear deformation. Based on the monitoring results of PS and SBAS, the results of
subsidence zones B and E were monitored by SBAS, and the results of other subsidence
zones were monitored by PS.

Table 2. Correlation of PS and SABS.

Region Linear Fitting Equation R2 Significance Influence

Subsidence zone a Y = 0.7585x − 1.5397 0.94 **
Subsidence zone b Y = 0.5245x − 0.0798 0.88 **
Subsidence zone c Y = 0.8686x − 0.9393 0.98 **
Subsidence zone d Y = 1.0332x − 1.4303 0.92 **
Subsidence zone e Y = 2.0254x − 2.4997 0.88 **
Subsidence zone f Y = 1.5544x − 5.8799 0.98 **

Note: Significance influence levels are represented by the number of *s in the analysis: p < 0.01 is denoted as
** (very significant).
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4.2. Monitoring Results

Based on historical monitoring data and current results, this paper delineates the
multi-dimensional spatial units of surface subsidence in the urban area of Kunming. The
identification and characteristics reveal the heterogeneity of the surface subsidence process
and deformation characteristics, which highlights the risk factors in urban planning and
land use.

The results show (Figure 9) that surface subsidence in Kunming is still ongoing,
and overall changes remain relatively stable. However, the subsidence area near the
northeastern shore of Dianchi Lake is gradually expanding. In zone B, a new subsidence
funnel has appeared in recent years, which is developing rapidly with a trend towards
connecting with zone A and zone C in the future (Figure 10). The soft ground, numerous
wetlands, and abundant groundwater resources around Dianchi Lake coupled with the
rapid urban development and sharp growth in buildings in zone A, zone B, and zone C
will inevitably lead to extensive groundwater extraction. Hence, surface subsidence is
ultimately exacerbated in these regions. The subsidence phenomena in zone D and zone
E occurred earlier, and have remained relatively stable for a period. However, in recent
years, the rapid construction of buildings in Chenggong New District has exacerbated the
subsidence in zone E.

These areas have not undergone large-scale urban construction and development,
which are related to continuous groundwater extraction. Zone F, as a wetland area without
urban buildings, has shown rapid subsidence over the past three years, possibly related to
the irrigation of nearby agricultural facilities.

The dynamic development of surface subsidence is driven by both environmental
conditions and human factors. The accumulation of subsidence and the occurrence of
multiple funnels demonstrate that the subsidence process is spatially non-uniform with
some areas experiencing rapid subsidence, with localized stress concentration, while others
remain relatively stable. Under the background of rapid urbanization, the analysis of zone
A, zone B, and zone C highlights that the rapid expansion of urban structures and trans-
portation infrastructure has led to the diversification and complexity of surface subsidence
phenomena. All subsidence areas are associated with groundwater depletion.
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By integrating the monitoring results obtained by the PS method and SBAS method
(Figures 11 and 12), the Universal Kriging interpolation method is used for analysis. The
results show that the subsidence regions monitored and located by the two methods are
highly consistent, especially in the subsidence zone A, zone D, and zone E. This shows that
both methods can efficiently and sensitively reflect the existing and newly formed surface
subsidence areas.
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This research shows (Figure 13) that in the past three years, the depth of the surface
subsidence funnel in the Kunming urban area has continued to increase. The most serious
subsidence areas are subsidence zone A and zone C. The cumulative subsidence of the
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monitoring points with the most serious subsidence in the past three years has reached 99.4
mm and 83.9 mm, and the average accumulated settlement in the settling area has reached
19.0 mm and 16.4 mm, respectively (Table 3).
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Table 3. In-SAR monitoring results in time series.

Subsidence Zone Cumulative Settlement
over Three Years (mm)

The Average Settlement in
the Settling Zone (mm)

Maximum Settling
Rate (mm·a−1)

Subsidence Area
(km2)

Subsidence zone A 0~99.4 19.0 47.564 19.104
Subsidence zone B 0~83.9 11.6 38.829 42.554
Subsidence zone C 0~105.5 16.4 50.468 49.334
Subsidence zone D 0~66.7 15.1 25.086 13.485
Subsidence zone E 0~67 8.3 28.184 6.796
Subsidence zone F 0~86.9 15.9 26.804 3.121

According to the experimental results (Figure 13), the sedimentation rate also presents
a funnel shape in space. The end of the sedimentation rate funnel in subsidence zone A,
subsidence zone B, and subsidence zone C is separated and is refined into multiple funnel
mouths. The sedimentation rate funnel in subsidence zone D has the characteristic of the
funnel mouth being too large, which can easily cause geological disasters. Subsidence
zone E is the most typical subsidence funnel, and there is a greater probability of overall
expansion of the subsidence funnel at a later period. Compared with other settling areas,
the settling rate of zone F is lower, and the settling tends to stop. The maximum sedimen-
tation rate of subsidence zone A, zone B, and zone C is 47.564 mm·a−1, 38.829 mm·a−1,
and 50.468 mm·a−1, respectively, all of which are located at the tiny funnel mouth of the
subsidence funnel. The small proportion of the distribution area of the maximum sedimen-
tation rate should focus on whether each small funnel mouth has a trend of contiguous
pieces. The maximum sedimentation rates of zone D, zone E, and zone F are 25.086 mm·a−1,
28.184 mm·a−1, and 26.804 mm·a−1, respectively, which are lower than those of zone A,
zone B, and zone C.
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From the time series sedimentation data of 41 stages, 8 stages were selected according
to a certain time step (Figure 14). Using the radar data to obtain the reference plane at the
earliest time, serious surface subsidence occurred in subsidence zone A to zone F during the
study period. The subsidence funnel in subsidence zone A and zone E developed rapidly
and the subsidence rate was faster, followed by zone C, zone D, and zone F. According to
the results, scattered and irregular settling funnels began to develop in zone B from January
2020 to April 2021 and gradually accelerated after 2021.
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4.3. Results of GWO-LSTM Prediction Model

In this study, the combined method of the Grey Wolf Optimization algorithm (GWO)
and Long Short-Term Memory network (LSTM) was used to predict the time series of land
surface subsidence in different subsidence areas of Kunming City. The results of LSTM
parameter optimization and the prediction accuracy index are shown in Table 4.

Table 4. Prediction accuracy index.

Subsidence Area RMSE MAE R2

Subsidence zone A 3.5438 2.8288 0.93532
Subsidence zone B 2.7745 1.8907 0.93063
Subsidence zone C 2.9179 2.1371 0.93966
Subsidence zone D 2.9671 2.1651 0.93713
Subsidence zone E 2.6812 1.7788 0.8379
Subsidence zone F 3.4631 1.6571 0.94862

In subsidence zone A, the GWO-LSTM model showed high prediction accuracy, with
an RMSE and MAE of 3.5438 and 2.8288, and a coefficient of determination (R2) of 0.93532.
The model can capture the dynamic change in land surface settlement in this region with
high accuracy.

The prediction results of subsidence zone B show that the model also has a good
performance, with an RMSE of 2.7745, MAE of 1.8907, and R2 of 0.93063. These results
show that the GWO-LSTM model is reliable in predicting the surface change in subsidence
zone B.
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In subsidence zone C, the model also showed robust forecasting ability, with an RMSE
and MAE of 2.9179 and 2.1371, and an R2 of 0.93966, which was the second-highest R2

value in all regions.
The prediction of subsidence zone D shows that the performance of the model is also

well maintained here, with an RMSE of 2.9671, MAE of 2.1651, and R2 of 0.93713.
It is worth noting that the prediction performance of subsidence zone E is relatively

low: its RMSE and MAE values are 2.6812 and 1.7788. The coefficient of determination
R2 is 0.8379, which is lower than that of other regions. This indicates that the settlement
dynamics in this region may have been affected by more complex factors, and further
analysis could improve the prediction accuracy.

Finally, in subsidence zone F, the GWO-LSTM model shows the best prediction per-
formance. With RMSE and MAE values of 3.4631 and 1.6571, and an R2 up to 0.94862, the
prediction of the model in this region is highly consistent with the actual observed data.

In general, through the construction of GWO-LSTM, the proposed model has demon-
strated good forecasting ability in multiple settling areas of Kunming City. This provides
reliable support for the monitoring and prevention of land surface settlement in this area
in the future. Nevertheless, the relatively low prediction accuracy of subsidence zone E
suggests that we need to pay attention to further optimization of the model in future work.
This identifies potential factors that may affect the prediction performance of this region.

The LSTM neural network optimized based on the Grey Wolf Optimizer algorithm
had a time step of 5, and used the data of five periods as historical data for point-to-point
prediction. The number of grey wolves was set to 3 to optimize the three parameters of
LSTM. The prediction process and results are shown in Figure 15. The error values of each
monitoring point in each area converge around 0, and there is no concentrated monitoring
point error showing an abrupt scattering transition. The prediction results and the test
set show a high coincidence phenomenon on the graph. The prediction results have an
excellent ability to show the characteristics of historical data changes.

The historical data and monitoring results were fitted according to the beginning,
middle, and forecast results (Figure 16). The upper two layers were used as the historical
monitoring data, and the bottom figure was used as the future forecast data. The GWO-
LSTM results show that the subsidence funnel deformation trend matches the surface
subsidence trend because of historical monitoring results. The prediction models make it
easier to identify areas where subsidence is becoming more severe. In the future, settlement
zones A~F will continue to increase the occurrence of land surface settlement. The sedimen-
tation funnel develops faster in the vertical direction, forming a sharp sedimentation funnel
(Figures 15 and 16). Subsidence zones A, B, C, and E all show this situation. With further
subsidence, geological disasters of ground collapse can easily occur at the entrance of the
subsidence funnel. Subsidence zones D and F continue to show an overall settlement trend.
The edge of the subsidence funnel will cause damage to buildings and other infrastructure,
with the risk of structural cracks and collapse.
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5. Discussion and Conclusions
5.1. Monitoring the Adaptability of Models in Different Environments

In this study, the correlation analysis of accuracy demonstrates that PS-InSAR and
SBAS-InSAR are equally effective in monitoring settlement in urban areas of Kunming.
However, each method is suitable for different monitoring environments based on its
unique advantages.

PS-InSAR: The PS technique shows better adaptability in areas with high stability and
dense scattering points. The technique relies on stable scattering points (e.g., buildings,
rocks, etc.) and therefore performs well in built-up areas (e.g., subsidence zones D and
F). In these areas, buildings are built stably, and PS points are dense and stable. Hence,
PS-InSAR can provide highly accurate settlement monitoring results.

SBAS-InSAR: For low-frequency deformations and nonlinear deformations, SBAS
technology shows a unique advantage. SBAS technology performs better in large engineer-
ing and construction areas (e.g., settlement zones B and E). These areas are undergoing
large-scale urban construction, the surface changes are more intense, and there are fewer
stable scattering points. SBAS technology can better deal with nonlinear deformation and
low-frequency deformation, so it is suitable for areas with intense surface changes. In
particular, in zone B, due to the existence of large-scale construction activities, SBAS-InSAR
can more accurately reflect the subsidence.

As for zones A and C, where the development rhythm is stable, both PS-InSAR and
SABS-InSAR have good performance. Considering that the urbanization process in the
future tends to develop towards zone B, while zone A and zone C gradually tend to be
stable, the PS method is more suitable for monitoring zone A and zone C.

The R2 was as high as 0.98 in settlement zone C and settlement zone F, showing a
high degree of consistency between the two techniques. However, the R2 is only 0.88 in
settlement zone B and settlement zone E. Settlement zones B and E are fast-developing
urban areas with rapid building growth, which leads to the lack of stabilization of the
PS points and some spatial incoherence. Therefore, it further indicates that the SBAS
monitoring results are more reliable in these areas.
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5.2. Application of the GWO-LSTM Modeling

In this study, the Grey Wolf Optimization (GWO) algorithm was used to enhance
the performance of the Long Short-Term Memory Network (LSTM) in predicting surface
settlement in urban areas of Kunming.

GWO is a meta-heuristic algorithm; it simulates the hunting behavior of grey wolves
and enhances the prediction model through the following aspects.

a. Strong social cooperation mechanism: GWO relies on the social division of labor and
cooperation strategies in grey wolf packs, which makes the algorithm more efficient
in tracking the global optimal solution. This enhances the convergence speed and
accuracy of LSTM in surface subsidence prediction.

b. Flexible Approximation Mechanism: In GWO, individual grey wolves update their
positions based on the current optimal candidate position. The parameters of LSTM
have effectively been optimized. This allows the model to maintain a balanced explo-
ration and exploitation capability at all stages, which enhances the understanding of
time series data.

c. Adaptive behavior: GWO introduces adaptive behavior, which enables the algorithm
to dynamically adjust the search strategy and behavior. It improves the model’s
accuracy in predicting various types of subsidence trends.

It makes up for the shortcomings of traditional LSTM in the following aspects:

a. Long-term dependency modeling problem: GWO optimizes the parameters of LSTM,
such as the number of hidden layers and the number of units, which enhances the
model’s ability to deal with long-term dependencies. By the optimal combination
of parameters, GWO improves the LSTM model’s ability to capture and maintain
long-term contextual information.

b. Insufficient Data Problem: GWO selects the most appropriate interpolation or filling
techniques by the missing data optimization in the data preprocessing stage. Mean-
while, by optimizing the hyperparameters of the LSTM model, GWO can improve
the performance of the model on small sample data and enhance the robustness to
incomplete data.

c. Overfitting problem: GWO optimizes the training process of LSTM models through
cross-validation and early-stopping techniques to reduce the risk. GWO can find the
optimal regularization parameters and dropout ratios, which prevents the model
from overfitting the training data and improves the generalization ability.

d. Parameter selection problem: GWO can find the optimal combination of LSTM pa-
rameters in the parameter space through its global search capability. The parameters
optimized by GWO include the network structure, the learning rate, the number
of iterations, and so on. Hence, it improves the performance of the model, which
ensures the accuracy and stability of the prediction results.

5.3. Sedimentation Phenomena and Mechanisms

The GWO-LSTM model provides a new perspective on understanding and predicting
ground subsidence in Kunming’s urban areas. It represents the broad application potential
in preventing and mitigating geological disasters, which guides urban planning. Through
detailed field surveys and continuous monitoring, this predictive model can provide more
accurate data support for geological disaster prevention, which contributes to sustainable
urban development.

Notably, the subsidence prediction model for Kunming’s urban area reveals a potential
trend of aggravated subsidence in zone E. New subsidence near the new Metro Line 5
highlights the need to prevent geological risks in urban development. In the future, the
authors will continue to monitor the subsidence dynamics in Kunming’s urban areas, and
timely propose reasonable disposal and preventive measures based on research results to
ensure the safety and sustainability of urban development.
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Groundwater is widely used for daily life, industrial production, and agricultural
irrigation in the city. The north shore of Dianchi Lake near Daguanlou Park has relatively
abundant groundwater resources with good water quality, which makes it one of the
preferred water sources. However, rapid urban development and population growth
have led to a high demand for groundwater resources. Especially in the fast-developing
eastern and northern shores, industrial water demand has significantly increased, which
exacerbates the pressure on groundwater extraction. In zone A, zone B, and zone C, which
are located in these areas, rapid economic development has led to increasingly severe
subsidence. There is a very direct relationship between groundwater extraction and ground
subsidence. When groundwater is pumped out, the original pore pressure in the water
decreases. This causes the pore water volume to shrink, which leads to the rearrangement
of underground sediments, resulting in soil layer subsidence and a vicious cycle of reduced
groundwater storage capacity.

At a later stage, attention should focus on the use of groundwater resources in the
region to avoid overdrawing and thereby mitigate surface subsidence.
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