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Abstract: Natural language-processing tasks have been improved greatly by large language mod-
els (LLMs). However, numerous parameters make their execution computationally expensive and
difficult on resource-constrained devices. For this problem, as well as maintaining accuracy, some
techniques such as distillation and quantization have been proposed. Unfortunately, current methods
fail to integrate model pruning with downstream tasks and overlook sentence-level semantic model-
ing, resulting in reduced efficiency of distillation. To alleviate these limitations, we propose a novel
distilled lightweight model for BERT named MicroBERT. This method can transfer the knowledge
contained in the “teacher” BERT model to a “student” BERT model. The sentence-level feature
alignment loss (FAL) distillation mechanism, guided by Mixture-of-Experts (MoE), captures compre-
hensive contextual semantic knowledge from the “teacher” model to enhance the “student” model’s
performance while reducing its parameters. To make the outputs of “teacher” and “student” models
comparable, we introduce the idea of a generative adversarial network (GAN) to train a discriminator.
Our experimental results based on four datasets show that all steps of our distillation mechanism are
effective, and the MicroBERT (101.14%) model outperforms TinyBERT (99%) by 2.24% in terms of
average distillation reductions in various tasks on the GLUE dataset.

Keywords: natural language processing; knowledge distillation; generative adversarial networks;
Mixture-of-Experts

1. Introduction

Research on pre-trained models has shown a trend towards increasingly larger models.
Due to the proliferation of parameters, models with a vast number of parameters are
now referred to as Large Language Models (LLMs). BERT [1], first proposed by Google
in 2018, demonstrated the power of LLMs by achieving pioneering results on 11 NLP
tasks. However, LLMs require massive training data for their enormous number of pa-
rameters, as evidenced by models such as BERT-base (109 M), BERT-Large (340 M), GPT-2
(1.5 B), and GPT-3 (175 B). The computational requirements for training and deploying
these models often exceed the capabilities of typical academic research and commercial
computing resources. For instance, the GPT-3 model proposed by OpenAI reportedly
required 30,000 A100 GPUs for training. At this scale, the hardware costs alone could
exceed millions of dollars, not including the high maintenance and electricity costs. Against
this background, model compression techniques have developed rapidly in recent years.
These include hierarchical quantization [2], weight pruning [3], and knowledge distillation
(KD) [4]. These techniques aim to shorten inference time and reduce model size while
maintaining accuracy, offering great value for both academic research and commercial
applications. Currently, many studies focus on compressing BERT models based on KD
frameworks [5–10]. While these distillation results generally meet requirements, they
primarily focus on word-based features in the knowledge-distillation framework. This
approach often ignores the contextual semantic information of the input text [11–13], which
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can lead to suboptimal results for tasks that rely heavily on contextual semantics, such as
text classification, especially when distilling smaller models.

BERT processes input sequences of word vectors and prepends a [CLS] token. This
design supervises word features but increases computational burden. KD aims to transfer
knowledge to a lighter student network. We propose MicroBERT, a BERT-based KD model,
with distinct loss functions for different BERT layers. We enhance feature construction in
the hidden layer, prioritizing sentence features and reducing computation without losing
word information. The prediction layer loss function serves as a soft target for richer
information applicable to any task.

Two crucial components that affect the efficiency and performance of deep learning
model training are the model’s scale and the volume of the training data. Recently, a new
training technique has been proposed and made accessible to the industry to address this
problem. Larger models based on the Mixture of Experts (MoE) architecture [14] are more
useful and efficient because the sparsely activated model adaptively selects a subset of
its parameters for training based on the input data, whereas the densely activated model
uses all of its parameters in computation. Furthermore, it is possible to scale the model
parameters linearly without requiring additional computations.

The loss function between the prediction layers of the teacher model and the student
model can generate richer information and be adapted to various tasks within the prediction
layer. By employing the router as a soft target to choose the expert layer, the efficacy of
model training is enhanced, thereby refining the model.

Finally, we introduce the idea of GAN [15], where the student model is used as a
generator and the output of the student model is used as the adversarial sample generated
by the generator, and the discriminator is trained using the predicted output of the teacher
model and the student model. The ultimate goal of training the discriminator is to make it
difficult to distinguish the output of the teacher model and the student model, i.e., to make
the output of the student model as close as possible to the output of the teacher model.
In addition, we devise a new feature-mapping method that allows the teacher model to
pass information from all layers to the student model, further ensuring the integrity of
knowledge transfer.

To demonstrate the relevant performance of our MicroBERT and the effectiveness
of the algorithm, we conducted a number of experiments, including the performance of
MicroBERT and TinyBERT on the General Language Understanding Evaluation (GLUE) [16]
datasets with several different tasks and the distillation effect, the ablation experiments of
two innovative distillation methods, and the comparison experiments. TinyBERT is not
only one of the most commonly used models in industry and research communities but
also TinyBERT has one of the highest citation rates in the field of knowledge distillation.
The final ablation and comparison experiments demonstrate that our distillation steps
are effective. The source code of this work can be found at: https://github.com/mpu-
patrick-lab/microbert (accessed on 12 July 2024).

The main contributions of this paper are as follows:

• In order to promote the proper transfer of the linguistic information stored in the
teacher’s BERT to MicroBERT, we suggest a Transformer distillation approach called
MicroBERT, with the routing algorithms for MoE models with reasonable serving
costs. We investigate alternative routing methods that are taught to exploit global
task-level knowledge to route all tokens predicted to a given task collectively to the
same collection of experts.

• We propose a new feature-refinement method called Feature Alignment Loss (FAL),
which enables the model to perform feature learning with a higher perspective, effec-
tively reducing the computational burden of the model and shortening the inference
time while ensuring accuracy.

• We design a new feature-mapping method to ensure that the information from the
teacher model can be passed to the student model as much as possible, which improves

https://github.com/mpu-patrick-lab/microbert
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the efficiency of information utilization. At the same time, the soft target predicted for
the teacher model can be migrated to any task.

• We introduced the idea of GAN to train discriminators using the outputs of the teacher
model and the student model, so that the output of the student model can maximize
the approximation of the output of the teacher model. This research aims to make
the student model more lightweight by compressing the model without reducing
the accuracy.

The remainder of this paper is organized as follows. We review existing model com-
pression techniques and highlighting limitations in BERT-based KD frameworks. The
Section 3 details MicroBERT’s distillation process, including FAL, efficient inference using
MoE, and GAN-based discriminator loss. Then, we present experiments comparing Mi-
croBERT’s accuracy with other models and analyzing the contribution of each component.
The discussion highlights MicroBERT’s effectiveness in accuracy and efficiency. Finally, we
summarize our findings and suggest future research directions.

2. Related Work

In recent years, large-scale pre-trained language models such as BERT, GPT [17], AL-
BERT [18], and RoBERTa [19] and their derivatives have made significant progress in the
field of NLP. However, these models usually require large-scale computational resources
and extremely long inference times, leading to expensive computational costs. To improve
inference speed and reduce redundant computations, a series of model compression meth-
ods such as distillation, quantization, and pruning have been proposed. For example,
BERT-PKD [20] performs incremental knowledge extraction by extracting the output of
the last layer of the model and learning from multiple intermediate layers, which can
leverage rich information in the hidden layers of the teacher model and encourage the
student model to patiently think about teacher learning and imitation through a multi-layer
distillation process. DistilBERT [21] solves the problem by using knowledge distillation in
the pre-training phase using knowledge distillation to solve the problem of previous work
that only distilled for specific tasks. This ultimately reduces the parameters of the BERT
model to 40% and achieves a 60% improvement in computational speed. DocBERT [22]
is the first to apply BERT to the document classification task and distill BERT into a small
bidirectional long short-term memory network LSTM using knowledge-distillation tech-
nology. MobileBERT [23] is model-independent, and by using a bottleneck structure based
on BERT-large and striking a better balance between self-attentiveness and feedforward
networks, the model becomes less parameterized at each layer which allows the depth
of the model and BERT is consistent. In contrast, TinyBERT [24] introduces a frame to
learn with two stages, which can simultaneously distill model pre-training and fine-tuning
phases, and capture both generic semantic and task-specific knowledge, so that a new
Transformer distillation method has appeared. ColBERT [25] introduced a post-interaction
architecture that uses BERT to encode query and document independently and models
their fine-grained similarity using a powerful interaction step that can effectively exploit
the power of deep LM. MiniLM [26] used the student model to mimic the teacher model’s
self-attention module to train small models, which can effectively reduce the model pa-
rameters. FastBERT [27], proposed by Liu et al., divided the early existing classifiers into
student and teacher classifiers and trained all student classifiers using the self-distillation
technique, which also achieved good results.

Throughout all the model distillation frameworks nowadays, they only focus is on the
extraction of word-level features while ignoring sentence-level features. At the same time,
some models require additional data for finetuning to guarantee the model’s capability
after distillation, and other distillation methods fail to make a significant enough decrease
in the models after distillation. The MoEBERT model [28] uses a hybrid expert structure
and layer-by-layer distillation method to improve the ability and reasoning speed of BERT.
Task-MoE [29] comprises substitute routing techniques that are taught to utilize global
task-level data in order to route all tokens associated with a certain job to the same group
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of experts together. We decode distinct tasks independently, loading just the subset of
task-specific experts during inference.

Therefore, we improve the performance of the model by introducing a sentence-level
distillation mechanism to comprehensively learn generic contextual semantic knowledge
from the teacher model, while reducing the parameters of the student model. Unlike tradi-
tional word-level distillation approaches, our method enhances the capture of contextual
semantics, crucial for tasks heavily reliant on sentence understanding. This approach not
only maintains high accuracy but also significantly reduces inference time and computa-
tional complexity.

3. Methods

In this section, we propose a generic knowledge-extraction method based on a Trans-
former model and design a discriminator for this model, through which we hope to make
the results of the student model more accurate, which is called MicroBERT. The architecture
diagram is shown in Figure 1.

Figure 1. Overall Architecture Diagram: This diagram outlines the sophisticated design of the
MicroBERT framework. 1⃝ The student model aligns its intermediate features with those of the teacher
model using FAL. The predict layer is optimized through the application of soft loss derived from the
teacher’s outputs and hard loss based on the ground truth labels. 2⃝ Both models incorporate Mixture
of Experts (MoE) layers, guided by routers, to enhance processing capabilities. 3⃝ Furthermore, a
discriminator network introduces discriminator loss to ensure the student’s outputs closely resemble
those of the teacher.

3.1. Distillation Process

We introduce a comprehensive framework for distillation training that can be applied
to various transformer-based teacher and student models. Unlike traditional knowledge-
distillation approaches, our framework enables supervision over both intermediate feature
layers and the final output. In contrast, conventional approaches primarily focus on word-
level features, resulting in redundancy and insufficient attention to sentence vectors. To
address these limitations, we propose a distillation process that emphasizes both word
vector features and sentence vector features, thereby enhancing overall efficiency.

In our method, we assume that the number of layers in the teacher model is N
(N > M), while we set the number of layers in the student model to M. We want the
student model to learn the content of the middle layer of the teacher model. Therefore,
we extract the M layer from the teacher model to distill the knowledge to the m layer
of the student model. The mapping formula is n = g(m), which represents matching
the m layer of the student model to the g(m) layer of the teacher model. We specifically
specify layer M + 1 as the prediction layer and layer 0 as the word embedding layer.
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We derived two formulas, g(0) = 0 and g(M + 1) = N + 1, where g(m) represents the
mapping layer between the teacher model and the student model. To determine the
optimal number of mapping layers, we conducted a series of comparative experiments to
evaluate the impact of different choices for g(m) on the overall model performance. This
layer-mapping knowledge-distillation method effectively reduces the disparity between
student and teacher models, enabling selective acquisition of relevant knowledge from
the teacher model. As a result, knowledge distillation is performed more efficiently. Our
framework provides a layer-mapping approach that significantly enhances the effectiveness
of knowledge distillation. We therefore derive the following objectives:

Lmodel = ∑
x∈X

M+1

∑
m=0

λmLlayer

(
f T
g(m)(x), f S

m(x)
)

(1)

where fm(x) is the behavior function of m layer, λm is the hyperparameter, the main
purpose of which is to change the weight of the distillation. Llayer is the loss function of
the provided model layer.

Hidden Layer Distillation. Our proposed distillation technique for transformer layers
builds upon hidden state distillation. Recent research has shown that the [CLS] token, max
pooling and mean pooling, which BERT learns, possess robust sentence vector represen-
tations. Consequently, distilling such information becomes a crucial factor for sentence
vector-based distillation. This linguistic knowledge encompasses syntactic information and
other essential aspects for natural language understanding. We anticipate that the student
model (MicroBERT) will learn more semantic knowledge from the teacher model (BERT).
Therefore, we introduce a hidden layer-based language-refinement method called FAL. We
extract three aspects from FAL: the [CLS] token, mean pooling and max pooling. These
aspects are then trained by the students, enabling the student model to focus not only on
word vector features but also on sentence vector features. The following objectives have
been defined:

Lhidn = MSE
(

HT , HSWh

)
(2)

where HS ∈ Rl×d′ and HT ∈ Rl×d are matrices that represent the hidden states of the
student and teacher models, as defined by Equation (2). Thus the hidden sizes of the
classroom model and student model are defined as d and d′. We want to maximize the
compression of the model, so the student model d′ is chosen to be frequently smaller than
d. Also, the hidden state of the student model is transformed to the same state dimension
as the teacher model by the learnable linear transformation matrix mapping Wh ∈ Rd′×d.

Embedding Layer Distillation. We also performed distillation on the embedding
layer, aiming to achieve similar goals as the hidden-state-based distillation:

Lembd = MSE
(

ET , ESW e

)
(3)

where the matrices ES and ET stand for the networks’ respective embeddings in students’
and teachers’ networks. They share the same structure as the hidden state matrices in this
study. An analogous linear transformation to Wh is the matrix W e.

MoE-guided distillation. We use the MoE proposed by LLM [30], where the MoE
layers for the Transformers consist of E Prediction Layer, such that (PL1 . . . PLE).

PLe(xs) = woeSo f tmax(wiexs) (4)

ys =
E

∑
e=1

Gs,ePLe(xs) (5)

The input token for the MoE layer at position s is xs, and each PLe denotes a one-layer
neural network with a Softmax activation function. The projection weights for the e-th
expert’s input and output are wie and woe. Finally, Gs,e is the vector produced by the gating
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network, commonly referred to as the router. For each expert, the vector’s values are mostly
zeros, with the exception of one positive value. Using this vector, we route the token to a
restricted set of experts. The items chosen from Gs, E, determine the expert’s contribution
to the final output ys. It should be noted that in order to be comparable with the previous
study, we selected the top 1 weight experts for each case in this work.

The gating network Gs, E, where (1) expert utilization must be balanced and (2) the
function must be efficient to execute at scale, must be carefully examined for efficiency
reasons [30].

Prediction Layer Distillation. For the prediction layer component of our model, we
employ the knowledge-distillation method proposed by Hinton et al. [31]. This method
involves calculating the soft cross-entropy loss by taking the logarithm of the outputs from
both the student model and the teacher model. Additionally, the soft labels generated by
the trained teacher model can be transferred to any task.

Lpred = CE
(

zT/t, zS/t
)

(6)

where CE stands for cross entropy loss, t stands for temperature value and zS and zT are
the logits vectors predicted by the student and teacher, respectively. In our experiment,
t = 1 shows good performance.

Finally, the above Equations (2), (3) and (6) distillation losses are summarized to yield
the following target losses:

Llayer = Lembd + Lhidn + Lpred (7)

where calculate Lembd loss if m = 0, Lhidn loss if M ≥ m > 0 and Lpred loss if m = M + 1.

3.2. Feature Alignment Loss

In this section, we introduce a loss function called FAL. Our objective in designing
this function serves two purposes. Firstly, we aim for the smaller model to learn the
comprehensive knowledge of the middle layer from the larger model. Secondly, we intend
for the model to prioritize the word vectors and sentence vectors, regardless of the word
vectors. The loss function we designed is shown in Figure 2.

In this paper, we investigate the application of the BERT model for feature extraction.
In the BERTbase model, the BERT model takes into account that many downstream tasks
rely on analyzing the relationship between two sentences for modeling, such as question
answering. To enable the model to have this capability, for such tasks, BERT does so by
splicing a [CLS] token at the beginning of a sentence. [CLS] token is encoded by BERT
and the resulting vector representation is usually used as the representation of the current
sentence. In addition, the BERT model takes word sequences as input and passes them
up through multiple layers of encoders. Each layer passes through Self-Attention and
Feedforward Neural Network (FFNN). The encoding of all tokens by BERT outputs a
vector of size hidden size (768 in BERTbase) at each position.

Since the vector representation of all tokens is available to BERT, it is possible to use
the vectors of these tokens directly as features and feed them into a task-specific neural
network for training. In addition, the output of the last layer of BERT can also be used to
connect the task network for fine-tuning. However, traditional BERT has some problems,
such as the need to supervise the features of each word while ignoring the sentence vector
features. This not only results in generating excessive computational effort but also reduces
the generalization of the model.

At the same time, the implied dimension of the BERTbase is 768, while the implied
dimension of our MicroBERT student model is 312. Due to the mismatch of these two
dimensions, the distillation operation cannot be performed. To solve the above problem,
we map the two features. Then the [CLS] token in the features is taken out, the mean
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pooling and the max pooling are taken out and the loss between them is calculated, which
is the FAL.

Figure 2. FAL: This diagram illustrates the feature alignment process between a pretrained Teacher
BERT and a Student BERT. Both models process input tokens through their respective transformer
layers. The outputs are then aggregated using mean pooling, max pooling and the [CLS] token. These
features are aligned by minimizing the difference between corresponding outputs from the teacher
and student models.

We concatenate the three parts, the [CLS] token features, the mean pooled features
and the maximum pooled features, and use these three parts as features for distillation
training inside supervised learning, with the mean and maximum equivalent to the pooled
elemental features. The advantage of this is that we aim to make the model not only
reduce the computational work but also focus on the features of the sentence vectors and
word vectors.

For each layer of BERT, we obtain the features of [CLS] token, the features of mean
pooling and the features of max pooling, and concatenate them together:

LFAL = [CLS]token + Mean pooling + Max pooling (8)

The purpose of this is to ensure that the number of layers of BERTbase corresponds to
the number of layers of MicroBERT to find the FAL.

For the [CLS] token, we used two feature-extraction methods, the first one is the MSE
loss calculation for layers 3, 6, 9 and 12 of the teacher model corresponding to layers 1,
2, 3 and 4 of the student model, and the second one is the averaging method, where the
MSE loss calculation is performed by averaging layers 1–3, 3–6, 6–9 and 9–12 of the BERT
with layers 1, 2, 3 and 4 of the MicroBERT. Meanwhile, the experimental results prove that
the second method is better, and we consider the second method includes the information
transfer of all layers and conveys more information, so it will have better results.

3.3. Soft Loss and Hard Loss

Soft Loss (SL) and Hard Loss (HL) are present in the traditional knowledge-distillation
method. Because the traditional method of neural network training is to define a loss
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function so that the loss function is as small as possible, in order to predict values as close
to the true values as possible, this training process is to find the maximum likelihood
estimate for the ground truth. In knowledge distillation, the teacher model’s softmax layer
output is used as a soft-target to augment the student model’s hard-target training. This
has the advantage of allowing the data to carry substantial information from the teacher
model’s predictions, beyond just the positive labels. This way the student model gets more
information than the traditional training method.

The weight of HL is fixed to 1, and the weight coefficients of FAL, SL and HL are
set as hyperparameters for adjustment, and the final weighted sum of FAL, SL and HL
is weighted, multi-loss joint training total-loss = FAL + SL + HL and DL is used as a The
discriminator is used to distinguish whether the model is from a (BERTbase) teacher model
or a student model and the step is to train the discriminator first and then to train the GAN.

Ltotal = αLso f t + βLhard + γLFAL (9)

where Lso f t denotes the dispersion between the probability distributions of the teacher and
student network outputs, Lhard denotes the cross entropy of the label of the input image and
the probability distribution of the network output, that is, the loss between the probability
distribution of the softmax output and the label. And γ is another hyperparameter to
measure the importance of the distillation characteristics of the middle layer.

3.4. Efficient Inference on MoE

The MoE training component uses dynamic graph training, which is resilient and
adaptable [14]. On the other hand, the inference process uses the neural network layer to
achieve stability and efficiency. There are three phases in the inference process altogether
(shown in Figure 3):

• Fusion: The origin graph and the matching distributed method for the ultra-large-scale
distributed training model are combined to eliminate parameter redundancy.

• Distillation and Compression: Less experts are present in the student network as a
result of the instructor network’s many experts being concentrated and condensed.

• Optimization: Relevant IR Pass optimizations, including kernel fusion, are applied to
the distributed sub-graphs in order to further increase the inference time.

Figure 3. Efficient Inference on MoE: This diagram illustrates the process within the Mixture of
Experts (MoE) layer. It begins with the fusion of multiple expert networks, followed by distillation
and compression to consolidate their outputs. The final step involves optimization, where the
combined network is fine-tuned for improved performance.

3.5. Discriminator Loss

A trainable discriminator is utilized to compute the Discriminator Loss (DL). In this
context, we introduce the concept of a Generative Adversarial Network (GAN), where the
generator takes the role of the student model. The primary objective of the generator is to
create adversarial samples. The discriminator is trained using the anticipated output of the
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instructor model, which serves as its training input, ultimately leading to the acquisition of
DL. Ultimately, we obtain a trained discriminator capable of distinguishing between the
teacher and student models based on the origin of the projected data. Discrimination is
crucial to ensure that the student model learns meaningful representations from the input,
rather than merely memorizing the teacher’s output.

As seen in Equation (10) below, the process of finding a binary function’s minimum
may be characterized as GAN training.

min
S

max
D

L(D, S) = min
S

max
D

Ex∼pdata(x)[log D(T(x))] +Ex∼pdata(x)[log(1 − D(S(x)))] (10)

Two goals are achieved by optimizing the loss function L(D, S): first, it motivates the
generator S to provide genuine samples; second, it improves the discriminator D’s capacity
to distinguish between samples from Tea_Pred and Stu_Pred.

The generator is associated with the student model S, which attempts to replicate the
teacher model T’s output. Consequently, Equation (11) defines the loss function of the
student model S.

LS = Ex∼pdata(x)[log(1 − D(S(x)))] (11)

While the student model’s output aims to mimic the instructor model in order to
trick the discriminator, the teacher model’s output is recognized as authentic data. Thus,
Equation (12) may be used to define the discriminator D’s loss function.

LD = Ex∼pdata(x)[log D(T(x))] +Ex∼pdata(x)[log(1 − D(S(x)))] (12)

The average of the binary cross-entropy (BCE) losses corresponding to the teacher and
student models’ outputs is the discriminator D’s loss function. The discriminator D will be
trained using this loss function in order to improve the ability to discriminate between the
outputs of the student and instructor models. As indicated in Equation (13).

max
D

Ex∼pdata(x)[log D(T(x))] +Ex∼pdata(x)[log(1 − D(S(x)))]

⇒min
D

Ex∼pdata(x)[− log D(T(x))] +Ex∼pdata(x)[− log(1 − D(S(x)))]

⇒min
D

Ex∼pdata(x)[BCE(D(T(x)), 1)] +Ex∼pdata(x)[BCE(D(S(x)), 0)]

⇒min
D

1
N

N

∑
i=1

[BCE(D(T(xi)), 1) + BCE(D(S(xi)), 0)]

(13)

where T(x) represents the output of the teacher model on real data sample x and S(x)
represents the corresponding output generated by the student model, the discriminator’s
loss function aims to distinguish between these two sources of information. As derived
above, the maximization objective for the discriminator D in a knowledge-distillation
setting can be reformulated as minimizing the sum of two BCE terms. Specifically, the first
BCE term quantifies the discriminator’s ability to recognize the teacher model’s outputs
as authentic (i.e., labeled as 1), while the second BCE term measures its performance in
identifying the student model’s outputs as generated (i.e., labeled as 0). By minimizing this
combined loss, the discriminator learns to effectively distinguish between the outputs of
the teacher and student models, thereby guiding the student towards better learning of the
teacher’s knowledge.

4. Experiments and Results
4.1. Model Accuracy Comparison Experiment

We construct a small student model MicroBERT4 with 14.5 M parameters in total. It
contains 12 attention heads (h = 12), 4 encoder layers (M = 4), a feed-forward/filter size
of 1200 (di = 1200) and hidden dimensions of 312 (d = 312). The teacher model, which
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has 110 M parameters, is based on the original BERTbase (d = 768, di = 3072, N = 12 and
h = 12). We extracted the average taken every third layer as the layer-mapping function
in the teacher model. so MicroBERT4 learns by taking the average from every 3 layers
of BERTbase.

For training, PyTorch 1.7.0 was used to implement the model. This model was trained
on a server configuration of NVIDIA GeForce RTX 3090 Ti purchased from Macao SAR,
China. The algorithm was trained on Ubuntu 22.04, a 64-bit operating system. We per-
formed knowledge distillation at the intermediate layer for {5, 10, 20} epochs using a batch
size of 32. The batch size was selected from {16, 32} and the learning rate was selected from
{1 × 10−5, 2 × 10−5, 3 × 10−5}. For the single-sentence task, the maximum sequence length
during distillation was set to 64. For the sequence-pair task, the maximum sequence length
was set to 128.

We propose a novel lightweight framework and new mapping methods. To success-
fully distill a more lightweight model than TinyBERT. To investigate whether our super
lightweight model can maintain competitive accuracy, we first tested it on six different well-
known NLP open source dataset tasks in GLUE, namely SST-2 for sentiment classification
task, MNLI-M for semantic matching task, MRPC and QQP for semantic judgment task and
RTE for binary classification task. In terms of models, in addition to our ultra-lightweight
model, we also selected the initial large model, which is also the distilled teacher model
BERTbase, and lightweight models for several different compression methods, and also
for a fair comparison, we trained 4-layer BERT-PKD4, 4-layer DistillBERT4 and 4-layer
MinilmV24 using the published code and fine-tuning these 4-layer baselines using the
proposed hyper-parameters. The accuracy results for their dataset tasks are shown in the
following Table 1.

Table 1. Model effect comparison table.

System Params FLOPs Speedup SST-2 MNLI-m MRPC QQP RTE Avg

BERT(Google) 109 M 22.5 B 1.0× 93.5 84.6 88.9 71.2 66.4 80.92
BERT(Teacher) 109 M 22.5 B 1.0× 91.1 84.4 86.0 88.8 64.2 82.9

BERT-PKD4 52.2 M 7.6 B 3.0× 89.4 79.9 82.6 70.2 62.3 76.88
DistillBERT4 52.2 M 7.6 B 3.0× 91.4 78.9 82.4 68.5 54.1 75.06
MobileBERT4 15.1 M 3.1 B - 91.2 81.5 87.9 68.9 65.1 78.92

TinyBERT4 14.5 M 1.2 B 9.4× 87.6 80.5 82.3 87.7 61.7 79.96
MinilmV24 5.4 M 4.0 B 5.3× 88.4 74.3 81.8 82.0 60.6 78.0

MicroBERT 14.5 M 1.2 B 9.3× 89.6 80.3 88.7 86.6 62.8 81.6

Avg 89.8 79.9 84.5 78.9 61.9 79.2

On the GLUE benchmark test set, the models are assessed. For each model group, the top outcomes are bold.
Using a single NVIDIA 3090 Ti GPU, inference speedup is evaluated.

In the five datasets selected for this study, accuracy (Acc) was used as the evaluation
metric for the tasks SST-2, MNLI-m and RTE. Conversely, the F1-score was employed as
the evaluation metric for the MRPC and QQP tasks.

Based on the results we found that in the SST-2 dataset for the sentiment classification
task, the best result for DistillBERT reached 91.4%, which exceeded the accuracy of BERT
(Teacher) by 0.3%. Within this task, our ultra-lightweight model was only 0.6% lower than
the average accuracy of the five lightweight models, maintaining a strong competitive
position. The best results in MNLI-m for the semantic type matching task were 81.5%
for MobileBERT4 and 84.4% for BERT (Teacher) and the accuracy of our ultra-lightweight
model in this task is about 0.4% higher than the average accuracy of the four lightweight
models, which is within our acceptance range. In MRPC for the semantic judgment task,
the best models are 88.7% for our ultra-lightweight model, reaching an extremely high level.
The 86.6% in QQP is about 6.5% more than the average accuracy of the other lightweight
models. Finally, in the RTE task, our model is about 3.6% less accurate than the best BERT
(Google), while it is higher than the average accuracy.
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In summary, based on the multi-task multi-model comparison experiments, we find
that our ultra-lightweight model still maintains an extremely impressive accuracy rate in
each task, and does not sacrifice too much in accuracy while improving the lightweight,
and still remains competitive among the accuracy rates of the four lightweight models.

4.2. Distillation Effect Comparison Experiment

To demonstrate the distillation effect more intuitively in the experiment, as shown
in Table 2. We used five different task datasets from the GLUE dataset for the experiment
and counted the accuracy of the student model and the teacher model separately. Secondly,
the accuracy of the student model alone does not specifically represent the reduction of
the distillation model, so we obtained the model reduction by dividing the accuracy of the
student model by the accuracy of the teacher model, with a higher reduction representing
better distillation. The results show that in the SST-2 dataset, our model still achieves
98.3% distillation reduction with a teacher model accuracy of 91.1%. In MNLI tasks,
the model achieved a reduction rate of 95.1%, which is also the worst effect distillation
reduction in all datasets, but the reduction rate of 95% for all tasks has achieved our
expected performance. In the MRPC and QQP datasets, the model effects reached 99.7%
and 97.5%, respectively. Finally, in the RTE dataset, the distillation of our model performed
exceptionally well, with the accuracy of the student model surpassing the teacher’s accuracy,
reaching an amazing 114.5% reduction.

Table 2. Comparison table for reappear percent ability.

System SST-2 MNLI-m MRPC QQP RTE Avg

MicroBERTtea 91.1 84.4 88.9 88.8 54.8 -
MicroBERTstu 89.6 80.3 88.7 86.6 62.8 -

Reappear persent 98.3 95.1 99.7 97.5 114.5 101.0
TinyBERTtea 93.4 83.9 87.5 71.1 67.1 -
TinyBERTstu 92.6 82.5 86.4 71.3 66.6 -

Reappear percent 99.1 98.3 98.7 100.2 99.4 99.0

Difference (Tiny-Micro) −0.79 −3.2 1.03 −2.76 15.1 −2.0
Reappear percent is the distillation contrast between the teacher model and the student model with the for-
mula stu/tea. Difference (Tiny-Micro) is the comparison between TinyBERT and MicroBERT, with the formula
tea − stu/tea. The stu is student model accuracy and tea is teacher model accuracy.

In the experiments, just counting the reduction of our model could not objectively
show the effect of model distillation, so we added the well-known distillation model
TinyBERT, which outperformed our model by 2.76% in the QQP dataset in the same dataset,
and also in the MNLI and SST-2 datasets. The restoration effect in MNLI and SST-2 datasets
is also a little higher than our model, but both are less than 4%. Secondly, the reduction
of TinyBERT in both MRPC and RTE datasets is lower than our model, especially in the
RTE dataset; the reduction effect is more than 15% lower than our model and the difference
is huge. Finally, we counted the average reduction of both models in the five dataset
tasks, and the results showed that the average reduction of our model was 101.0%, and
it exceeded the 99% reduction of TinyBERT, and this result proved that the distillation
reduction of our model exceeded that of TinyBERT in the five datasets tasks.

4.3. Loss Algorithm Comparison Experiment

After proving the reliability of our model for multiple dataset tasks, we designed a
comparison experiment of our algorithm to validate the effectiveness of one of the steps of
our algorithm. As shown in Figure 4, in traditional distillation models, such as TinyBERT,
they take one layer of loss at each of the four layers for the next step, as shown by taking
layer 3, layer 6, layer 9 and layer 12. We believe that when we extract a layer, the first three
layers of that layer will also have an impact on it, so we should take the average loss of its
three layers for the operation. According to the experimental results, we can see that the
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accuracy of our average algorithm is higher than the previous traditional algorithm in all
five different dataset tasks, and the accuracy is higher by more than 1% on average, which
again proves that our idea is correct.

Figure 4. Compare FAL loss function selection methods using three datasets.

4.4. Algorithmic Ablation Experiments

We performed ablation experiments on our model to verify the validity of each step
and method of our distillation model. As shown in Table 3. First, the algorithm accuracy
decreased to different degrees in all three dataset tasks when we kept only the GAN
operation, so we concluded that all operations except the GAN operation have validity
because of the impact on the accuracy of the model. Secondly, we found that the accuracy
of the algorithm decreases to different degrees in all five datasets, while keeping the rest of
the operations and removing only the GAN operation, which proves the necessity of the
GAN operation for the algorithm. Finally, we keep only the soft loss and the hard loss in
the four loss tasks, and the results prove that there is also a decrease in all three datasets,
which also verifies the validity of the two additional losses proposed by our model.

Table 3. The ablation experiment on MicroBERT’s distillation on the Validation set.

System SST-2 QQP MRPC

our_model 89.6 86.6 88.7
w/o Dis 88.9 86.3 88.0

w/o Hidn 88.3 85.9 87.7
w/o Pred 87.4 85.1 87.1

Ablation studies of different distillation objectives in the MicroBERT learning. These variants were validated on
the development set. w/o Dis removes the loss operation from the discriminator. w/o Hidn stands for removing
the loss operation from the Hidden layer. w/o Pred is removing the loss operation from the Prediction layer.

5. Discussion

Our proposed MicroBERT model, which is lighter than existing models, incorporates
a novel distillation algorithm, sentence-level FAL and a GAN-trained discriminator. Across
various tasks, MicroBERT surpasses other lightweight models by 1.5% in accuracy while
maintaining its lightweight status. In particular, it outperforms TinyBERT by 2% in distilla-
tion ability, showcasing its superiority in transferring knowledge from a large teacher model.
Despite its lightweight nature, MicroBERT consistently maintains high accuracy, making it
beneficial for various applications, especially in resource-constrained environments.

In current research, only elite institutions with substantial resources can sustain LLMs.
However, MicroBERT addresses this issue by providing a small and efficient model that can
be easily deployed locally, even in privacy-sensitive contexts. Its lightweight design allows
for wider adoption and use in practical applications. Although MicroBERT significantly
reduces parameters and computational costs, it is important to acknowledge the poten-
tial trade-offs in model robustness and generalizability. As with any model compression
technique, there is a delicate balance between achieving efficiency and maintaining perfor-
mance across diverse tasks and datasets. Further research is needed to fully understand
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these trade-offs and to develop strategies for mitigating potential robustness and general-
izability issues in lightweight models like MicroBERT. Despite these potential challenges,
our distillation approach offers a new perspective for advancing the field of LLMs and
facilitating applications.

6. Conclusions and Future Work

In this research, we propose a novel Transformer-based distillation method that allows
the model to learn features from both word and sentence vectors. Through numerous tests,
we have observed that our method significantly reduces the model size and inference time
without sacrificing high accuracy. This approach presents a practical solution for deploying
BERTbase NLP models on hardware. However, it is important to note that our study has
certain limitations. Specifically, we have not explored the effectiveness of our method on
models larger than BERTbase, such as BERT-large, and we have not conducted extensive
experiments on languages other than English. Future research could delve into the methods
of effectively transferring knowledge from a comprehensive and sophisticated teacher
model, such as BERT-large, to a compact student model like MicroBERT, addressing these
limitations. Additionally, an interesting avenue to further condense pre-trained language
models is to combine distillation with quantization or pruning techniques. In conclusion,
we highlight the importance of focusing future research on enhancing inference efficiency
for large models by developing methods that are more inference-friendly while maintaining
the quality improvements of MoE models. We believe that further studies on hierarchical
variations or more detailed routing hybrids will yield additional benefits and deepen our
understanding of large-scale, heavily multi-tasking and sparsely gated networks.
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