
Citation: Bejarano, A.; Moran, K.

Multistep Evolution Method to

Generate Topological Interlocking

Assemblies. Appl. Sci. 2024, 14, 6542.

https://doi.org/10.3390/

app14156542

Academic Editors: Arcady Dyskin

and Elena Pasternak

Received: 1 June 2024

Revised: 18 July 2024

Accepted: 23 July 2024

Published: 26 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Multistep Evolution Method to Generate Topological
Interlocking Assemblies
Andres Bejarano * and Kathryn Moran

Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA; klmoran@purdue.edu
* Correspondence: abejara@purdue.edu

Abstract: Research on topological interlocking (TI) assemblies indicates that the geometry of blocks
plays a significant role in the performance of a configuration. The current TI generation methods
can return assemblies of uniform antiprisms, tetrahedra, cubes, and octahedra. However, other
shapes (both convex and concave) are well qualified for use in TI assemblies. This paper presents a
framework to generate blocks for TI assembly. Starting from a seed polygon, evolution steps translate
and reshape the polygon, contracting it eventually to a point, a line segment, or another polygon.
Our framework generalizes and unifies previous-generation methods based on tilting angles and
height parameters. We show how the proposed method systematically generates novel TI solids and
previously reported others.

Keywords: topological interlocking; generation; mid-section; evolution steps

1. Introduction

The topological interlocking (TI) principle states that two adjacent blocks interlock
if their respective top and bottom evolution sections (cross-sections) degenerate into a
line segment or a point. Dyskin et al. defined this principle [1,2], and Kanel-Belov et al.
later formalized it [3]. The Platonic solids and uniform antiprisms satisfy the TI principle
since we can find polygons that describe their mid-sections with respective evolutions as
cross-sections.

There are relevant instances of TI assemblies throughout architectural history. Fallacara
discussed the case of topological variation in the flat vault (examples in Figure 1) and its
relevance in history [4,5]. In the author’s words, “The historical problem is to find a building
solution to cover a space with a flat floor constituted by discrete elements: in other words, to build
a vault with zero radius stone-ashlar” [4]. Fallacara discussed the flat vault designs from
Joseph Abeille (in 1699) and Jean (Sébastien) Truchet (in 1704), both considered examples
of topological interlocking assemblies centuries before such a term was coined [6].

To generate a TI assembly, we start with a surface tessellation composed of convex tiles
with an even number of sides each. A generation method designs an interlocking block
per tile. The traditional generation method [3] requires angle parameters that describe
the tilted faces of the blocks. A recently proposed method named Height–Bisection [7]
introduces height parameters to generate valid, block-aligned TI assemblies even for non-
planar surface tessellations. Figure 2 shows the generation methods for generating an
octahedron using either the traditional method or the Height–Bisection method. However,
both methods can only generate uniform antiprisms and three of the Platonic solids: the
tetrahedron, the cube, and the octahedron. We require the post-processing of the blocks to
generate other known TI block shapes or clip overlapping, misaligned blocks. For example,
to generate a truncated tetrahedron, we need to generate a traditional tetrahedron and then
truncate its vertices adequately. Designers and engineers must modify the blocks either
manually or computationally.

Appl. Sci. 2024, 14, 6542. https://doi.org/10.3390/app14156542 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14156542
https://doi.org/10.3390/app14156542
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2611-2855
https://orcid.org/0000-0001-5374-4757
https://doi.org/10.3390/app14156542
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14156542?type=check_update&version=2

Appl. Sci. 2024, 14, 6542 2 of 23

Figure 1. Examples of flat vaults designed as topological interlocking assemblies made of convex
blocks. (Left): truncated tetrahedra. (Middle): truncated square antiprisms and truncated tetrahedra.
(Right): truncated octahedra and truncated tetrahedra.

Figure 2. Generation steps for an octahedral TI block. From left to right: tessellation tile, edge
parameters, tilted incident planes to edges (backplanes shown for visualization), intersection lines
between planes, intersections between lines, and interlocking blocks.

Recent work on the performance of TI assemblies shows that block shapes play a
significant role in the integrity of a structure. Mirkhalaf et al. considered the shapes of
the interlocking pieces in their study of the strength and toughness of TI materials [8,9].
Multiple assembly designs (based on square and hexagon tiles) were 3D-printed and
tested. The authors found that increasing the tilting angles of the contact surfaces improved
the energy absorption of the TI. Weizmann et al. considered the relation between the
geometry of the blocks and the structural performance of the assembly [10]. The authors
considered a variety of planar TI assemblies based on different interlocking geometries.
Every configuration was subjected to indentation tests that measured the displacement
of the pieces after applying loads. Their results showed that a higher number of tiles and
block faces with lower tilting angles reduced the structure’s strength. Finally, Williams
and Siegmund described how the geometry of the blocks affected the paths traversing a TI
assembly under loads [11].

In this article, we report a generalization of the mid-section evolution concept. It
allows for the design of any block with TI properties. We approach the concept by including
evolution steps for a given polygon such that its evolution along a direction vector produces
the corresponding block vertices. Each step requires a collection of angle and distance
parameters that reshape and translate a polygon from one evolution step to another. The
evolution parameters are similar, in nature and purpose, to the parameters of the Tilting
Angles and Height–Bisection methods.

We begin with a discussion of the current work on the TI principle, focusing on
the geometry of the blocks. Next, we describe the polygon evolution process, which
passes through several evolution steps. Finally, we introduce the General Mid-Section
evolution concept, which includes a generation method and the fundamental TI generation
requirement. We conclude with examples of TI solids generated, including the Platonic,
truncated, and concave solids with TI properties.

Appl. Sci. 2024, 14, 6542 3 of 23

2. Related Work

Many polyhedra comply with the TI principle. The list includes Platonic solids,
certain Archimedean solids, and uniform antiprisms. Additionally, some concave shapes
(primarily based on convex counterparts) also comply with the interlocking principle by
having face-to-face contact only (i.e., no joinery or connectors) in an assembly.

2.1. Block-Shape Analysis

The traditional TI shapes are the Platonic solids. Dyskin et al. reported that the Platonic
solids can maintain TI when assembled in planar sections [2]. Each solid results from the
evolution of specific tile shapes. A square evolves into a tetrahedron. A hexagon evolves
into an octahedron, cube, or dodecahedron. A decagon evolves into a dodecahedron
or an icosahedron. A surface tessellation of decagons requires additional kite-like tiles
to fill the gaps. In such a case, the generation method must ignore the kite-like tiles
to avoid unexpected results. The truncated versions of the Platonic solids also have
interlocking properties. Dyskin et al. argued that “certain truncations of [the Platonic]
solids leave the interlocking property unaffected” [2]. Glickman [12] and Dyskin et al. [13]
give examples of interlocking assemblies made of truncated tetrahedra. Furthermore,
Dyskin et al. [14] described three different arrangements for an assembly of buckyballs
(i.e., truncated icosahedra) to be interlocking (associated with the symmetries of fifth and
third orders).

Recent advances concerning geometrical approaches come from computational archi-
tecture. Weizmann et al. used TI assemblies to build facades, prioritizing their work on
extending the catalog of resultant convex interlocking assemblies based on different types
of tessellations [15]. Their conclusion is a connection between the geometry of the blocks
and the structural performance of the assembly. Their work in [16] continued the search for
an expanded catalog of TI assemblies. They concluded that three semi-regular tessellations
are appropriate for TI purposes: 3.122, 4.6.12, and 4.82. Furthermore, the authors state that
there is no limit for TI assemblies based on non-regular tessellations since their number
is infinite. The authors also considered the support structure required to assemble floors
made of convex interlocking blocks. The results were subjected to structural simulation for
load-carrying capacity and deflection analysis. Finally, in [17], they introduced a compu-
tational method to generate planar surface tessellations aimed at TI assembly generation.
Their solution is a parametric approach that generates surface tessellations by indicating
the number of edges for the tiles and the angle values between the edges. Their system
generates a TI configuration (TIC) using a resultant surface tessellation.

Weizmann et al. [18] studied the generation method of TI assemblies, focusing on
different block geometries and their influence on structural performance. The study begins
with generating two fundamental block shapes—tetrahedral and cubic—derived from
regular square and hexagonal tessellations. These tessellations serve as the base for the
interlocking blocks, ensuring that each block can interlock with its neighbors through their
geometric configuration. A range of assemblies is created by varying the size and inclina-
tion angles of the blocks’ faces using parametric modeling tools. This involves defining
parameters for edge lengths, face angles, and the overall dimensions of the blocks. Based
on these parameters, the blocks are arranged into assemblies, forming a grid mimicking
potential real-world structures. The generated assemblies are subjected to numerical simu-
lations using the 3DEC software, Version 4.1 which can analyze discontinuous elements
and discrete blocks. This simulation includes defining material properties and boundary
conditions and applying loads to the assemblies. The software computes the structural
response, including displacement and stress distribution. The blocks are often truncated
or refined to ensure proper interlocking. This refinement involves modifying the initial
shapes to enhance the contact area between blocks, thereby improving the interlocking
and load distribution characteristics. The refinement process ensures that the blocks fit
together seamlessly without gaps or overlaps. The study conducts a comparative analysis
of various assemblies with different geometric configurations. This includes assessing the

Appl. Sci. 2024, 14, 6542 4 of 23

impact of block size, face inclination angles, and the overall arrangement on the structural
performance. Assemblies are evaluated based on their load-bearing capacity, displacement
under load, and failure mode.

Goertzen et al. [19] described a geometric generation method for creating topologically
interlocking assemblies using planar crystallographic symmetries. The generation method
exploits wallpaper (planar crystallographic) symmetries to create interlocking blocks that
can be assembled between two planes. The process begins with selecting a fundamental
domain of a planar crystallographic group. This domain represents a regular periodic
tessellation of the plane and serves as the base unit for generating interlocking blocks. The
fundamental domain is deformed in planes parallel to the original plane. This deformation
is carried out using the Escher trick, which involves keeping the boundary points fixed
via non-trivial group elements and deforming the boundary connections between these
points to retain the fundamental domain property. This results in a new tessellation of
the plane with deformed fundamental domains. The deformed fundamental domain
is extended into the third dimension by defining a map that continuously deforms one
fundamental domain into another across parallel planes. The set of points generated via
this deformation forms a polyhedral interlocking block, with each block intersecting planes
parallel to the initial plane at different stages of the deformation. The blocks are arranged
in a double-periodic fashion based on the symmetries of the chosen planar crystallographic
group. This ensures that each block is kinematically constrained by its neighbors, creating a
stable interlocking assembly. The assembly process may involve iterating the deformation
procedure to generate complex interlocking configurations. A discrete criterion is applied
to ensure the stability of the interlocking assembly. This involves verifying that no finite
subset of blocks can be moved without causing intersections with other blocks, thereby
maintaining the integrity of the interlocking structure.

2.2. Concave TI Blocks

Concave block shapes exist that fulfill the TI principle. An example of such shapes is
the Osteomorphic Block introduced by Khor et al. [20] and Estrin et al. [21]. More polygonal
block styles were reported by Tessmann [22,23], as well as Tessmann and Becker [24].
Such shapes resulted from student projects that built TICs as geometrical differentiated,
reversible, force-locked systems. The solutions presented by the students considered a
variety of shapes derived from tetrahedra. Although not convex, the planar faces preserve
the fundamental notion of the TI principle. Another proposal considers the design of a valid
border for a finite assembly. The pieces at the boundary have a special shape that enables the
assembly of a frame. Such a solution involves windmill shapes to constrain the boundary,
allowing the configuration to end on the edge without an additional peripheral structure.

Akleman et al. [25] proposed a method for topologically interlocking space-filling
shapes utilizing Voronoi decomposition based on fabric symmetries. The conceptual
framework involves partitioning space using high-dimensional Voronoi sites, such as
curves and surfaces, configured according to weave symmetries. This approach guarantees
that the generated shapes are space-filling due to the Voronoi-based method and maintains
the geometric characteristics essential for topological interlocking in any desired assembly.
The method constructs the final Voronoi region by sampling points from the Voronoi sites
and computing the union of constitutive Voronoi cells for each sample point. This process
allows for the generation of various topologically interlocking shapes called Generalized
Abeille Tiles (GATs). The algorithm’s simplicity and ability to directly use standard Voronoi
cell computation make it a robust method for creating complex interlocking configurations.

Ebert et al. [26] introduced a geometric generation method for creating topologically
interlocking configurations using helical structures based on Voronoi tessellation named
VoroNoodles. Generating a VoroNoddle involves creating topologically interlocking blocks
by tessellating a plane and proliferating the prototype tiles in the third dimension using
helical movement. This process combines wallpaper symmetries and Voronoi tessellation
to create space-filling, interlocking structures. The method begins by defining helical

Appl. Sci. 2024, 14, 6542 5 of 23

trajectories for Voronoi sites. These helices are placed inside an architectured slab, where
the Voronoi tessellation is computed at each layer, resulting in a series of tiles created by
extruding each layer along the helical paths. Voronoi decomposition is used to partition
the space within each layer, ensuring that the resulting blocks are space-filling and that
they exhibit strong interlocking properties. The helical trajectories define the Voronoi
sites, and each layer’s tessellation results in congruent blocks with corrugated boundaries.
The method introduces two varieties of helical building blocks—constant cross-sectional
noodles and variable cross-sectional noodles. Constant cross-sectional noodles have the
same cross-section in each layer, while variable cross-sectional noodles have different cross-
sections across layers. This corrugation enhances the interlocking behavior and ensures the
structural integrity of the assemblies.

2.3. Non-Planar and Curvilinear TI Assemblies

The design of TI assemblies based on non-planar surfaces has been of interest to
researchers on the topic.

Vella and Kotnik considered how curvature in the geometric domain affects the
resultant pieces of a non-planar Abeille-based TIC [27]. They observed the interdependency
between curvature in the geometric domain and the resultant assembly. They found that
both curvature and tilting angles are inversely proportional. Additionally, the distribution
of curvature and piece vertices is directly proportional (resulting in smaller pieces that
approximate the steep curvature).

Weizmann et al. [16] adapted the generation method formulated by Kanel-Belov et al. [3]
to work on curvilinear tessellations. Their implementation includes an additional step
that adapts the pieces to the curvature of the surface. In such a case, the assembly of
the blocks must follow a specific order. Tessmann and Rossi described approaches to
designing interlocking pieces based on parametric design logic and discrete combinatorial
processes [28,29]. The former returns the geometry of each block according to its location in
the tessellation. The latter focuses on exploiting the combinatorial capabilities of repeating
block shapes in an assembly. They applied such approaches to generate TICs bounded
by two NURBS surfaces. The boundary information helps to generate distorted, trimmed
tetrahedra that align with the curvature of the surfaces.

Xu et al. [30] presented a geometric generation method for creating TICs specifically
for cylindrical structures. The proposed non-planar interlocking element was designed
with a symmetrical geometry featuring six concave–convex side surfaces, facilitating in-
terlocking with adjacent elements. Creating an element starts with a regular hexagon and
its circumcircle. Then, three non-adjacent arcs are reflected. These arcs are connected to
form the top surface of the planar interlocking element, and the bottom surface is obtained
by rotating the same shape by 60 degrees. The respective side surfaces are created by
lofting the edges of the top and bottom surfaces. Finally, the planar interlocking element
is morphed to fit the target cylindrical surface using a “flow along surface” technique. This
transformation results in a non-planar interlocking element suitable for assembling tubular
structures. The assembled structure, consisting of these elements, displays an identical
pattern on the inner and outer surfaces. Each element is mechanically interlocked with its
six neighbors, restricting movement in all directions purely through geometric constraints.

Kurucu and İlerisoy [31] proposed creating TI flat vaults using truncated octahedra
with enhanced joint details to improve structural performance. The process begins with
creating a hexagonal tessellation. Truncated octahedra are generated from this tessellation
using the Starfish plug-in for Grasshopper. This plug-in facilitates the creation of parametric
patterns, which are essential for generating the base geometric forms. X-joints are added
to the truncated octahedra to enhance the contact surface area and improve structural
performance. These X-joints are incorporated through volumetric modifications using
Rhino software. Each X-joint increases the contact surface area by approximately ten cm2,
significantly improving the structural stability of the interlocking blocks. Two flat vault
configurations are designed—one using truncated octahedra and the other using truncated

Appl. Sci. 2024, 14, 6542 6 of 23

octahedra with X-joints. The design process involves ensuring that the interlocking edges
of the blocks fit together seamlessly, providing a robust and stable assembly. The structural
performance of the designed flat vaults is analyzed using finite element analysis (FEA) in
SimScale. The FEA assesses the displacement and von Mises stress distributions within the
vaults under applied loads. This analysis helps quantify the improvements in structural
performance due to the addition of X-joints.

2.4. Free-Form TI Assemblies

Recent TI generation approaches aim to generalize the process for assemblies based
on free-form 3D surface tessellations.

Bejarano and Hoffmann [7] proposed the Height–Bisection method based on height
parameters. The traditional generation method designs the interlocking pieces by assigning
a tilting plane to each tile edge, defined by a tilting angle from the tessellation plane. This
plane intersects with adjacent planes to form the vertices and edges of the polyhedra.
The traditional method, however, requires multiple iterations to adjust the tilting angles
to ensure no overlapping occurs, especially in non-planar or irregular tessellations. In
contrast, the proposed Height–Bisection method simplifies the process by using a height
parameter and a central point within each face, eliminating the need for iterative angle
adjustments. The Height–Bisection method calculates rotation vectors for each edge based
on these parameters, generating interlocking pieces in a single iteration. This method aligns
the equatorial sections of the pieces with the planes of the tessellation faces, significantly
reducing overlaps and ensuring proper alignment in the resulting configuration.

Wang et al. [32] considered the case of global interlocking to generate and adapt the
assembly blocks. Their approach adapts the shape of the blocks as the procedure tests the
static equilibrium analysis of the assembly at multiple orientations until no block can be
displaced from its location.

Loing et al. [33] presented a generation method for creating a TIC modeled after a
free-form and curved surface. The generation method utilizes a parametric design approach
based on planar quadrilateral meshes representing the desired surface. Then, a moving
cross-section procedure is employed to ensure the elements are interlocked. This involves
defining a set of tilting angles for each edge of the quadrilateral facets, which helps create
interlocked systems constituted by blocks such as regular tetrahedrons. The tilting angles
are varied to match the curvature of the surface. A mathematical criterion based on a
set of inequalities is applied to guarantee the interlocking property of the blocks. These
inequalities ensure that each block is translationally locked, meaning it cannot be removed
by translation if its neighbors are fixed. The criterion involves checking the normal vectors
of the planes defining each block to ensure that they satisfy the interlocking conditions.
Once the initial blocks are generated, they may need to be truncated or refined to fit
perfectly into the mesh and accommodate overlaps. This step ensures that the blocks have
proper face-to-face contact, enhancing the structural integrity of the assembly.

Chen et al. [34] proposed a method that models free-form shell structures by parame-
terizing the geometry of shell elements and clustering them into discrete equivalence classes
to optimize reusability and buildability. The process begins with a 3D freeform surface
remeshed to obtain a base polygonal mesh. This base mesh is created by mapping a 2D
tessellation with convex polygons onto the surface using the as-rigid-as-possible algorithm.
The tessellation is chosen to be monohedral, dihedral, or trihedral to limit the number of
distinct tiles. Each polygonal face in the base mesh is augmented with vectors orthogonal
to its edges. These augmented vectors are used to define 3D partitioning planes, which
construct the convex geometry of the corresponding shell elements. The side faces of each
shell element are generated based on these partitioning planes. The shell elements are clus-
tered based on their geometric similarity, defined by edge lengths, diagonal lengths, and
augmented angles. A hierarchical clustering approach is employed to group elements into
discrete equivalence classes. The clustering process aims to balance the reusability of the
template elements with the seamlessness and buildability of the final structure. Three error

Appl. Sci. 2024, 14, 6542 7 of 23

metrics are defined to ensure that the final structure is both seamless and buildable: the
contact error, gap error, and overlap error. These metrics measure the deviations between
the shell elements’ side faces and their planar contacts, ensuring minimal gaps and overlaps.
For each cluster of shell elements, a template element is generated by averaging the vertices
of the clustered elements. The templates replace the original elements, creating a shell
structure composed of limited, unique shapes. The base mesh and the augmented angles
are optimized hierarchically to minimize the number of templates while preserving the
structure’s integrity. The optimization process adjusts the vertices and augmented angles
to reduce the clustering errors and improve the geometric fit of the shell elements.

Laccone et al. [35] presented a computational design methodology for segmented
concrete shells constructed from post-tensioned precast flat tiles. The geometric gener-
ation method involves decomposing the target shell shape into flat quadrilateral tiles,
each forming right prisms with sides and faces at 90-degree angles. The segmentation
process ensures that the tiles touch at the midpoint of their edges, creating a shell that
remains compressed when assembled. The design pipeline begins with an input shape and
progresses through steps including tile genesis, cable path optimization, and structural
modeling. A tailored algorithm facilitates this process, transforming the input shape into
a detailed design of prismatic tiles with embedded cable ducts and steel segments at the
contact interfaces. The tiles are post-tensioned post-assembly to minimize tensile forces
under service load, enhancing the shell’s structural integrity. The final assembly includes
an in situ cast to fill gaps and activate the shell behavior, ultimately improving bending
strength and maintaining an efficient force flow while achieving the desired aesthetic.

3. Polygon Evolution

This section describes the generation of a polyhedron from a polygon using multiple
evolution steps. An evolution step is a sweeping procedure that evolves (i.e., reshapes and
translates) a polygon into a n-polytope (i.e., a generalized polyhedron in the n-th dimen-
sion), where n = 1, 2, 3. The possible resultant evolved shapes are points, line segments,
or polygons. This method is a sweep-plane algorithm along a direction vector. The vertices
from a sequence of evolved n-polytopes are the vertices of the resultant polyhedron. The
continuous motion of the polygon, as it evolves to the respective n-polytope, describes the
edges of the polyhedron.

3.1. Evolution Step

An evolution step is a process that reshapes and translates a polygon into a generalized
polytope. We show, in Figure 3, the stages of the evolution process of a polygon, f , into a
polygon, f ′. The evolution step requires a couple of parameters: a set of angles, Θ, and a
distance value, λ. Θ indicates the rotation of the normal vector of f when placed at each one
of its edges. λ indicates the far plane at which f ′ can be translated the most. The evolution
process calculates incident planes to each edge of f based on the translated normal vectors
and the respective edge midpoints. The intersection of such planes defines a set of lines,
L, whose intersection with one another or with the far plane defines the vertices of the
evolved polygon, f ′. We state this process formally as f = Evolve(f , Θ, λ). The union of
the vertices from f and f ′ describes the vertices of the respective evolving solid. For this
particular example, the resulting polyhedron is the top half of a regular octahedron.

The following paragraphs describe the polygon evolution process in formal terms. Let
f = {V, E} be a polygon of n ∈ N+, n ≥ 3 sides, where V = {v0, v1, . . . , vn−1} is a set of
vertices, and E = {(0, 1), (1, 2), . . . , (n− 2, n− 1), (n− 1, 0)} is the set of tuples with the
vertex indices that define the edges of f . The polygon has centroid point C and normalized
normal vector N̂. We assume that V and E walk around f in counterclockwise order to
C and N̂. Each edge, e = (i, j) ∈ E, has a normalized direction vector, K̂e =

vj−vi
||vj−vi ||

, and

midpoint, Me =
vi+vj

2 .

Appl. Sci. 2024, 14, 6542 8 of 23

Figure 3. Example of the stages for evolving a polygon into a n-polytope. From left to right: seed
polygon, evolution parameters (blue arrows represent the edge tilted normal vectors, red arrows
represent the edge direction vectors), definition of the evolved polytope from the intersection of
evolving lines (yellow arrow indicates the evolution direction), and the resultant polyhedron by
joining the seed polygon and the evolved polytope.

An evolution step requires two types of parameters: tilting angles associated with the
edges of the polygon and a scalar value determining the maximum length allowed for the
step. Let Θ = {θe, ∀e ∈ E | θe ∈ [−π

2 , π
2]} be a set of tilting angles, and let λ ∈ R+ be a

scalar value. A tilting angle, θe, rotates N̂ using K̂e as the rotation axis vector; the rotated
vector N̂e is the normal vector of a plane that contains e. Then, N̂e = rotate(N̂, K̂e, θe), where
rotate(N̂, K̂e, θe) is the axis–angle rotation (also known as Rodrigues’s rotation formula).
The plane Pe = plane(Me, N̂e) passes through e. The intersection between the planes from
the two edges incident to a vertex, vi ∈ V, ∀i = 0, 1, . . . , n− 1, defines a line, Li; therefore,
vi ∈ Li. Finally, a point, D = C + λN̂, and planes PC = plane(C, N̂) and PD = plane(D, N̂).
The top right subfigure in Figure 4 shows an example of the mentioned elements on a
square polygon.

Figure 4. Detailed illustration of the elements required to evolve a square polygon, f , into a polygon,
f ′. (Top left): seed square polygon. (Top right): rotated normal vectors and plane PD. (Bottom left):
incident planes to the edges of f . (Bottom right): evolved polygon f ′ defined as the intersection
points between lines Li and the plane PD.

We consider the intersection points v′i,j = Li ∩ Lj, ∀(i, j) ∈ E that occur within the
space section delimited by planes PC and PD. A point, v′i,j, is within evolution range if

Appl. Sci. 2024, 14, 6542 9 of 23

v′i,j ∈ P+
C ∩ (P−D ∪ PD). That is, v′i,j lies at both the positive half-space defined by plane PC

in direction N̂ and the negative half-space defined by plane PD in the opposite direction to
N̂ or PD itself. Otherwise, v′i,j is out of the evolution range. In such case, we consider the
intersection points v′i,D = Li ∩ PD and v′j,D = Lj ∩ PD, which are within evolution range.
The bottom-right subfigure in Figure 4 shows an evolved n-polytope f ′ defined by the
intersection points between lines Li and the plane PD. Let V′ be the set of intersection points
within the evolution range; then, V′ defines the endpoints of the evolved n-polytope f ′.
Let E′ be the set of edges of f ′. Each tuple, e′ ∈ E′, is defined by the indices of consecutive
vertices in V′ as they are calculated. The last tuple in E′ must connect the last and the
first vertices in V′. We call f ′ = EVOLVE(f , Θ, λ) the described procedure that evolves
f = {V, E} into f ′ = {V′, E′}. We refer to f as the seed polygon when used as a parameter
in an evolution step.

Algorithm 1 shows the pseudocode for the EVOLVE procedure. The algorithm requires
three traversals through the n edges of the seed polygon: The first loop defines the planes
incident to each edge. The second loop calculates the line segments, incident to each vertex,
representing the intersection of the respective incident edges. The third loop calculates the
vertices of the evolved polygon, f ′, by checking the intersection between the respective line
segments per edge and its location regarding the polygon plane and the evolution plane.
Each loop structure has n iterations, resulting in EVOLVE ∈ O(n).

The cardinality of V′ determines the type of n-polytope of f ′. Polytope f ′ is a single
point if |V′| = 1, a line segment if |V′| = 2, or a polygon with n′ = |V′| sides if |V′| ≥ 3.
When |V′| > 3, we need to check whether all points in V′ are coplanar. If at least one point
v′i ∈ V′ is not coplanar, then f ′ is a degenerated evolution of f (i.e., the sequence of edges
E′ = {(0, 1), (1, 2), . . . , (n′ − 2, n′ − 1), (n′ − 1, 0)} does not describe a planar polygon). In
such a case, adjusting either f , Θ, or λ such that the resultant n-polytope f ′ = {V′, E′}
describes either a point, a line segment, or a planar polygon solves the issue. Figure 5.
shows examples of evolved n-polytopes from regular seed polygons.

Figure 5. Evolved n-polytopes from polygons. Seed polygons are in red, and evolved n-polytopes
are in blue. From left to right: point, line segment, polygon with fewer sides than the seed polygon,
and polygon with the same number of sides as the seed polygon.

An evolution step generates the geometry of a prismatoid whose vertices are {V ∪V′}.
Such a set of vertices, along with the set of tilting angles Θ, describes the type of the
generated prismatoid. Table 1 shows the requirements for vertices and angles to describe a
specific polyhedron from the prismatoids family.

Table 1. Prismatoid families based on the original vertices, V, evolved vertices, V′, and tilting angle
parameters, Θ, using a single evolution step.

Family Vertices Angles

Pyramids |V| ≥ 3, |V′| = 1 θ > 0, ∀θ ∈ Θ
Wedges |V| ≥ 3, |V′| = 2 θ > 0, ∀θ ∈ Θ

Parallelepipeds |V| = |V′| = 4 θ0 = θ2 = 0, θ1 = θ3
Prisms |V| = |V′| ≥ 3 θ = 0, ∀θ ∈ Θ

Cupolae |V| > |V′| ≥ 3 θ > 0, ∀θ ∈ Θ
Frusta |V| = |V′| ≥ 3 θ > 0, ∀θ ∈ Θ

Appl. Sci. 2024, 14, 6542 10 of 23

Algorithm 1 Evolve algorithm.
1: function EVOLVE(f : polygon with n sides, Θ : list of angles, λ : Z)
2: let D{V, F, H} be the DCEL representing f
3: h← F[0].halfedge ▷ D has only one face
4: do ▷ Set the planes incident to the half edges
5: h.plane← PLANE(h.midpoint(), ROTATE(h.normal(), h.direction(), Θi))
6: h← h.next
7: while h ̸= F[0].halfedge
8: do ▷ Calculate the intersections between half-edge planes
9: v← h.start

10: v.L← INTERSECT(h.previous.plane, h.plane)
11: h← h.next
12: while h ̸= F[0].halfedge
13: N̂ ← ||F[0].normal()||
14: C ← F[0].centroid()
15: D ← C + λN̂
16: PC ← PLANE

(
C, N̂

)
17: PD ← PLANE

(
D, N̂

)
18: let V′ be an empty collection of unique points
19: do ▷ Calculate the intersections between line segments
20: v0 ← h.start
21: v1 ← h.twin.start
22: v′ ← INTERSECT(v0.L, v1.L)
23: if v′ exists, then
24: if N̂ · (v′ − D) > 0, then ▷ v′ above PD
25: V′.append(INTERSECT(PD, v0.L))
26: V′.append(INTERSECT(PD, v1.L))
27: else if N̂ · (v′ − D) = 0, then ▷ v′ at PD
28: V′.append(v′)
29: else if N̂ · (v′ − D) < 0 and N̂ · (v′ − C) > 0 , then▷ v′ between PD and PC
30: V′.append(v′)
31: else ▷ v′ below PC
32: V′.append(INTERSECT(PD, v0.L))
33: V′.append(INTERSECT(PD, v1.L))
34: else ▷ Line segments are parallel
35: V′.append(INTERSECT(PD, v0.L))
36: V′.append(INTERSECT(PD, v1.L))
37: end if
38: h← h.next
39: while h ̸= F[0].halfedge
40: return V′

41: end function

3.2. Single-Direction Polygon–Polyhedron Evolution

It is possible to generate a more elaborated polyhedron by applying a sequence of
multiple evolution steps. In this case, an evolved polygon serves as the seed polygon for
another evolution step with its own set of parameters. Figure 6 shows an example of an
evolution step with a seed polygon, f ′, obtained from a previous evolution step. A newly
evolved polytope, f ′′ = EVOLVE(f ′, Θ′, λ′), corresponds to the second evolution step in a
single-direction sequence. In such an example, the union of the vertices from polygons f ,
f ′, and f ′′ represents a new polyhedron.

Appl. Sci. 2024, 14, 6542 11 of 23

Figure 6. Example of the stages of a single-direction polygon–polyhedron evolution. From left
to right: initial evolution step from f to f ′′, evolution parameters (blue arrows represent the edge
tilted normal vectors, red arrows represent the edge direction vectors), evolved point f ′′, and the
resultant polyhedron as the union of the vertices from f , f ′, and f ′′ (yellow arrow indicates the
evolution direction).

The following paragraphs describe the single-direction polygon–polyhedron evolution
process in formal terms. We consider using evolved n-polytopes as the seed polygons
for subsequent evolution steps. An evolved n-polytope f ′ = EVOLVE(f , Θ, λ) where
f ′ = {V′, E′} with |V′| ≥ 3 becomes the seed polygon for another evolution step. Such a
new step requires its own set of evolution parameters, {Θ′, λ′} with |Θ′| = |V′| (i.e., the
number of tilting angles for the new evolution step is equal to the number of sides of
f ′). A new evolved n-polytope f ′′ = EVOLVE(f ′, Θ′, λ′) is, then, an additional step in
the evolution sequence from the original seed polygon, f = {V, E}, into a n-polytope,
f ′′ = {V′′, E′′}. Considering the set of vertices {V, V′, V′′} from polygons f , f ′ and n-
polytope f ′′, this set contains the vertices of a polyhedron described by the two-step
evolution of f into f ′′. Figure 7 shows an example of the elements for the evolution of a
polygon into a single point through two evolution steps.

Figure 7. Detailed illustration of the elements required for a single-direction polygon0-polyhedron
evolution. (Left): elements for the first evolution step from a square to a single point.
(Right): elements for a second evolution step from a square to a single point.

A sequence of, at most, m ≥ 2 evolution steps generates a polyhedron, B, from
a polygon, f . Let f 0 = f be the seed polygon, the sequence of evolved n-polytopes
f i+1 = EVOLVE(f i, Θi, λi), where f i = {Vi, Ei} ∀i = 0, 1, . . . , n− 1 contains the geometric
information of B. The evolution process stops after m evolution steps, or a n-polytope f i is
either a point or a line segment. The set VB =

⋃m−1
i=0 Vi is the set of vertices of B. The set FB

Appl. Sci. 2024, 14, 6542 12 of 23

is the set of vertex indices that defines the faces of B. The correspondences between the
edges of f i and the respective evolved elements from f i+1 define FB.

3.3. Double-Direction Polygon–Polyhedron Evolution

We expand the family of evolved polyhedra by considering negative evolution steps.
A negative evolution step is the opposite of the normal vector from the respective seed poly-
gon. We must flip the orientation of the seed polygon for the first negative evolution. In that
way, we can consider negative evolution steps as regular evolution steps, as discussed so far.
Figure 8 shows an example of the stages during a double-direction polygon–polyhedron
evolution process. The polygon f is the seed polygon for two evolution sequences: a
positive (along the normal vector of f) step and a negative step (opposite to the normal
vector of f). We refer to f as f+0 for the positive step, and f−0 for the negative step. A new
evolved polytope f−1 = EVOLVE(f−0 , Θ−0 , λ−0) corresponds to the negative evolution step.
In such an example, the union of the vertices from polygons f , f+1 and f−1 represents a
new polyhedron.

Figure 8. Example of the stages of a double-direction polygon–polyhedron evolution. From left to
right: Initial evolution step from f to f ′′ = f+1 (positive evolution step), Parameters for the negative
evolution step, Definition of the evolved polytope from the intersection of evolving lines resulting
from the negative evolution step, Resultant polyhedron by joining the vertices from f , f+1 , and f−1 .

The following paragraphs describe the double-direction polygon–polyhedron evolu-
tion process in formal terms. Let f be a seed polygon with a normalized normal vector,
N̂. An additional sequence of evolution steps, along with −N̂, allows for the generation
of polyhedra that a single-direction polygon–polyhedron evolution cannot describe. A
positive evolution step occurs above f along N̂, and a negative evolution step occurs below
f along −N̂.

Let f+0 = f be the seed polygon for the first positive evolution step; the sequence
of m+ ∈ N+ positive evolution steps f+i+1 = EVOLVE(f+i , Θ+

i , λ+
i), i = 0, 1, . . . , m+ − 1

describes the upper half of the polyhedron (i.e., the section that lies above f in direction N̂).
Similarly, let f−0 = flip(f) be the seed polygon for the first negative evolution step, where
flip(p) changes the vertex indices order of the edges from a polygon, p (i.e., swaps the
orientation of the front face of the polygon). Flipping the seed polygon for the first negative
evolution step allows for the evolution of f along −N̂. This adjustment lets us use the
evolution step method without any modification for negative evolution steps. The sequence
of m− ∈ N+ negative evolution steps f−j+1 = EVOLVE(f−j , Θ−j , λ−j), j = 0, 1, . . . , m− − 1 de-

scribes the lower half of the polyhedron (i.e., the section that lies below f in direction −N̂).
The geometry of an evolved polyhedron, B, comes from the vertices of the seed

polygon and the evolved n-polytopes, along with the positive and negative directions.
The vertices from the seed polygon f = {V, E}, the positive evolved n-polytopes
f+i = {V+

i , E+
i }, ∀i = 0, 1, . . . , m+− 1, and the negative evolved n-polytopes f−j = {V−j , E−j },

Appl. Sci. 2024, 14, 6542 13 of 23

∀j = 0, 1, . . . , m−− 1 describe the vertices of the polyhedron B generated from both positive
and negative evolution sequences. The set VB = V ∪⋃m+−1

i=0 V+
i ∪

⋃m−−1
j=0 V−j contains the

vertices of B. The set FB is the set of vertex indices that defines the faces of B. Similar to the
single-direction evolution, the correspondences between the edges of the seed polygons
and their respective evolved n-polytopes define FB. Figure 9b shows an example of a
polyhedron obtained from evolving a seed polygon, f , along N̂ and −N̂.

By omitting the vertices of the seed polygon, f , we can generate a different polyhedron,
B, using only the information from both evolution sequences. The set VB =

⋃m+−1
i=0 V+

i ∪⋃m−−1
j=0 V−j is, then, the vertices from both positive and negative evolved n-polytopes

exclusively. Figure 9c shows an example of a polyhedron obtained from evolving a seed
polygon, f , along N̂ and −N̂ without including the vertices of f .

Figure 9. Resultant polyhedra from double-direction polygon–polyhedron evolution from a polygon,
f . (a): seed polygon and n-polytopes from evolution steps, (b): polyhedron described by vertices
from f , f+1 , f+2 , f−1 , f−2 , (c): polyhedron described by vertices from f+1 , f+2 , f−1 , f−2 .

3.4. Reciprocal Evolution Steps

So far, we can generate polyhedra with coplanar faces between positive and negative
evolution steps. However, that is only possible with adequate evolution parameters. We
introduce the idea of reciprocal evolution steps to guarantee coplanar faces between the
first positive and negative evolution steps. We say two evolution steps are reciprocal if
one is a “mirror” version of the other. One evolution step is a π rotation of the other. Such
evolution steps provide a mechanism to maintain coplanar faces between the first positive
and negative evolution steps, provided their respective parameters are reciprocal.

Figure 10 shows an example of a positive evolution step and its reciprocal negative
evolution step. In the example, the reciprocal evolution guarantees the linearity of the faces
of the resulting polyhedron between the first positive and negative steps. We require such
a feature to describe well-known polyhedra such as the Platonic solids.

We consider rotational symmetries between evolved n-polytopes on double-direction
polygon–polyhedron evolution. Let f = {V, E} be a polygon and seed polygons f+0 = f ,
f−0 = flip(f) for both positive and negative evolution sequences, respectively. A positive
evolved n-polytope, f+i+1 = EVOLVE(f+i , Θ+

i , λ+
i), i ∈ {0, 1, . . . , m+ − 1}, is reciprocal to

a negative evolved n-polytope, f−j+1 = EVOLVE(f−j , Θ−j , λ−j), j ∈ {0, 1, . . . , m− − 1}, if

|V+
i | = |V

−
j | , |V

+
i | and |V−j | are even numbers, and the geometries of f+i+1 and f−j+1 are

rotational symmetric to one another of order O =
|V+

i |
2 . Otherwise, the evolved n-polytopes

are non-reciprocal to each other. Finally, two sets of parameters, {Θ+
i , λ+

i }, {Θ
−
j , λ−j } for

Appl. Sci. 2024, 14, 6542 14 of 23

i ∈ {0, 1, . . . , m+ − 1} and j ∈ {0, 1, . . . , m− − 1}, are reciprocal if the respective evolved
n-polytopes f+i+1, f−j+1 are reciprocal to each other. Figure 11 shows two octahedra generated
using reciprocal and non-reciprocal evolution steps.

Figure 10. Example of the stages of a reciprocal evolution. From left to right: seed polygon (hexagon)
f , positive evolution step f+1 and reciprocal negative evolution step f−1 , and the resultant polyhedron
(regular octahedron) by joining the vertices from f , f+1 , and f−1 .

Figure 11. Evolved octahedra based on reciprocal and non-reciprocal evolution steps. (Left): recipro-
cal evolution steps f+1 with f−1 , and f+2 with f−2 , (Right): non-reciprocal evolution steps.

3.5. Uniform Evolution

The double-direction evolution through a sequence of correspondent reciprocal evo-
lution steps between positive and negative evolution sequences generates a different set
of polyhedra. Let f = {V, E} be a polygon, seed polygons f+0 = f , f−0 = flip(f) for both
positive and negative evolution sequences, respectively, a positive evolution sequence
with m+ evolution steps and a negative evolution sequence with m− evolution steps. Both
evolution sequences are uniform evolutions of f if m+ = m− (i.e., the number of evolution
steps for both positive and negative evolution sequences is the same) and the evolved
n-polytopes f+i+1 = EVOLVE(f+i , Θ+

i , λ+
i) and f−i+1 = EVOLVE(f−i , Θ−i , λ−i) are reciprocal

to each other ∀i = 0, 1, . . . , m+− 1. Figure 12 shows two polyhedra generated with uniform
and non-uniform evolution. The uniform evolution generates a truncated tetrahedron.

Appl. Sci. 2024, 14, 6542 15 of 23

Figure 12. Uniform and non-uniform evolution. Seed polygons are in red. Evolution polygons are in
blue. (a) uniform evolution (overview), (b) uniform evolution (lateral), (c) non-uniform evolution
(overview), and (d) non-uniform evolution (lateral).

4. General Mid-Section Evolution

We propose an evolutionary approach that defines the blocks of a TI assembly based
on a given surface tessellation. Each tile in the tessellation evolves into a polyhedron via a
double-direction evolution. Although each tile evolves independently from the others, the
parameters of at least its first positive and negative evolution steps must match with the
respective first step parameters from the neighboring tiles. Such a requirement guarantees
the evolved polyhedra have common interfaces that allow them to comply with the TI
principle (to be discussed in Section 4.2). The evolved polyhedra are, then, the blocks of the
interlocking assembly.

4.1. Generation Method

Let M = {V, F} be a surface tessellation with V being the set of vertices and F being
the set of tiles. Each tile, f ∈ F, must have an even number of sides (this guarantees the
edges will have alternating directional values, as indicated in Section 3.4). A tile, f ∈ F,
evolves into a polyhedron, B, which becomes the respective block in the TI assembly. The
geometry of B comes from the double-direction polygon–polyhedron evolution of f with
f+0 = f and f−0 = flip(f) being the respective seed polygons for the positive and negative
evolution sequences, respectively. Each evolution sequence has a specific number of steps.
The positive sequence has m+ ∈ N+ steps, while the negative sequence has m− ∈ N+ steps.

An evolution step takes a set of evolution parameters, Ψd
k = {Θd

k , λd
k},

∀k = 0, 1, . . . , nd − 1, where d ∈ {+,−} is the evolution sequence to which the step
belongs. The set Θd

k contains the tilting angles for the edges of the seed polygon f d
k .

This set must satisfy |Θd
k | = |V

d
k | (i.e., the number of tilting angles for the evolution step

must be the same as the number of sides of the respective seed polygon). Additionally,
two consecutive angles, θi, θj ∈ Θd

k , must comply with sign(θi) = −sign(θj) (i.e., tilt-
ing angles toggle their directions along the edges of the seed polygon). The toggling
directions are equivalent to the edge directions required to generate interlocking blocks
using the generation methods from Kanel-Belov et al. [3] and Bejarano and Hoffmann [7].
The scalar value λd

k ∈ N+ is the evolution range for the respective evolution step. Each
f d
k+1 = EVOLVE(f d

k , Θd
k , λd

k), ∀d ∈ {+,−}, ∀k = 0, 1, . . . , nd − 1 defines the vertices and
faces of the evolved polyhedron.

4.2. Fundamental TI Generation Requirement

Two neighboring polyhedra must have a common planar interface between them.
Such an interface is the intersection of the respective faces from both polyhedra that are
mutually coplanar. Let fi, f j ∈ F be two neighboring tiles in a surface tessellation with
shared edges represented as half-edges ab, ba for the respective tile. The tilting angles
θ+ab ∈ Θ+

0 and θ−ba ∈ Θ−0 (only for the first step from both evolution sequences) must be

Appl. Sci. 2024, 14, 6542 16 of 23

θ+ab = −θ−ba. The tilting angles rotate the normal vector associated with the shared edge
such that it defines the same tilted plane Pa,b that contains the edge.

This requirement satisfies the cross-section criteria [2] for TI arrangements. For a
planar tessellation composed of square tiles, each tile is the mid-section of the respective
block in the assembly. A tile evolves into rectangles as it moves upward toward its normal
vector. Eventually, the rectangles collapse into a line segment when the evolving tile reaches
the topmost section of the block. Simultaneously, the tile also evolves into rectangles as it
moves downwards in the opposite direction of its normal vector, and it will collapse into a
line segment when the rectangles reach the bottom-most section of the block. The rectangles
moving towards the top of the block are rotated π

2 angles concerning the rectangles moving
towards the bottom of the block. Figure 13 shows an example of squares evolving into
rectangles in an assembly of interlocked tetrahedra. Kanel-Belov et al. introduced the TI
criterion using such an evolution principle [3].

Figure 13. Squares evolving into rectangles while generating tetrahedra. (Left): assembly overview.
(Right): top view showing the rectangles as cross-sections.

The polyhedron section contained between its first evolved n-polytopes, along with
both positive and negative directions, contributes to the TI behavior of the resultant block.
Such a section contains the faces in contact between the block and its neighbors. Its
geometry is an antiprism without both top and bottom faces. This geometry guarantees
the cross-section criteria of the block in the resultant assembly. The polyhedron sections
defined after the first evolution steps (along with both positive and negative directions)
can contribute to the TI behavior if their respective tilting angles are the same as those from
the first evolution steps.

Figure 12a,c show two different polyhedra evolved from the same seed polygon. Both
positive evolution sequences are identical. The negative evolution sequences differ in the
last step, where the evolving rectangle collapses into a line segment. This change alters the
common interface with a neighboring block in the assembly (if any). Furthermore, it breaks
the uniformity of the block without sacrificing the TI property. Moreover,the volumes of
the polyhedra become different (assuming uniform density). Changes in the evolution step
parameters have implications for the distribution of forces required to maintain the static
equilibrium of an assembly.

Appl. Sci. 2024, 14, 6542 17 of 23

5. Results

This section describes generating different TI solids using the evolution-steps approach.
We focus on the Platonic solids and insights to generate their truncated versions.

5.1. Platonic Solids

Dyskin et al. showed that all five Platonic solids have TI properties when placed in a
way such that the tiles of the tessellation fit as the mid-sections of the solids [2]. Specifically,
a square tile produces a tetrahedron. A hexagon tile produces either a hexahedron, an
octahedron, or a dodecahedron. A decagon tile produces an icosahedron. If a tile is regular,
the respective polyhedron can also be regular. Still, the tilting angles and Height–Bisection
generation methods can only generate the tetrahedron and the octahedron. Generating
the cube requires an additional step that intersects the planes tilted towards the same
direction on the hexagon. No combination of intersecting planes generates all vertices for
the dodecahedron and the icosahedron.

We can use uniform evolution to generate the Platonic solids, starting with a respective
regular polygon. Each solid requires the same number of positive and negative evolution
steps. The tetrahedron starts with a square and requires one step. The cube starts with a
regular hexagon and requires two steps. The octahedron starts with a regular hexagon and
requires one step. The dodecahedron starts with a regular decagon and requires two steps.
The icosahedron starts with a regular decagon and requires two steps. The last steps
for the cube, dodecahedron, and icosahedron must collapse the penultimate evolution
polygon into a point. Figure 14 shows the positive evolution steps along N̂ for each Platonic
solid. Negative evolution steps are reciprocal. Table 2 lists the evolution parameter values
required to generate each Platonic solid. The parameters are functions of the side length l
from the respective tile. The ± symbol indicates the sign of the angles alternating along the
edges of the respective seed polygon.

Figure 14. Positive evolution steps of the Platonic solids. Seed polygons are in red, evolved n-
polytopes are in blue (from the first evolution step) and green (from the second evolution step).

Appl. Sci. 2024, 14, 6542 18 of 23

Table 2. Evolution-step parameters to generate the Platonic solids. Seed polygons are regular and of
side length l, and d ∈ {+,−}.

Solid Seed Steps Edge Radius Θd λd

Tetrahedron Square 1 2l l
√

3
2 θd

0 = ±
(

π
2 − arctan

(
1√
2

))
λd

0 = l√
2

Cube Hexagon 2 l
√

2 l
√

3
2

θd
0 = ±

(
π
2 − arctan

(
1√
2

))
θd

1 = π
2 − arctan

(
1√
2

) λd
0 = l√

6

λd
1 = l

√
2
3

Octahedron Hexagon 1 2l l
√

2 θd
0 = ±

(
π
2 − arctan

(
1

2
√

2

))
λd

0 = l
√

2
3

Dodecahedron Decagon 2 2l
ϕ l

√
3

θd
0 = ±

(
π
2 − arctan

(
1
2

))
θd

1 = π
2 − arctan

(
1
2

)) λd
0 = l

√
7−3
√

5
5−
√

5

λd
1 = l

√
6+2
√

5
5+2
√

5

Icosahedron Decagon 2 2l l
√

5−
√

5
3−
√

5

θd
0 = ±

(
π
2 − arctan

(√
5−2√

6−2
√

5

))
θd

1 = π
2 − arctan

(
1√

14−6
√

5

) λd
0 = l

√
3−
√

5
10−4

√
5

λd
1 = 2l

√
3−
√

5
5−
√

5

5.2. Truncated Platonic Solids and Clipped Solids

We can describe the truncated Platonic solids as multi-step evolved polygons as well.
For example, the first two sub-figures from left to right in Figure 12 show a truncated tetrahe-
dron generated using uniform evolution. We start with a square of side length l to generate
a regular truncated tetrahedron. The parameters for both positive and negative sections of
the solid are reciprocal. The first-evolution-step parameters are Θd

0 = ±
(

π
2 − arctan

(
1√
2

))
and λd

0 = l
3
√

2
. The second-evolution-step parameters are Θd

1 = π
2 − arctan

(
1√
2

)
and

λd
1 = 2l

3
√

2
.

To generate the remaining truncated Platonic solids, we also use uniform evolution.
The truncated cube requires three evolution steps. The truncated octahedron requires
two evolution steps. The truncated dodecahedron requires three evolution steps. Finally,
the truncated icosahedron requires four evolution steps.

Clipped solids also result from multi-step evolved polygons. Figure 7 shows how the
evolution length parameter λ limits the range of an evolution step. In such cases, we can
stop an evolution step before the event of intersecting lines Li happens. Adjusting the λ
parameters is equivalent to clipping a block.

5.3. Mixed Solids

Different evolution step parameters for both positive and negative directions result in
mixed geometries. From left to right, the last two subfigures in Figure 12 show a solid whose
positive section resembles a truncated tetrahedron, while its negative section resembles a
regular tetrahedron. Such a polyhedron still satisfies the TI requirements. To generate it,
we start with a square of side length l. The positive evolution step parameters Ψ+

0 are the
same as the truncated tetrahedron, as mentioned in the previous subsection. The negative
evolution step parameters Ψ−0 are the same as the tetrahedron, as listed in Table 2.

To illustrate the versatility and effectiveness of the proposed method, we constructed
TICs using half-truncated tetrahedra (Figure 15) and truncated tetrahedra (Figure 16)
based on various geometric domains. The considered domains are a planar grid, an
elliptic paraboloid, a sinusoidal 3D wave, a saddle, a barrel vault, a sphere, and a torus.
These examples were constructed using the Python Version 1.0 of TIGER [36] available at
https://github.com/andresbejarano/tiger (accessed on 22 July 2024).

https://github.com/andresbejarano/tiger

Appl. Sci. 2024, 14, 6542 19 of 23

Figure 15. TICs built using half-truncated tetrahedra based on different geometric domains: (a) planar,
(b) elliptic paraboloid, (c) wave, (d) saddle, (e) barrel vault, (f) sphere, and (g) torus.

Figure 16. TICs built using truncated tetrahedra based on different geometric domains: (a) planar,
(b) elliptic paraboloid, (c) wave, (d) saddle, (e) barrel vault, (f) sphere, and (g) torus.

5.4. Concave Solids

We can use the double-direction polygon–polyhedron evolution to generate concave
solids with TI properties. As mentioned, the first positive and negative evolution steps
must comply with the Fundamental TI generation requirement. An example of such con-
cave solids was reported by Tessmann [23] and Tessmann and Becker [24]. Figure 17 shows
the design from Philipp Mecke replicated using double-direction polygon–polyhedron evo-
lution starting from an irregular hexagon. The design of such blocks involves subtracting
sections from a tetrahedron while maintaining the interlocking principle. The parametric
design of Mecke’s block allows for the generation of TI assemblies with adjustable porosity
(i.e., holes between adjacent blocks).

Appl. Sci. 2024, 14, 6542 20 of 23

Figure 17. TI polyhedron, by Mecke, generated using double-direction polygon–polyhedron evolu-
tion. From left to right: oblique view, front view, right view, and top view.

To generate Mecke’s TI block, we start with an irregular hexagon of side lengths a
(shorter side length) and b (longer side length) as the seed polygon f . To keep our approach
as parametric as possible, we set the vertices of f to lie in a circumference of radius r. Side
length a is a parameter, which leaves b as a function of r and a. We only required one
evolution step along the positive and negative sides of f to generate the block. We defined
angles θa and θb for their respective side lengths. All angles had to be positive, but two
were respective to a pair of opposite short side lengths. The other pair of opposite short
side lengths had to be negative for the negative evolution step. Infinitely many parameter
values exist to generate the block using double-direction polygon–polyhedron evolution.
The result shown in Figure 17 has values of r = 1, a = 0.4, b = 1.11, θa = 0.98 radians,
and θb = 1.13 radians. Evolution length λ had to be long enough to allow the lines Li to
intersect within the evolution range.

Tessmann and Becker continued exploring Mecke’s TI polyhedron by considering its
performance and gradually reducing its mass [24]. We replicated the equivalent geometries
even when no mass could be removed. We used the same evolution parameters as the
original shape for such a block shape. Still, we reduced the length of the shorter irregular
hexahedron edges until the resultant polygon was a square. Figure 18 shows the mass-
decreased Mecke’s block replicated using double-direction polygon–polyhedron evolution.

Figure 18. Collapsed polyhedron, by Mecke, generated using double-direction polygon–polyhedron
evolution. From left to right: oblique view, front view, right view, and top view.

6. Conclusions

This article has proposed a framework to generate TI polyhedra as a multi-step
evolution process. The framework generalizes over the tilting angles and Height–Bisection
generation methods. An evolution step evolves (i.e., reshapes and translates) a seed
polygon into a n-polytope (e.g., point, line segment, or polygon). Consecutive evolution
steps are possible when the evolved n-polytope is a polygon. Possible evolution steps could
follow a single or double direction to the normal vector of the seed polygon. Additionally,
reciprocal and uniform evolution steps produce different shapes, which comply with the
TI requirements under certain matching specifications. The TI shapes generated with the

Appl. Sci. 2024, 14, 6542 21 of 23

framework include the Platonic solids (and truncated versions), mixed solids, and concave
TI blocks.

The parametric nature of the framework opens the door for further discussions about
TI assemblies and their functionality. For example, how to increase block volumes to
redistribute compression/tension forces on the assembly and expand the catalog of possible
interlocking configurations that comply with the topological interlocking principle. Our
proposed method adapts to various surface requirements, allowing for a high degree of
customization and versatility in design. Engineers and architects can leverage this flexibility
to create intricate and aesthetically pleasing structures that meet specific functional and
architectural needs. This ability to generate unique, interlocking designs that are both
functional and visually appealing can benefit applications in custom architecture, modular
construction, and artistic installations.

The Evolution Steps method can enhance the design and manufacture of interlocking
assemblies in mechanical and materials engineering. Architects, designers, and engineers
can create customized, interlocking structures that exhibit enhanced mechanical prop-
erties by enabling the precise control of block shapes through polygon transformations.
Such mechanical properties include an increased load-bearing capacity, improved energy
absorption, and superior resistance to deformation. These characteristics are advanta-
geous in applications requiring robust and resilient materials, such as protective gear,
impact-resistant panels, and aerospace components.

One critical advantage of the proposed Evolution Steps method is its potential to
minimize material waste during the manufacturing process. Traditional construction
techniques often involve cutting and shaping materials, leading to significant waste. In
contrast, our method allows for the precise design of interlocking blocks that fit with
minimal gaps, reducing the need for excessive cutting and trimming. This efficiency
conserves resources and lowers production costs and environmental impact, aligning with
sustainable manufacturing practices.

Additional research is needed to expand our understanding of the TI generation
process in terms of physical requirements, for example, to find the optimal evolution
scheme and parameters to minimize tension forces between blocks for the assembly to
reach static equilibrium.

Author Contributions: Conceptualization, A.B. and K.M.; methodology, A.B.; software, A.B. and
K.M.; validation, A.B.; formal analysis, A.B.; investigation, A.B. and K.M.; resources, A.B. and K.M.;
data curation, A.B.; writing—original draft preparation, A.B.; writing—review and editing, A.B.;
visualization, A.B. and K.M.; supervision, A.B.; project administration, A.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dyskin, A.V.; Estrin, Y.; Kanel-Belov, A.J.; Pasternak, E. Toughening by Fragmentation–How Topology Helps. Adv. Eng. Mater.

2001, 3, 885. [CrossRef]
2. Dyskin, A.V.; Estrin, Y.; Kanel-Belov, A.J.; Pasternak, E. Topological interlocking of platonic solids: A way to new materials and

structures. Philos. Mag. Lett. 2003, 83, 197–203. [CrossRef]
3. Kanel-Belov, A.J.; Dyskin, A.V.; Estrin, Y.; Pasternak, E.; Ivanov-Pogodaev, I.A. Interlocking of convex polyhedra: Towards a

geometric theory of fragmented solids. arXiv 2008, arXiv:0812.5089.
4. Fallacara, G. Digital Stereotomy and topological transformations: Reasoning about shape building. In Proceedings of the 2nd

International Congress on Construction History, Cambridge, UK, 29 March–2 April 2006; Volume 1, pp. 1075–1092.

http://doi.org/10.1002/1527-2648(200111)3:11<885::AID-ADEM885>3.0.CO;2-P
http://dx.doi.org/10.1080/0950083031000065226

Appl. Sci. 2024, 14, 6542 22 of 23

5. Fallacara, G. Toward a stereotomic design: Experimental constructions and didactic experiences. In Proceedings of the Third
International Congress on Construction History, Cottbus, Germany, 20–24 May 2009; pp. 553–560.

6. Dyskin, A.V.; Estrin, Y.; Pasternak, E. Topological Interlocking Materials. In Architectured Materials in Nature and Engineering;
Estrin, Y., Bréchet, Y., Dunlop, J., Fratzl, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 282,
pp. 23–49. [CrossRef]

7. Bejarano, A.; Hoffmann, C. A generalized framework for designing topological interlocking configurations. Int. J. Archit. Comput.
2019, 17, 53–73. [CrossRef]

8. Mirkhalaf, M.; Zhou, T.; Barthelat, F. Simultaneous improvements of strength and toughness in topologically interlocked ceramics.
Proc. Natl. Acad. Sci. USA 2018, 115, 9128–9133. [CrossRef] [PubMed]

9. Mirkhalaf, M.; Zhou, T.; Hannard, F.; Barthelat, F. Strong and Tough Ceramics Using Architecture and Topological Interlocking. In
Proceedings of the IUTAM Symposium Architectured Materials Mechanics, Chicago, IL, USA, 17–19 September 2018; Siegmund,
T., Barthelat, F., Eds.; Gleacher Center: Chicago, IL, USA, September 2018.

10. Weizmann, M.; Oded, A.; Grobman, Y.J. Structural Performance of Semi-regular Topological Interlocking Assemblies. In
Proceedings of the Symposium on Simulation for Architecture and Urban Design SimAUD 2019, Atlanta, GA, USA, 7–9 April
2019; pp. 217–223.

11. Williams, A.; Siegmund, T. Mechanics of Topologically Interlocked Material Systems under Point Load: Archimedean and Laves
Tiling. arXiv 2020, arXiv:2004.07115.

12. Glickman, M. The G-block system of vertically interlocking paving. In Proceedings of the 2nd International Conference on
Concrete Block Paving, Delft, The Netherlands, 10–12 April 1984; p. 4.

13. Dyskin, A.; Estrin, Y.; Kanel-Belov, A.; Pasternak, E. A new concept in design of materials and structures: Assemblies of
interlocked tetrahedron-shaped elements. Scr. Mater. 2001, 44, 2689–2694. [CrossRef].

14. Dyskin, A.; Estrin, Y.; Kanel-Belov, A.; Pasternak, E. Interlocking properties of buckyballs. Phys. Lett. A 2003, 319, 373–378.
[CrossRef]

15. Weizmann, M.; Amir, O.; Grobman, Y.J. Topological Interlocking in Architectural Design. In Emerging Experience in Past, Present and
Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design
Research in Asia (CAADRIA 2015), Daegu, Republic of Korea, 20–22 May 2015; The Association for Computer-Aided Architectural
Design Research in Asia (CAADRIA): Hong Kong, China, 2015; pp. 107–116.

16. Weizmann, M.; Amir, O.; Grobman, Y.J. Topological interlocking in buildings: A case for the design and construction of floors.
Autom. Constr. 2016, 72, 18–25. [CrossRef]

17. Weizmann, M.; Amir, O.; Grobman, Y.J. Topological interlocking in architecture: A new design method and computational tool
for designing building floors. Int. J. Archit. Comput. 2017, 15, 107–118. [CrossRef]

18. Weizmann, M.; Amir, O.; Grobman, Y.J. The effect of block geometry on structural behavior of topological interlocking assemblies.
Autom. Constr. 2021, 128, 103717. [CrossRef]

19. Goertzen, T.; Niemeyer, A.; Plesken, W. Topological interlocking via symmetry. In Concrete Innovation for Sustainability, Proceedings
of the 6th fib International Congress, Oslo, Norway, 12–16 June 2022; The International Federation for Structural Concrete: Lausanne,
Switzerland, 2022; pp. 12–16.

20. Khor, H.C.; Dyskin, A.; Pasternak, E.; Estrin, Y.; Kanel-Belov, A.J. Integrity and fracture of plate-like assemblies of topologically
interlocked elements. In Structural Integrity and Fracture; CRC Press: Leiden, The Netherlands, 2002; pp. 449–456.

21. Estrin, Y.; Dyskin, A.V.; Kanel-Belov, A.J.; Pasternak, E. Materials with Novel Architectonics: Assemblies of Interlocked Elements.
In IUTAM Symposium on Analytical and Computational Fracture Mechanics of Non-Homogeneous Materials, Proceedings of the IUTAM
Symposium, Cardiff, UK, 18–22 June 2001; Gladwell, G.M.L., Karihaloo, B.L., Eds.; Springer: Dordrecht, The Netherlands, 2002;
Volume 97, pp. 51–55. [CrossRef]

22. Tessmann, O. Topological Interlocking Assemblies. In Physical Digitality: Proceedings of the 30th eCAADe Conference, Prague, Czech
Republic, 12–14 September 2012; eCAADe (Education and research in Computer Aided Architectural Design in Europe): Brussels,
Belgium; České Vysoké Učení Technické v Praze: Prague, Czech Republic, 2012; Volume 2, pp. 211–219.

23. Tessmann, O. Interlocking Manifold Kinematically Constrained Multi-material Systems. In Advances in Architectural Geometry
2012; Hesselgren, L., Sharma, S., Wallner, J., Baldassini, N., Bompas, P., Raynaud, J., Eds.; Springer: Vienna, Austria, 2013;
pp. 269–278. [CrossRef]

24. Tessmann, O.; Becker, M. Extremely heavy and incredibly light: Performative assemblies in dynamic environments. In
Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia: Open Systems,
CAADRIA 2013, Singapore, 15–18 May 2013; pp. 469–478.

25. Akleman, E.; Krishnamurthy, V.R.; Fu, C.A.; Subramanian, S.G.; Ebert, M.; Eng, M.; Starrett, C.; Panchal, H. Generalized abeille
tiles: Topologically interlocked space-filling shapes generated based on fabric symmetries. Comput. Graph. 2020, 89, 156–166.
[CrossRef]

26. Ebert, M.; Akleman, E.; Krishnamurthy, V.; Kulagin, R.; Estrin, Y. VoroNoodles: Topological Interlocking with Helical Layered
2-Honeycombs. Adv. Eng. Mater. 2024, 26, 2300831. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-11942-3_2
http://dx.doi.org/10.1177/1478077119827187
http://dx.doi.org/10.1073/pnas.1807272115
http://www.ncbi.nlm.nih.gov/pubmed/30139921
http://dx.doi.org/10.1016/S1359-6462(01)00968-X
http://dx.doi.org/10.1016/j.physleta.2003.10.027
http://dx.doi.org/10.1016/j.autcon.2016.05.014
http://dx.doi.org/10.1177/1478077117714913
http://dx.doi.org/10.1016/j.autcon.2021.103717
http://dx.doi.org/10.1007/978-94-017-0081-8_7
http://dx.doi.org/10.1007/978-3-7091-1251-9_22
http://dx.doi.org/10.1016/j.cag.2020.05.016
http://dx.doi.org/10.1002/adem.202300831

Appl. Sci. 2024, 14, 6542 23 of 23

27. Vella, I.M.; Kotnik, T. Geometric Versatility of Abeille Vault—A Stereotomic Topological Interlocking Assembly. In Complexity &
Simplicity, Proceedings of the 34th eCAADe Conference, Oulu, Finland, 22–26 August 2016; Aulikki, H., Österlund, T., Markkanen, P.,
Eds.; CAADe (Education and Research in Computer Aided Architectural Design in Europe): Brussels, Belgium; Oulu School of
Architecture, University of Oulu: Oulu, Finland, 2016; Volume 2, pp. 391–397.

28. Tessmann, O.; Rossi, A. Parametric and Combinatorial Topological Interlocking Assemblies. In Proceedings of the IUTAM
Symposium Architectured Materials Mechanics, Chicago, IL, USA, 17–19 September 2018; Siegmund, T., Barthelat, F., Eds.;
Gleacher Center: Chicago, IL, USA, 2018.

29. Tessmann, O.; Rossi, A. Geometry as Interface: Parametric and Combinatorial Topological Interlocking Assemblies. J. Appl. Mech.
2019, 86, 111002. [CrossRef]

30. Xu, W.; Lin, X.; Xie, Y.M. A novel non-planar interlocking element for tubular structures. Tunn. Undergr. Space Technol. 2020,
103, 103503. [CrossRef]

31. Kurucu, A.T.; İlerisoy, Z.Y. Structural Performance of Topologically Interlocked Flat Vaults According to Joint Details. Period.
Polytech. Archit. 2023, 54, 1–11. [CrossRef]

32. Wang, Z.; Song, P.; Isvoranu, F.; Pauly, M. Design and structural optimization of topological interlocking assemblies. ACM Trans.
Graph. 2019, 38, 1–13. [CrossRef]

33. Loing, V.; Baverel, O.; Caron, J.F.; Mesnil, R. Free-form structures from topologically interlocking masonries. Autom. Constr. 2020,
113, 103117. [CrossRef]

34. Chen, R.; Qiu, P.; Song, P.; Deng, B.; Wang, Z.; He, Y. Masonry Shell Structures with Discrete Equivalence Classes. ACM Trans.
Graph. 2023, 42, 1–12. [CrossRef]

35. Laccone, F.; Menicagli, S.; Cignoni, P.; Malomo, L. Computational design of segmented concrete shells made of post-tensioned
precast flat tiles. Structures 2024, 62, 106156. [CrossRef]

36. Bejarano, A.; Hoffmann, C. TIGER: Topological Interlocking GEneratoR. In Proceedings of the 2020 IEEE Games, Multimedia,
Animation and Multiple Realities Conference (GMAX), Barranquilla, Colombia, 17–18 September 2020; pp. 1–6. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1115/1.4044606
http://dx.doi.org/10.1016/j.tust.2020.103503
http://dx.doi.org/10.3311/PPar.19509
http://dx.doi.org/10.1145/3355089.3356489
http://dx.doi.org/10.1016/j.autcon.2020.103117
http://dx.doi.org/10.1145/3592095
http://dx.doi.org/10.1016/j.istruc.2024.106156
http://dx.doi.org/10.1109/GMAX49668.2020.9256836

	Introduction
	Related Work
	Block-Shape Analysis
	Concave TI Blocks
	Non-Planar and Curvilinear TI Assemblies
	Free-Form TI Assemblies

	Polygon Evolution
	Evolution Step
	Single-Direction Polygon–Polyhedron Evolution
	Double-Direction Polygon–Polyhedron Evolution
	Reciprocal Evolution Steps
	Uniform Evolution

	General Mid-Section Evolution
	Generation Method
	Fundamental TI Generation Requirement

	Results
	Platonic Solids
	Truncated Platonic Solids and Clipped Solids
	Mixed Solids
	Concave Solids

	Conclusions
	References

