
Citation: Sobieraj, M.; Kotyński, D.

Docker Performance Evaluation

across Operating Systems. Appl. Sci.

2024, 14, 6672. https://doi.org/

10.3390/app14156672

Received: 14 June 2024

Revised: 23 July 2024

Accepted: 30 July 2024

Published: 31 Junly 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Docker Performance Evaluation across Operating Systems
Maciej Sobieraj * and Daniel Kotyński

Institute of Communication and Computer Networks, Faculty of Computing and Telecommunications,
Poznan University of Technology, ul. Polanka 3, 60-965 Poznań, Poland
* Correspondence: maciej.sobieraj@put.poznan.pl

Abstract: Docker has gained significant popularity in recent years. With the introduction of Docker
Desktop for Windows and macOS, there is a need to determine the impact of the operating system
on the performance of the Docker platform. This paper aims to investigate the performance of
Docker containers based on the operating system. One of the fundamental goals of this study is to
conduct a comprehensive analysis of the Docker architecture. This technology utilizes Linux kernel
virtualization mechanisms such as namespaces and cgroups. Upon analyzing the distribution of
Docker Desktop for Windows and Docker Desktop for macOS, it was discovered that running the
Docker environment on these requires a lightweight virtual machine that emulates the Linux system.
This information suggests that the additional virtualization layer may hinder the performance of
non-Linux operating systems hosting Docker containers. The paper presents a performance test of
the Docker runtime on Linux, Microsoft Windows, and macOS. The test evaluated specific aspects of
operating system performance on a MacBook computer with an ×86/64 processor architecture. The
experiment carried out examined the performance in terms of CPU speed, I/O speed, and network
throughput. This test measured the efficiency of software that utilizes various system resources.

Keywords: Docker; operating system; performance tests; virtualization

1. Introduction

The increasing demand for scalable and efficient software has made virtualization
a desirable technology in the contemporary IT world. Docker—one of the popular virtual-
ization technologies—is used by more than 18 million developers worldwide and ranks as
one of the most beloved tools [1–3].

One of the most crucial aspects that affect the performance of any virtualization
runtime is the underlying operating system of the host. Among all supported operating
systems, Linux-based are often considered to be the best in terms of user experience and
performance [4,5]. As variations in operating system architectures and runtime imple-
mentation may cause differences in the speed of Dockerized applications, the choice of
operating system could be essential.

Performance evaluation of deploying dockers was a subject of many works [6–11].
In [6] studies about the evaluation of Apache and Nginx web server performances on the
Docker platform were presented. Two separate Docker containers were used in the exper-
iments. Six web server performance criteria were evaluated: requests per second, failed
requests, availability, failed transactions, response time, and transaction rate. The work [7]
proposes the system which calculates the startup time for Docker containers running the
Apache web server in bare metal and virtual machine (KVM). The analysis helps to decide
the environment to work with the Docker application to obtain maximum performance.
In [8] authors conduct a comparative study of the performance evaluation of virtual ma-
chines and containers. A methodology to evaluate the performance of Docker containers
and virtual machines was also proposed. In addition, a real-world case study was presented
to illustrate the applicability of the proposed approach. Another evaluation, presented

Appl. Sci. 2024, 14, 6672. https://doi.org/10.3390/app14156672 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14156672
https://doi.org/10.3390/app14156672
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4687-8447
https://doi.org/10.3390/app14156672
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14156672?type=check_update&version=1

Appl. Sci. 2024, 14, 6672 2 of 16

in [9], concerns the impact of docker container on the performance of deep learning appli-
cations. Authors benchmark the performance of system components (IO, CPU and GPU)
in a docker container and the host system. The next problem that was addressed in [10]
was the container storage system. Authors analyze terabytes of uncompressed Docker Hub
images, characterize them using multiple metrics, and evaluate the potential of file-level
deduplication. The analysis helped to make conscious decisions when designing storage
for containers in general and Docker registries in particular. The main goal of the paper [11]
was the performance comparison and potential problems of container-based virtualization,
with Docker and Podman as typical representatives. The authors evaluated the impact of
one and more container-based virtual machines on file system performance. So we can see
that the topic of Dockers is very popular. There are still many docker related issues that
need to be analyzed.

The aim of this paper is to create and use a performance test of the Docker runtime on
Linux, Microsoft Windows, and macOS. This experiment uses MacBook Pro 13 (2019) with
an Intel CPU as the hardware platform for benchmarks.

There is no official Docker guideline for recommended operating systems. The fact
that Docker implementation depends on Linux kernel features to provide virtualization,
and before 2016 it was not available on other platforms may suggest that Docker will achieve
the greatest performance on Linux. The result of this paper may be utilized to prepare
recommendations for choosing an appropriate operating system when working on Docker
containers. This recommendation could benefit Software Engineers, System Administrators,
and DevOps professionals, among others, who work with Docker containers.

The main objective of this paper is to carefully evaluate the performance overhead of
different operating systems when hosting Docker containers. This study’s subgoals are:

• Prepare the testing environment that will allow fair and accurate performance
measurements.

• Design various benchmarks, the results will not only show performance differences
but also point to potential bottleneck points.

• Identifying trade-offs of each solution.
• Recommend the best environment based on the test results.

This paper is organized in the following structure. Section 2 is a theoretical introduc-
tion to virtualization, the principles of containers, and the mechanisms used by the Docker
implementation. Section 3 outlines the adopted testing methodology and describes the
platform used for the experiments. Section 4 reports the obtained results and provides
a preliminary analysis. Section 5 is a summary with a conclusion preceded by an analysis
of all observations and a description of ideas for future research.

2. Docker Architectures

Docker is available for all three platforms that are being tested in this paper, but it’s
necessary to distinguish Docker from Docker for Windows and Docker for Mac, as they
differ in implementation. Docker is only available on Linux, as it uses Linux kernel
virtualization features. Docker for Windows and Docker for Mac both come with some
additional virtualization techniques that might create performance overhead.

2.1. Docker on Linux

To describe how Docker works on Linux, we would say that it uses low-level virtu-
alization features to provide high-level virtualization. Those features are Control Groups
(cgroups) and namespaces [12,13].

2.1.1. PID Namespace

The namespace mechanism was introduced in the Linux kernel version 2.4.19. The first
implementation included Process ID namespaces. PID namespace creates the illusion that
processes in a given namespace are the only ones in the system. Each process namespace
comes with its own PID set.

Appl. Sci. 2024, 14, 6672 3 of 16

As seen in Figure 1, a PID = 6 process called an unshare [14] command with the
PID flag resulted in the creation of a new PID namespace. Two processes with PID of 9
and 10 from the parent namespace perspective are seen as PID 2 and 3 processes (green
color) from the child (PID 8) process perspective. PID namespaces can be nested—processes
mentioned earlier could also create new namespace; this feature can be used in “A container
inside a container” kind scenarios.

Figure 1. Linux PID namespace visualization.

When studying PID namespace mechanisms, it is worth mentioning the special be-
havior that is helpful when implementing container environments. The process with
PID = 1—which is called the init process is the parent of all processes running on a Linux
machine [15]. For this reason, the init process does not terminate after receiving SIGTERM
or SIGKILL signals in most cases to prevent unwanted system termination [16]. This feature
is utilized in Docker containers, where in the initial process in the designated namespace, it
cannot be easily terminated [17].

These properties allow Docker containers to isolate container processes from the host,
even making Docker container instances not aware that they are isolated by Docker. Each
process spawned in a container is in fact spawned at the host machine but in a separate
container namespace. A shell running in a container can access only processes in this
container, while processes spawned by a Docker container can be seen on the host using
ps [18] command. We can observe how the process namespace creates a new PID set,
since the same process from the host perspective has a different PID from that one in the
container perspective. Later Linux kernel versions brought other namespaces, described in
the following.

Appl. Sci. 2024, 14, 6672 4 of 16

2.1.2. Mount Namespaces

Docker uses mount namespaces to separate the container file system [19]. Each mount
namespace specifies which mount points can be seen by the container. This namespace
provides isolation between the host and the container and between multiple containers.
The original implementation of mount namespaces has shown that the isolation it provided
was sometimes too excessive. This issue was fixed by providing mount propagation
types [20].

2.1.3. Network Namespaces

Another namespace used by virtualization tools is the network namespace. This
feature allows each container to have its own routing table, ARP table, and network device
with IP address.

Docker networks utilize Linux network namespaces in such a manner that constructing
multicontainer applications—especially using docker compose—is easy and convenient.
Docker network provides such features as isolation, where users can define inter-container
connections. Containers can communicate in the same network using their names thanks
to internal DNS resolution. Ports of docker containers can be exposed for external access,
and mapped to avoid port collisions.

2.1.4. User Namespace

An important feature of Docker containers in terms of security and isolation is the
ability to map the UID in a container to a higher value of the user ID on the host system.
Using a user namespace can prevent container breakout, even when a user in a container
has root privileges. A high UID that is mapped to the host system prevents harmful actions
as a user with such a UID does not have enough privileges. This feature also helps to
distinguish container processes from host processes.

2.1.5. IPC Namespace

Responsible for isolating interprocess communication, structures such as messages,
queues, and semaphores are separated between containers and host.

2.1.6. Control Groups

In addition to isolation, which is provided mostly through the use of namespaces,
a decent virtualization tool needs to use system resources efficiently. Control Groups
allow the regulation of CPU, memory, disk and network I/O division between multiple
containers and a host machine [21]. This is used to prevent over-consumption from a single
container and avoid resource contention. It is possible to achieve predictable performance
by limiting resource usage. It is important to know that by default containers can access
resources as long as they are available on the host.

Docker distinguishes two types of limits: soft limit and hard limit. The hard limit
specifies the amount of a given resource that a container cannot exceed, while the soft limit
defines a limit that works as a hard limit but only, when Docker detects contention or low
memory on the host machine. A soft limit must have a lower value, and the container can
exceed those limits in opposition to the hard limits [22].

In order to appreciate cgroups usage in the Docker system, it is important to under-
stand the consequences of OOME—Out Of Memory. When the physical and swap memory
of the Linux system is exhausted, the Linux kernel launches the OOM process killer, which
is responsible for terminating processes to prevent a system crash [23]. In Docker containers,
this idea is extended to individual containers. When an instance of a container runs out of
memory, process termination is executed in a separate namespace and avoids interrupting
apps in other container and host systems [24].

Appl. Sci. 2024, 14, 6672 5 of 16

2.2. Docker for Windows

This Docker distribution is used to run Linux images on selected Windows versions;
currently, Windows 10 and Windows 11 are supported. One of the Docker for Windows
dependencies is WSL2—Windows Subsystem for Linux [25].

WSL is a lightweight virtual machine that uses Hyper-V Hypervisor. Docker is often
compared as an alternative to virtual machines. It uses one on Windows machines. It is
worth mentioning that only one instance of virtual machine is being used, although many
independent containers might be running on a Windows host. Despite using virtual
machines, WSL2 is considered a lightweight virtualization, with barely noticeable perfor-
mance loss (94 percent when comparing WSL2 with native Linux [26]). Theoretically, this
architecture should not outclass native Linux Docker installation, although it still should
provide greater performance when compared to traditional VMs, especially when running
multiple applications.

Another key component that is part of Docker for Windows is VPNkit [27]. It is
needed to provide connectivity between external networks and containers respecting the
host network configuration, such as VPN and DNS. It works by translating Ethernet traffic
from a container to the host’s socket API calls.

2.3. Docker for Mac

Docker Desktop for Mac has many similarities to the Windows distribution. Docker
Desktop for Mac utilizes the Moby framework, which provides Linux Kernel features,
on which Docker is built [28]. It also uses VPNKit to handle connectivity. In contrast to
Docker Desktop for Windows, it runs under HyperKit instead of the Hyper-V hypervisor.
Docker supports Docker Desktop on the latest versions of macOS, specifically the current
release and the two preceding ones. When a new major version of macOS is released,
Docker drops support for the oldest version and begins supporting the newest version,
along with the two prior versions.

3. Methodology

Achieving reliable, relevant, and replicable results requires designing a robust method-
ology. Selecting proper procedures should ensure that gathered data will be consistent and
comprehensive. This section describes selecting an adequate measurement method.

3.1. Test Platform

In order to obtain meaningful results, it is important to choose the appropriate test
platform, the operating systems on which Docker will be run, and how it will be configured.

3.1.1. Choosing Testing Platform

To provide accurate and meaningful measurements, selecting an appropriate test
platform is significant for the value of the results. To guarantee identical computing
power, the test platform’s hardware should support all operating systems being tested.
However, the macOS EULA prohibits the installation of the OS on non-Apple hardware [29],
requiring the use of an Apple computer for testing purposes. As ×86/64 is a much more
commonplace CPU architecture [30] and running ARM images on ×86 requires a translator,
leading to performance overhang. The test platform shall utilize an ×86/64 architecture-
based operating system along with container images. Apple MacBook Pro with Intel chip
was used in tests that met all requirements specified in this section (Table 1).

Table 1. Hardware specification of test platform.

CPU RAM Storage

Intel i5-8257u @ 1.40 GHz 16 GB LPDDR3 2133 Mhz 256 GB NVME SSD

Appl. Sci. 2024, 14, 6672 6 of 16

3.1.2. Used Operating Systems

The operating systems used in the research are shown in Table 2. The macOS Ventura,
Windows 10 and Ubuntu were used in experiments as the most popular operating systems
and widely used in professional applications. MacOS Ventura was used as is was the
latest release at the moment of conducting the study (which was the second half of 2023).
MacBook Pro 13—the machine that serves as the testing platform has a built-in T2 chip [31].
One of its functions is to protect the boot process from injecting a malicious operating
system into the computer. As this feature improves security, it hinders the installation of
untrusted systems. From the point of view of T2, Ubuntu is considered unsafe, as Apple
does not support installing the GNU/Linux operating system on its machine. This barrier
could be overcome with the help of the T2-Ubuntu [32] distribution, designed to be installed
on Apple computers with T2-chipped. The Ubuntu version used in this study was based
at latest LTS release at the time of conducting the study, which is 22.04. The authorized
method for installing Windows on Apple hardware involves utilizing Boot Camp Assistant
6.1.19 software, which is exclusively compatible with Windows 10 [33].

Table 2. Used operating systems.

System Name Version

Windows 10 22H2
Ubuntu 22.04-6.4.8-t2-jammy
macOS Ventura 13.5.1

3.1.3. Docker Settings

In order to create environments that allow fair performance comparison, Docker must
access uniform hardware resources. While Docker on native Linux will utilize all system
resources when necessary, and Docker Desktop distributions provide a way to limit the
resources provided for the docker engine, Docker Desktop on Mac and Windows should
utilize all its resources. It is important to know that by default only part of the resources
were available for Docker Desktop implementation. It is possible to alter this setting using
the Docker Desktop user interface on macOS and by modifying the .wslconfig [34] file on
Windows. This test platform utilizes 8 logical CPUs, 16 GB of RAM, and 1 GB of swap
memory. The version of the Docker Engine that is used on the testing platform is 4.20.

3.2. Test Methodology

A proper test methodology should be applied to measure the performance of the system
and the virtualization overhead. This test consists of fine-grained benchmarks that aim to
measure only a given part of the operating system and more complex tests that put stress
on multiple levels, recreating performance differences in real-case scenarios. To achieve
accurate measurements, the test is run on a freshly installed operating system, without any
unnecessary background services that are not required for the benchmark to operate.

3.3. Calculating Pi Number

π number calculation is a popular way to directly test computing performance. This
benchmark utilizes the Leibniz formula for π (Equation (1)) implemented in C language.
The tested setup used a Linux Alpine base image with the GCC compiler. An exe-
cutable binary was created using the -03 flag for greater performance. Each test ends
after 232 iterations.

π = 4 ·
(

1 − 1
3
+

1
5
− 1

7
+

1
9
− . . .

)
(1)

3.4. Sysbench

Sysbench is an open source tool that is capable of measuring various components of
a system. This software provides standardized and reproducible test scenarios that could

Appl. Sci. 2024, 14, 6672 7 of 16

provide meaningful outputs about systems performance [35]. The versatility of this tool
could benefit from measuring many aspects of tested environments. Although this tool
provides its own scripting language to design custom benchmarks, this test will make use
of built-in scripts [36].

CPU test will target the amount of operation in a given time that the CPU can handle
with all its logical cores. This test utilizes another popular computation technique that is
widely utilized when determining CPU speed—prime number calculation.

The input-output experiment is going to target hard drive operation performance in
different modes. Modes that will be tested are:

• sequential read,
• sequential write,
• random read,
• random write,
• random combined write and read.

Each single test is preceded by a preparation process, which creates a certain number
of files. To provide meaningful outputs for each test, there is a cleanup method that deletes
test files to avoid any caching.

3.5. Iperf3 Tool

Iperf3 is a network performance measurement tool that creates controlled data flow
between two instances in a network. The primary purpose of this program is to gather
information on network connection performance such as throughput, jitter, latency, and ef-
ficiency. This benchmark utility is designed to operate in a client-server architecture. This
benchmark’s primary goal is to determine Docker network performance between containers
and a host. The iperf3 scenario will cover three cases:

1. inter-container TCP,
2. inter-container UDP,
3. client on host—server on container TCP.

To provide accurate and replicable test results, the time of program measurements has
been extended to 60 s. The metrics that will be measured are throughput and packet loss.
The bridge network driver was used in all three test cases. To provide connectivity between
the host and the container, port 5201 has to be exposed by a server in the container.

3.6. Complex Benchmarks

The following class of tests consists of measuring the performance of test cases de-
signed to replicate real-use scenarios of docker container use. These tests estimate the
efficiency of the whole system without focusing on its components.

7zip is widely used as a popular archive tool. This experiment shall utilize the built-in
benchmark function of 7zip, which uses different compression and decompression methods
to determine the speed of the system.

PostgreSQL relational database is one of the most widely used docker images. The test
will use pgbench—a tool designed to measure the performance of the PostgreSQL.

3.7. DoS

Higher-performance systems are generally more capable of resisting Denial-of-Service
attack (DoS attack). This test will take advantage of this phenomenon. Measuring availabil-
ity provides an indirect way to estimate performance. It is crucial to design such an attack
in order to only lower system availability instead of complete denial of service. Making
all three test instances completely unavailable will not provide useful information about
performance differences. To perform a DoS attack, a separate machine is needed to avoid
resource connection between attacker and victim processes. The machines were connected
using a wireless access point.

Appl. Sci. 2024, 14, 6672 8 of 16

3.8. Apache Slowhttp Attack

Apache is an open-source web server that will provide a static HTML website contain-
ing 50 paragraphs of Lorem Ipsum placeholder test. The objective of this benchmark is to
perform a DoS attack using Slowloris, targeting an HTTP port exposed by the container
on the host. The attacking machine is going to slow down container response by opening
a massive amount of HTTP connection barely throughout, to keep the session open and
make the server busy. This attack configuration consists of launching 800 sockets. Each
HTTP request was delayed with an interval of 3 s to faithfully reproduce real user behavior.

4. Visualization and Analysis

The subsequent sections will present a detailed review of the visualized data, drawing
attention to notable patterns and anomalies. The analysis shall focus on cases with signifi-
cant differences between operating systems, although achieving a similar result for a given
benchmark type is also valuable information. The Matplotlib charts were used to present
the data from experiments.

4.1. Pi Calculation in C

As seen in Figure 2 using the Leibnitz method has pointed to the Windows system as
the worst system for one-threaded CPU-based calculations. Linux with macOS with nearly
identical scores outran Windows by more than one second on average. Lower execution
time means greater CPU speed.

Figure 2. Leibnitz method π calculation in C.

4.2. Sysbench

CPU Sysbench test visualized in Figure 3 showed a visible performance advantage of
the Linux operating system. Windows has a light—yet noticeable—performance overhead
when comparing it to the environment with a lack of a virtual machine. macOS has the
worst CPU speed, but the difference is not critical in terms of its usefulness.

Figure 3. Sysbench CPU test.

Appl. Sci. 2024, 14, 6672 9 of 16

The results of Sysbench i/o operations in Figure 4 showed comparable disk perfor-
mance, with Linux as the system that handles reading memory slightly better than its
competitors. When evaluating the writing speed shown in Figure 5 Ubuntu shows its
fragility, especially in random writing. macOS outperforms Ubuntu by a substantial margin,
exceeding its performance by a factor exceeding 40. The combined random read/write
displayed in Figure 6 confirms this flaw in the Linux platform. Windows operating system
has a related weakness in random write speed, with significant performance loss compared
to the native system shipped with the testing platform. This difference can be explained by
the poor SSD driver support of non-native systems.

Figure 4. Sysbench I/O test of sequential/random read.

Figure 5. Sysbench I/O test of sequential/random write.

Figure 6. Sysbench I/O test of combined random write/read.

Appl. Sci. 2024, 14, 6672 10 of 16

4.3. Iperf3

In the case of intercontainer communication, the performance of Windows is excellent,
making it a great option when running network-oriented applications. It is outstand-
ing in the throughput of TCP (Figure 7) and UDP (Figure 8), with loss of UDP packets
0% (Figure 9). As UDP packet loss is present on Linux and macOS, it is not considered
significant. The performance of the Linux network between the host and the container
outperforms other platforms, as seen in Figure 10. This characteristic proves that Linux
containers are a great tool for running services for host-based applications.

Figure 7. Throughput test between two containers using TCP protocol.

Figure 8. Throughput test between two containers using UDP protocol.

Figure 9. Packet loss test between two containers using UDP protocol.

Appl. Sci. 2024, 14, 6672 11 of 16

Figure 10. Throughput test between host system and container using TCP protocol.

4.4. 7zip

The archive tool test does not determine a winner in this category. With three different
benchmark setups (Figure 11): single core, 4 cores (physical core count) and 8 cores (logical core
count) only the last test pointed to Linux as a system that provides noticeable performance gain.

Figure 11. 7zip built-in benchmark score—using 1/4/8 hardware threads.

4.5. Pgbench

The pgbench result revealed a substantial disparity in performance across the plat-
forms examined. PostgreSQL relational database running inside a Docker container on
a macOS system has approximately 20,000% performance advantage in terms of trans-
actions per second. This trend shown in Figure 12 has a strong similarity to the one
observed while testing random writing in Figure 5 and combined random write/read in
Figure 6. Those results might imply that a huge performance issue in PostgreSQL is related
to a random write speed bottleneck on Windows and Linux machines.

4.6. Apache

To correctly interpret the outcome of this test, it is important to define the effectiveness
of a partial Denial-of-Service attack. Each spike in Figure 13 represents an HTTP request
that took a significant amount of time to finish. Each visible spike or point above a given
threshold can be interpreted as an effect of partial denial of service. By measuring the ratio
of requests that are executed in a long time to all requests, it is possible to determine which
attack was the most effective. The outcome shows that Apache running inside Docker
on the Linux host was the most affected target of the slow Loris attack. This benchmark
was designed to show computing capabilities difference, but it does not correlate with any
CPU or I/O based benchmarks. As network-based Denial-of-Service attack benefits from

Appl. Sci. 2024, 14, 6672 12 of 16

the high throughput of the victim network, this test can prove great container-to-network
connectivity on the Linux operating system.

Figure 12. pgbench score for a database with the scale factor of 5.

Figure 13. Response time of Apache server before and during a Slowlorris attack.

5. Conclusions and Future Work

By examining all results of the test procedure, it is clear that the operating system
has a great influence on the behavior of the Docker container in terms of performance.
The examined configurations appear to influence distinct aspects of container performance,
such as CPU speed, memory operations, and networking throughput.

Across all operating systems tested, some benefited in a given category, while en-
countering serious performance loss in other categories. A structure can be as quick as its
slowest component; therefore, it is extremely important to balance performance on each
individual aspect of the system.

5.1. macOS Verdict

From the data gathered on our configuration, macOS is considered the most versatile
system for operating with Docker containers. It does not suffer from any significant
bottlenecks besides the host-to-container network speed visualized in Figure 10. As value
of this throughput—469 Mbps—cannot be considered low, with a high probability it would
match most requirements on a nonproduction setup, making Mac OS a solid operating

Appl. Sci. 2024, 14, 6672 13 of 16

system for a container-driven workflow. It must be pointed out that this system is not
a silver bullet, and there are cases where other systems will benefit more.

5.2. Linux Verdict

Despite the preference for macOS as the most versatile host system for Docker contain-
ers, it might not always be the optimal choice. In instances where a program rarely utilizes
write-to-disk functionality, Linux may prove as a more efficient solution. In-memory
databases, data streaming platforms, database cache, static websites, FTP read-only servers
are among the systems that infrequently require write operation and can benefit from being
run in a Docker container on a Linux host.

5.3. Windows Verdict

Windows system does not benefit from any particular test case except for intercontainer
network throughput. This unique feature can be utilized in network-based applications,
such as distributed systems. Similar to Linux, this setup’s major drawback is the write speed;
therefore, containers with high disk usage are not recommended for this configuration.
Containers with Windows as host system could be used in applications recommended for
the Linux system.

5.4. Critical Examination of Testing Methods

Due to the methodology of this test, there is a possibility that some configurations
will exceed Mac OS, especially when adjusting the discovered bottlenecks. This approach
did not explore any performance tuning in addition to the default installation guide
provided by the official Docker documentation and the assignment of hardware resources.
Finding the right testing platform to conduct fair experiments is a challenging task. It is
important to note that using a nonofficial Linux distribution due to T2 chip limitation and
installing a Windows machine through external software might affect the performance of
tested configurations.

5.5. Potential Further Research

The results of the study showed large differences in performance between the tests.
Extending the study conducted in this paper would help verify the reliability of the conclu-
sions drawn. The large variation in the results between tests may indicate problems with
the test platform presented. More research is recommended to minimize the influence of
external factors.

5.5.1. Use Official Linux Distribution

With T2 chip installation of the official Linux system distribution did not succeed.
One of the recommended expansions of this research could be replicating the tests with an
official Linux distribution on an Apple computer without the T2 chip. This approach could
focus on optimizing Docker installation, focusing on driver support, and addressing system-
specific bottlenecks. The downside of this approach is that the T2 chip was introduced in
late 2017. As a result, older machines must be used in tests when keeping an Intel-based
MacBook as the test platform. This could lead to less relevant output.

5.5.2. Change Test Platform to Non-Apple

The different choices for a testing platform could benefit from more accurate Windows
and Linux results. This approach would require preparing an Hackintosh machine [37],
which would break the macOS EULA. Using this method could also lead to less reliable ma-
cOS performance output as Hackintosh is not an official distribution and is not supported.
This approach may suffer from compatibility issues.

Appl. Sci. 2024, 14, 6672 14 of 16

5.5.3. ARM Test Platform

With the growing popularity of the ARM architecture in personal computers, knowl-
edge about the performance differences of Docker containers is desirable. All three tested
operating systems do have an ARM distribution available. This approach could measure
the performance of both ARM and x64 Docker images. This approach could be considered
problematic, as there are many known issues for Docker Desktop for Mac with Apple
silicon CPU [38].

5.5.4. Use More Than One Test Platform

The use of two testing platforms could bypass the difficulty of preparing a platform
that fully supports all three operating systems. Two test instances with two installed
systems, each including a common OS (preferably Linux), could determine the performance
differences of all platforms. The drawback of this approach is greater exposure to external
factors and greater complexity while analyzing test output.

5.5.5. Measure Performance Difference between Virtual Machine or Different
Container Technology

Extending this study by adding an instance of a virtual machine as a third comparison
point could result in a deeper understanding of the performance overhead between these
two technologies and a bare metal operating system. Knowledge about performance
differences between various container environments could determine which platform is
better in terms of virtualization in general.

5.6. Summary

In essence, both the theoretical analysis and the experimental part of this research
paper highlight the performance influence of the operating system and the Docker run-
time. This complex relationship emphasizes the importance of careful and reasonable
decisions, guided by a precise analysis process of all the given requirements. This study
emphasizes how to decide on the performance difference that might be observed between
popular platforms.

5.7. Future Work

In their future research, the authors will want to consider a more comprehensive/realistic
benchmark that exercises CPU, I/O and network at the same time. In addition to more
complex tests, the authors will also want to include in their research the latest operating
systems such as MacOS 14 Sonoma and Windows 11. An additional field of study will be
to include in the tests also the M1/M2 based Mac computers.

Author Contributions: Conceptualization, D.K. and M.S.; methodology, D.K.; software, D.K.;
validation, D.K.; formal analysis, D.K.; investigation, D.K.; resources, D.K.; data curation, D.K.;
writing—original draft preparation, D.K.; writing—review and editing, D.K. and M.S.; visualization,
D.K.; supervision, M.S.; project administration, M.S.; funding acquisition, M.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Polish Ministry of Science and Higher Education
(No. 0313/SBAD/1311).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Appl. Sci. 2024, 14, 6672 15 of 16

Abbreviations
The following abbreviations are used in this manuscript:

CPU Central Processing Unit
GPU Graphics Processing Unit
OOME Out of Memory
PID Process Identification

References
1. Docker Home Page. 2023. Available online: https://www.docker.com (accessed on 28 May 2024).
2. Stackoverflow.com Developers Survey 2022. 2022. Available online: https://survey.stackoverflow.co/2022/ (accessed on 28 May

2024).
3. Gholami, S.; Khazaei, H.; Bezemer, C.P. Should you Upgrade Official Docker Hub Images in Production Environments? In

Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER), Madrid, Spain, 25–28 May 2021; pp. 101–105. [CrossRef]

4. Best OS for Docker: Deciding Factors for Choosing Docker Host OS. 2023. Available online: https://www.knowledgehut.com/
blog/devops/best-os-for-docker (accessed on 28 May 2024).

5. Sergeev, A.; Rezedinova, E.; Khakhina, A. Docker Container Performance Comparison on Windows and Linux Operating Systems.
In Proceedings of the 2022 International Conference on Communications, Information, Electronic and Energy Systems (CIEES),
Veliko Tarnovo, Bulgaria, 24–26 November 2022; pp. 1–4. [CrossRef]

6. Kithulwatta, W.M.C.J.T.; Jayasena, K.P.N.; Kumara, B.T.G.S.; Rathnayaka, R.M.K.T. Performance Evaluation of Docker-Based
Apache and Nginx Web Server. In Proceedings of the 2022 3rd International Conference for Emerging Technology (INCET),
Belgaum, India, 27–29 May 2022; pp. 1–6. [CrossRef]

7. Lingayat, A.; Badre, R.R.; Kumar Gupta, A. Performance Evaluation for Deploying Docker Containers on Baremetal and
Virtual Machine. In Proceedings of the 2018 3rd International Conference on Communication and Electronics Systems (ICCES),
Coimbatore, India, 15–16 October 2018; pp. 1019–1023. [CrossRef]

8. Yadav, R.R.; Sousa, E.T.G.; Callou, G.R.A. Performance Comparison Between Virtual Machines and Docker Containers. IEEE Lat.
Am. Trans. 2018, 16, 2282–2288. [CrossRef]

9. Xu, P.; Shi, S.; Chu, X. Performance Evaluation of Deep Learning Tools in Docker Containers. In Proceedings of the 2017
3rd International Conference on Big Data Computing and Communications (BIGCOM), Chengdu, China, 10–11 August 2017;
pp. 395–403. [CrossRef]

10. Zhao, N.; Tarasov, V.; Albahar, H.; Anwar, A.; Rupprecht, L.; Skourtis, D.; Paul, A.K.; Chen, K.; Butt, A.R. Large-Scale Analysis of
Docker Images and Performance Implications for Container Storage Systems. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 918–930.
[CrossRef]

11. Dordević, B.; Timčenko, V.; Lazić, M.; Davidović, N. Performance comparison of Docker and Podman container-based virtualiza-
tion. In Proceedings of the 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and
Herzegovina, 16 March 2022; pp. 1–6. [CrossRef]

12. Sun, Y.; Safford, D.; Zohar, M.; Pendarakis, D.; Gu, Z.; Jaeger, T. Security Namespace: Making Linux Security Frameworks
Available to Containers. In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA,
15–17 August 2018; pp. 1423–1439.

13. Stan, I.M.; Rosner, D.; Ciocirlan, S.D. Enforce a Global Security Policy for User Access to Clustered Container Systems via User
Namespace Sharing. In Proceedings of the 2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet),
Bucharest, Romania, 11–12 December 2020; pp. 1–6. [CrossRef]

14. Unshare-Linux Manual Page. 2023. Available online: https://man7.org/linux/man-pages/man1/unshare.1.html (accessed on
29 May 2024).

15. The Linux Process Journey—PID 1 (Init). 2022. Available online: https://medium.com/@boutnaru/the-linux-process-journey-
pid-1-init-60765a069f17 (accessed on 29 May 2024).

16. Docker Run Reference. 2023. Available online: https://docs.docker.com/engine/reference/run/#foreground (accessed on
29 May 2024).

17. Biradar, S.M.; Shekhar, R.; Reddy, A.P. Build Minimal Docker Container Using Golang. In Proceedings of the 2018 Second
International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018; pp. 999–1000.
[CrossRef]

18. PS- Linux Manual Page. 2023. Available online: https://man7.org/linux/man-pages/man1/ps.1.html (accessed on
29 May 2024).

19. Nickoloff, J.; Kuenzli, S. Docker in Action, 2nd ed.; Manning: Amazon UK, 2019.
20. Mount Namespaces-Linux Manual Page. 2023. Available online: https://man7.org/linux/man-pages/man7/mount_

namespaces.7.html (accessed on 29 May 2024).

https://www.docker.com
https://survey.stackoverflow.co/2022/
http://doi.org/10.1109/ICSE-NIER52604.2021.00029
https://www.knowledgehut.com/blog/devops/best-os-for-docker
https://www.knowledgehut.com/blog/devops/best-os-for-docker
http://dx.doi.org/10.1109/CIEES55704.2022.9990683
http://dx.doi.org/10.1109/INCET54531.2022.9824303
http://dx.doi.org/10.1109/CESYS.2018.8723998
http://dx.doi.org/10.1109/TLA.2018.8528247
http://dx.doi.org/10.1109/BIGCOM.2017.32
http://dx.doi.org/10.1109/TPDS.2020.3034517
http://dx.doi.org/10.1109/INFOTEH53737.2022.9751277
http://dx.doi.org/10.1109/RoEduNet51892.2020.9324866
https://man7.org/linux/man-pages/man1/unshare.1.html
https://medium.com/@boutnaru/the-linux-process-journey-pid-1-init-60765a069f17
https://medium.com/@boutnaru/the-linux-process-journey-pid-1-init-60765a069f17
https://docs.docker.com/engine/reference/run/#foreground
http://dx.doi.org/10.1109/ICCONS.2018.8663172
https://man7.org/linux/man-pages/man1/ps.1.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html

Appl. Sci. 2024, 14, 6672 16 of 16

21. Yang, T.; Luo, Z.; Shen, Z.; Zhong, Y.; Huang, X. Docker’s Security Analysis of Using Control Group to Enhance Container
Resistance to Pressure. In Proceedings of the 2019 10th International Conference on Information Technology in Medicine and
Education (ITME), Qingdao, China, 23–25 August 2019; p. 656. [CrossRef]

22. Runtime Options with Memory, CPUs, and GPUs. 2023. Available online: https://docs.docker.com/config/containers/resource_
constraints/ (accessed on 29 May 2024).

23. Gorman, M. Understanding the Linux Virtual Memory Manager; Prentice Hall PTR: Hoboken, NJ, USA, 2004.
24. Petazzoni, J. Cgroups, Namespaces and beyond: What Are Containers Made from? Docker: Barcelona, Spain, 2015.
25. What Is WSL? 2023. Available online: https://learn.microsoft.com/en-gb/training/modules/wsl-introduction/what-is-wsl

(accessed on 29 May 2024).
26. Windows 11 WSL2 Performance Is Quite Competitive Against Ubuntu 20.04 LTS/Ubuntu 21.10. 2021. Available online:

https://www.phoronix.com/review/windows11-wsl2-good (accessed on 2 June 2024).
27. VPNkit Source Code Repository. 2023. Available online: https://github.com/moby/vpnkit (accessed on 2 June 2024).
28. Under the Hood: Demystifying Docker Desktop for Mac. 2018. Available online: https://collabnix.com/how-docker-for-mac-

works-under-the-hood/ (accessed on 2 June 2024).
29. Software License Agreement for macOS Ventura. 2022. Available online: https://www.apple.com/legal/sla/docs/macOSVentura.

pdf (accessed on 2 June 2024).
30. Arm-Based PCs to Nearly Double Market Share by 2027. 2023. Available online: https://www.counterpointresearch.com/arm-

based-pcs-to-nearly-double-market-share-by-2027/ (accessed on 2 June 2024).
31. Sladović, D.; Topolčić, D.; Delija, D. Overview of Mac system security and its impact on digital forensics process. In Proceedings

of the 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia,
28 September–2 October 2020; pp. 1236–1241. [CrossRef]

32. T2 Ubuntu Repository. 2023. Available online: https://github.com/t2linux/T2-Ubuntu (accessed on 2 June 2024).
33. Install Windows 10 on Your Mac with Boot Camp Assistant. 2020. Available online: https://support.apple.com/en-asia/HT201

468 (accessed on 2 June 2024).
34. Advanced Settings Configuration in WSL. 2023. Available online: https://learn.microsoft.com/en-us/windows/wsl/wsl-

config#configure-global-options-with-wslconfig (accessed on 2 June 2024).
35. Kovács, A. Comparison of different Linux containers. In Proceedings of the 2017 40th International Conference on Telecommuni-

cations and Signal Processing (TSP), Barcelona, Spain, 5–7 July 2017; pp. 47–51. [CrossRef]
36. Benchmarking MySQL 5.7 Using Sysbench 1.1. 2023. Available online: https://minervadb.com/index.php/2018/03/13

/benchmarking-mysql-using-sysbench-1-1/ (accessed on 2 June 2024).
37. Hackintosh-Project Site. 2023. Available online: https://hackintosh.com/ (accessed on 2 June 2024).
38. Docker Documentation: Known Issues for Mac with Apple Silicon. 2023. Available online: https://docs.docker.com/desktop/

troubleshoot/known-issues/ (accessed on 2 June 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ITME.2019.00151
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
https://learn.microsoft.com/en-gb/training/modules/wsl-introduction/what-is-wsl
https://www.phoronix.com/review/windows11-wsl2-good
https://github.com/moby/vpnkit
https://collabnix.com/how-docker-for-mac-works-under-the-hood/
https://collabnix.com/how-docker-for-mac-works-under-the-hood/
https://www.apple.com/legal/sla/docs/macOSVentura.pdf
https://www.apple.com/legal/sla/docs/macOSVentura.pdf
https://www.counterpointresearch.com/arm-based-pcs-to-nearly-double-market-share-by-2027/
https://www.counterpointresearch.com/arm-based-pcs-to-nearly-double-market-share-by-2027/
http://dx.doi.org/10.23919/MIPRO48935.2020.9245397
https://github.com/t2linux/T2-Ubuntu
https://support.apple.com/en-asia/HT201468
https://support.apple.com/en-asia/HT201468
https://learn.microsoft.com/en-us/windows/wsl/wsl-config#configure-global-options-with-wslconfig
https://learn.microsoft.com/en-us/windows/wsl/wsl-config#configure-global-options-with-wslconfig
http://dx.doi.org/10.1109/TSP.2017.8075934
https://minervadb.com/index.php/2018/03/13/benchmarking-mysql-using-sysbench-1-1/
https://minervadb.com/index.php/2018/03/13/benchmarking-mysql-using-sysbench-1-1/
https://hackintosh.com/
https://docs.docker.com/desktop/troubleshoot/known-issues/
https://docs.docker.com/desktop/troubleshoot/known-issues/

	Introduction
	Docker Architectures
	Docker on Linux
	PID Namespace
	Mount Namespaces
	Network Namespaces
	User Namespace
	IPC Namespace
	Control Groups

	Docker for Windows
	Docker for Mac

	Methodology
	Test Platform
	Choosing Testing Platform
	Used Operating Systems
	Docker Settings

	Test Methodology
	Calculating Pi Number
	Sysbench
	Iperf3 Tool
	Complex Benchmarks
	DoS
	Apache Slowhttp Attack

	Visualization and Analysis
	Pi Calculation in C
	Sysbench
	Iperf3
	7zip
	Pgbench
	Apache

	Conclusions and Future Work
	macOS Verdict
	Linux Verdict
	Windows Verdict
	Critical Examination of Testing Methods
	Potential Further Research
	Use Official Linux Distribution
	Change Test Platform to Non-Apple
	ARM Test Platform
	Use More Than One Test Platform
	Measure Performance Difference between Virtual Machine or Different Container Technology

	Summary
	Future Work

	References

