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Abstract: In complex terrain, such as uneven roads or irregular terrain, two-wheeled heavy-duty self-
balancing vehicles are easily affected by external interference factors, causing rollover or rendering
the vehicle unable to move, which poses a greater challenge to its stability control. Therefore, it is
necessary to establish a kinematic model of a two-wheeled vehicle and design a control system to
study its driving stability. This paper aims to study the stability control system of a two-wheeled
self-balancing vehicle under complex terrain. First, a self-balancing vehicle modeling method based
on complex terrain is designed. By analyzing the motion characteristics of the self-balancing vehicle,
a kinematic model suitable for complex terrain is established, which provides a basis for subsequent
control algorithms. Secondly, a precise control system is designed for different terrain conditions, and
parameters such as vehicle attitude, speed and acceleration are adjusted through the Proportional–
Integral–Derivative (PID) control algorithm to achieve the smooth operation of the self-balancing
vehicle in complex terrain. In addition, a vehicle-mounted camera is used to capture terrain images
in real time, and different terrains are accurately identified through the terrain recognition algorithm
based on deep learning, thereby determining the friction coefficient and effectively improving the
stability of the self-balancing vehicle on complex terrain. The experimental results show that the
designed control system can enable the self-balancing two-wheeled vehicle to achieve stable balance
control in different terrains, and has good applicability and stability.

Keywords: two-wheeled self-balancing vehicle; motion control; PID control; deep learning; terrain
recognition

1. Introduction

Nowadays, the complexity and diversity of the working environment have placed
increasing demands on the mechanical structure design of mobile robots. Mobile robots are
increasingly used to replace humans in harsh environments to complete some tasks, such
as earthquake rescue, fire detection, the transportation of dangerous goods, etc. Consid-
ering that robots need to respond quickly and encounter complex road conditions when
working, among the existing technologies, wheel-legged robots that combine the motion
advantages of wheeled and legged mobile robot mechanisms have received widespread
attention [1,2]. A wheel-legged robot is a nonlinear, under-actuated, strongly coupled
multi-variable system. The problem of motion balance has always been a key issue in the
research of wheel-legged robots. The study of its motion control has great theoretical and
practical significance.

With the increasing popularity of mobile robots in recent years, the structure of robots
has become more and more novel, such as the foreign Boston Dynamics bipedal humanoid
robot and the two-wheeled robot of the Zurich team in Switzerland. In recent years, Tencent
Labs has released the latest wheel-legged robots in China and the Xingtian robot from
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Benmo Technology Company (Dongguan, China). Their own topological structures have
their own merits, and the current research on this type of robot is still at a critical stage.
Among them, there are many researchers of humanoid robots [3,4]. There are two very
important criteria for the quality of humanoid robots. The first criterion is controllability,
and the second criterion is maneuverability. When humanoid robots solve their mobility
problems, they mainly use two methods: bipedal walking and wheeled. Bipedal walking
is a method often used by humanoid robots. Many research institutions have adopted
corresponding methods to realize the bipedal walking of robots. Both feet have superior
performance on rough roads, going up and down stairs, and in complex outdoor environ-
ments. However, its maneuverability is slightly insufficient, and its traveling speed on flat
roads cannot meet the ideal requirements. Moreover, the mechanical structure is complex,
making it difficult to manufacture and design.

Wheeled robots are also a solution for humanoid robot walking. The high mobility of
wheeled vehicles on level ground and their flexibility in small spaces are what motivate
researchers to study them. Wheeled robots require at least three wheels to achieve static
stability, while common vehicles are generally equipped with four wheels to ensure stability
at high speeds. However, in the case of non-flat roads, four-wheel vehicles need to design
corresponding suspension systems to solve the over-constraint problem caused by the four
wheels, resulting in an increase in the structural complexity of the system. The two-wheeled
self-balancing robot has the characteristics of simple structure and flexible movement. Its
left and right wheels are connected on the same axis. Two-wheeled self-balancing robots can
complete complex movements and operations in a small space. Such superior performance
is not available in multi-wheeled robots [5].

With the rapid development of computer vision, its applications in various fields are
becoming more and more widespread. Terrain recognition, as one of the important research
contents in the current field of robotics, has also made significant progress with the help
of deep learning. The goal of terrain recognition is to achieve the classification of terrain
types, the perception of ground conditions, and path planning through automatic detection
and identification of surface features around the robot, which has important application
value in the field of intelligent robots [6–8]. Terrain recognition technology is particularly
important for robot applications, especially outdoor robots. It is mainly based on advanced
convolutional neural network (CNN) frameworks, such as VGGNet [9], ResNet [10] and
DenseNet [11], etc., which can automatically learn feature representations from terrain
images to obtain excellent performance [12]. Fei et al. [13] proposed a deep coding pool
network based on ResNet to identify flat, obstacle-laden and complex terrain, and assist
the robot in gait switching during movement. In addition, for mobile deployment, some
lightweight networks have been recently proposed, such as ShuffleNet [14], GhostNet [15]
and MobileNet [16]. These networks require fewer parameters and calculations, but
are more accurate and convergent. The speed is not as good as the above models with
larger parameters.

In this work, we designed a stability control system for a two-wheeled heavy-duty
self-balancing vehicle to achieve the stable operation of the self-balancing vehicle on
complex terrain. First, its kinematic characteristics are analyzed and modeled to understand
the vehicle’s dynamic properties and control requirements. Secondly, a real-time terrain
recognition method was established based on deep learning technology to accurately
identify the terrain of the self-balancing vehicle and determine the friction coefficient,
thereby ensuring the stability of the self-balancing vehicle and achieving precise control.
Finally, the effectiveness and stability of the proposed control system in complex terrain
were verified through experiments. Figure 1 is a structural diagram of the stability control
system of a two-wheeled self-balancing vehicle. The main contributions of this paper are
summarized below.

1. Design a heavy-duty two-wheeled self-balancing vehicle modeling method to make
the center of mass calibration more accurate.
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2. Determine the friction coefficient through terrain recognition results to ensure the
stability of the self-balancing vehicle and achieve precise control.

3. Propose a lightweight terrain recognition method based on deep learning, introduce a
coordinate attention mechanism to improve the network’s feature extraction capabili-
ties for different types of terrain, and construct an auxiliary loss function to optimize
the network.

The remainder of this paper is organized as follows. Section 2 introduces related work,
including wheel-legged robots, terrain recognition, and self-balancing control strategies.
Section 3 introduces the research methods, including establishing a dynamic model of a two-
wheeled self-balancing vehicle, a self-balancing control algorithm and a lightweight terrain
recognition network. Section 4 introduces the terrain recognition results and experimental
results. Section 5 summarizes the work of this paper.

Figure 1. Two-wheeled self-balancing vehicle stability control system structure diagram, including
modeling, terrain recognition, and stability control.

2. Related Work

Next, we will introduce the development history of the types of wheel-legged robots,
the research on terrain recognition methods, and the self-balancing control strategy.

2.1. Wheel-Legged Balancing Robot

Robots traveling in complex outdoor environments need to have strong obstacle
avoidance performance, climbing performance, chassis stability and flexibility. There are
four main types of existing robot walking mechanisms: four-wheeled, bipedal, four-legged
and crawler. In recent research, wheel-legged robots have received widespread attention
as a multi-modal motion mechanism. The robot combines the characteristics of wheels
and legs and can travel in wheel mode on flat ground and switch to leg mode on complex
terrain to overcome obstacles and irregular terrain. Wheel-legged robots are a combination
of legged robots and wheeled robots. They have humanoid or bionic leg structures and
the characteristics of wheeled robots. Two-wheeled and wheel-legged bionic robots not
only have the advantages of two-wheeled self-balancing robots, but also take into account
the flexible humanoid or bionic characteristics of legged robots, and have huge potential
application prospects in various fields. Figure 2 shows some existing pictures of wheel-
legged robots. Among them, (a) and (b) are from references [4,5], (c) is the Ollie robot from
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Tencent Robotics X Lab, (d) is from ETH Zurich, (e) is a balanced infantry robot made by
Harbin Engineering University, and (f) is the Xingtian robot from China Benmo Technology
Company.

Research on wheel-legged robots aims to explore their applicability and advantages in
different environments. A key research direction consists of mode switching and control
strategies for robots. In order to achieve reliable mode switching and smooth motion,
researchers have proposed various mode switching strategies [17,18]. In addition, the
perception capabilities and environment modeling of wheel-legged robots are also a key
aspect of the research. In order to achieve autonomous navigation and obstacle avoidance,
robots need to accurately sense and understand the surrounding environment. Therefore,
researchers use sensors, cameras, and inertial measurement units to obtain information
about terrain and obstacles and conduct environment modeling. This information is used
for tasks such as terrain recognition, path planning, obstacle avoidance, and environment
perception [19,20].

(a) (b) (c) (d) (e) (f)

Figure 2. Different types of wheel-legged robots available.

2.2. Terrain Recognition

Terrain recognition is crucial for gait planning, speed control and surrounding en-
vironment observation of outdoor mobile robots. Before the emergence of CNN models,
traditional terrain recognition solutions usually performed classification by extracting basic
visual features such as the color and texture of terrain images. Li et al. [21] proposed an
extreme learning method with filters and clustering algorithms to classify terrain images,
and achieved remarkable results. Ebadi et al. [22] extracted color features from road digital
images collected by cameras installed on cars, and then used multi-layer perceptron to
classify the color features, thereby achieving the classification of four types of soil, grass,
stone, and asphalt. For the purpose of terrain classification, Liu et al. [23] designed a
complex terrain sample segmentation scheme, using a combination of graph segmentation
and watershed segmentation to identify terrain images.

The traditional vision-based terrain recognition method has many shortcomings. The
recognition effect is not good under the influence of complex terrain environment, lighting
and other external environments, and it cannot meet the real-time needs. With the contin-
uous development of CNN, deep learning methods have gradually become mainstream,
which can effectively solve the limitations of traditional terrain recognition methods and
improve recognition accuracy and reliability [24]. Liu et al. [25] first introduced the deep
learning method into scene terrain recognition, and proposed a terrain classification method
based on a deep sparse filtering network, which combines the spatial information between
image pixels with the input data, and uses the deep learning network to automatically learn
features from the input data to classify the terrain. Wei et al. [26] proposed a lightweight and
efficient deep neural network for pixel-level terrain recognition in complex environments
to achieve the global perception of outdoor environments. The deep learning network can
not only extract the spatial geometric features of terrain images, but also extract the color
texture details of terrain images, achieving end-to-end learning [27–29].

2.3. Self-Balancing Control Strategy

The wheel-legged robot is a robot system with the ability to move autonomously. It
has a unique wheel–foot structure and can achieve stable movement on uneven ground.
In order to maintain the balance of the robot, self-balancing control strategy is one of the
key research directions. In related research, a variety of self-balancing control strategies
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have been proposed to improve the stability and motion performance of wheeled robots.
A common self-balancing control strategy is the PID controller-based approach. The PID
controller calculates and controls the robot’s output by measuring the error between the
robot’s current state and the target state to maintain the robot near its equilibrium position.
This method achieves self-balancing control by continuously adjusting the speed and
attitude of the robot. Tran et al. [30] proposed a fuzzy LQR PID control for a bipedal
wheeled balancing robot to maintain stability under uncertainty and variable height. LQR
control is used to stabilize the robot and control its movement, and PID control is used to
control the robot’s posture and help maintain balance. Zhang et al. [5] used PID control
strategy to perform balance control and speed control on a two-wheeled wheel-legged
robot. They placed the balance controller in the inner loop of the speed controller to ensure
the priority of balance control, by changing the target inclination angle of the balance
controller to control the speed. Liu et al. [1] proposed a variable-height dynamic balance
control strategy based on a PID controller, using a PID controller for dynamic balance
control. By constraining the center of mass to an axis perpendicular to the ground, at the
center of the two wheels, the height can be changed while maintaining dynamic balance.

3. Methods

This section first introduces the structure and kinematics of the two-wheeled self-
balancing vehicle. By accurately establishing the kinematic model between each joint angle
and joint position coordinates, it provides the basis for subsequent control algorithms. A
lightweight terrain recognition algorithm based on attention mechanism and auxiliary
loss function is proposed to accurately identify different terrains and thereby adaptively
determine the friction coefficient. Finally, the PID control algorithm is used to adjust vehicle
attitude, speed, acceleration and other parameters to achieve the smooth operation of the
self-balancing vehicle in complex terrain. The overall flow chart of the control system is
shown in Figure 3.

Figure 3. Wheel-legged robot stability control flow chart.

3.1. Establishment and Analysis of Kinematic Models

Since the wheel-legged robot is equipped with drive motors on its hip and knee
joints, and it is assumed that the left and right joints move synchronously, the robot can be
abstracted into a wheeled inverted pendulum model with a variable structure [31]. The
forward kinematics modeling method is used to derive the posture of each link relative to
the base frame, and then the position of the robot’s center of mass is calculated. In order
to derive the position and tilt angle of the robot’s center of mass, the general formula for
calculating the center of mass is first given as follows:

X f ull
(

px, py, pz
)
=

∑ miXw
i (q)

∑ mi
(1)

Xw
i (q) = Tw

i (q)Xi
i (2)

The center of mass positions px, py, pz are vectors about the current posture of the
robot, X f ull represents the center of mass position of the robot in the current posture, q is a
vector about the joint angle, and mi represents the mass of the i-th link. Xw

i (q) represents
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the center of mass position of the i-th link in the current posture, Tw
i (q) is the transformation

matrix of the local coordinate system of link i relative to the base coordinate system, and Xi
i

is the position of the center of mass of link i in the local coordinate system.
The complete mechanical structure and coordinate diagram of the robot are shown

in Figure 4. In order to obtain the transformation matrix of the robot, we establish a
reference coordinate system. According to the structural parameters of the robot link, the
Denavit–Hartenberg (D-H) parameter table of the robot can be listed [32], as shown in
Table 1. Among them, i1 represents a joint, ai−1 is the angle difference between joint i1
and joint i on the z-axis, and li−1 is the shortest distance between joint i1 and joint i on the
z-axis. di is the shortest distance between ai−1 and ai, and θi is the angle difference between
ai−1 and ai. L1 is the length of the calf, L2 is the length of the thigh, L3 is the length from
the end of the thigh to the carrying platform, a is the length of the two wheel axes, b is the
shoulder width, and c is the waist width.

Table 1. D-H parameter table of the two-wheeled self-balancing vehicle.

i ai−1 li−1 di θi

1 0 0 a
2 θ1

2 0 L1 0 θ2
3 0 L2 − b

2 θ3
4 0 L3 − c

2 −90◦

Figure 4. Coordinate diagram of wheel-legged robot, the arrows represent the base coordinate system,
and 0–7 represent different joints.

The individual transformation matrix of each link is obtained from the transformation
matrix formula of adjacent links, and then the transformation matrix of each link relative to
(0) is obtained. Among them, the transformation matrix of the carrying platform (4) relative
to the reference coordinate system (0) is:
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T0
4 = T0

1 T1
2 T2

3 T3
4 =


s123 c123 0 L1c1 + L2c12 + L3c123
−c123 s123 0 L1s1 + L2s12 + L3s123

0 0 1 0
0 0 0 1

 (3)

Next, we measure the mass of each link and the position of its center of mass relative
to its local frame. Substituting the measurement results into Equations (1) and (2), the
center of mass position of the robot relative to the base frame can be solved.

X f ull
(

px, py, pz
)
=

X0
AmA+X0

BmB+X0
CmC+X0

DmD+X0
EmE

mA+mB+mC+mD+mE
(4)

It can be seen from the above formula that the center of mass positions (px, py, and pz)
are vectors related to the current pose q of the robot, and the tilt angle of the robot can be
obtained as:

∅ = arctan
(

px
py

)
(5)

When the robot is in dynamic equilibrium, ∅ = 0. In order to maintain the overall
balance, the waist is also in a horizontal posture, and at the same time, it is also expected to
control its overall height, therefore:

k1s1 + k2c1 + k3c3 + k4s3 + k4s3 + k5 = 0 (6)

θ1 + θ2 + θ3 = π
2 = 90◦ (7)

L1s1 + L2s12 + L3s123 = h (8)

3.2. Research on Control Strategy of Self-Balancing Two-Wheeled Vehicle

This study uses the PID algorithm as the core of the robot’s motion balance controller
to design a control method for wheel-legged balance robots to achieve stable operation
and unilateral obstacle crossing on complex terrain. The mathematical principle of the PID
algorithm is as follows:

uk = Kp · e(k) + Ki ·
k

∑
j=0

ej + Kd · (ek − ek−1) (9)

In the formula, uk is the control quantity, ek is the current error of the control quantity,
Kp is the proportional coefficient used to adjust the system’s response speed to the control
quantity, and Kp is the integral coefficient used to eliminate the error of the control quantity
in the steady state of the system. Kp is a differential coefficient used to suppress system
oscillation caused by the control variable during the control process. When the wheel-
legged robot moves forward or backward, if the robot load is unknown, there will be a
certain error between the calculated center of mass position of the robot and the actual
position. If there is only a PD balance controller, the system will lose control due to
model errors. A PI speed controller needs to be added to calculate a new balance target
inclination angle to eliminate the impact of the error and improve system stability, as shown
in Figure 5a. Therefore, the control algorithm consists of a negative feedback balanced
upright loop PD controller and a positive feedback speed loop PI controller. Since upright
balance is the ultimate control goal, the output of speed control is used as the input of
upright control, and the relationship between the two is as follows:{

u = Kp · (φ − u1) + Kd · φ̈

u1 = Kp1 · e(k) + Ki1 · ∑k
j=1 e(j) (10)

u = Kp · φ + Kd · φ̈ − Kp ·
[
Kp1 · e(k) + Ki1 · ∑k

j=1 e(j)
]

(11)
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where, Kp = 17.7, Kd = 200.0, Kp1 = 0.039, Ki1 = 0.000195. When a wheel-legged robot
performs a unilateral obstacle course, its knee joint is raised when it encounters an obstacle
in the roll angle direction. In order to achieve balance between the left and right calves, the
roll angle integral angle of the gyroscope is selected as the deviation, and the roll angular
velocity is used as the differential term for PD control, as shown in Figure 5b.

u = Kp3 · (φ − u) + Kd3 · φ̇ (12)

where, Kp3 = −4.5, Kd3 = −20.

(a) Forward and backward; (b) Unilateral obstacle crossing.

Figure 5. Unilateral obstacle crossing. (a) Forward and backward, (b) unilateral obstacle crossing,
where α is the speed control signal, β is the balance control signal, ν is the actual left and right wheel
speed, φ and ω are the actual pitch angle and angular velocity, β

′
is the unilateral balance control

signal, and ω
′

is the actual roll angle.

3.3. Terrain Recognition and Stability Analysis

In this section, we will focus on the terrain recognition network LA-MobileNet (The
“LA” stands for lightweight and high accuracy) and its components, including the coor-
dinate attention mechanism and auxiliary loss function. In addition, we also conducted
a detailed analysis of the stability of the two-wheeled self-balancing vehicle on flat and
sloped terrain.

3.3.1. LA-MobileNet Network

The overall structure of the LA-MobileNet is shown in Figure 6. First, cascaded
convolutional layers are used for feature extraction, then its output is input to the global
pooling layer to obtain the spatial geometric features of the image, and finally the predicted
category is obtained through the classifier. The CA [33] is introduced into the Bneck
structure, and global average pooling is performed from the horizontal and vertical spatial
directions to obtain direction-awareness and position-awareness information. An auxiliary
loss function is used in the middle layer of the network to alleviate the problem of vanishing
gradients and improve the generalization ability of the neural network.

The SE [34] attention mechanism in the MobileNetV3 model mainly focuses on internal
channel information without considering the impact of position information. In contrast, the
CA embeds position information into channel attention, which not only avoids introducing
excessive calculations, but also enables the model to obtain richer information. The structure
is shown in Figure 6. The CA module can avoid the loss of position information caused by
global pooling–2D operations, focus on the width and height dimensions, respectively, and
effectively utilize the spatial coordinate information of the input feature map. The output
of the c-th channel with height h and width w is shown in Equations (13) and (14). Among
them, in the horizontal pooling operation, each row of the attention matrix is summed to
obtain a horizontal summary attention vector, as shown in Equation (13). In the vertical
pooling operation, each column of the attention matrix is summed to obtain a vertical
summary attention vector, as shown in Equation (14).
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Zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (13)

Zw
c (w) =

1
H ∑

0≤j≤H
xc(j, w) (14)

where xc(h, i) represents the input of the c-th channel in the horizontal direction; xc(j, w)
represents the input of the c-th channel in the vertical direction; H and W represent the
height and width of the input feature map, respectively.

Figure 6. (a) Overall structure of LA-MobileNet; (b) Bneck structure with CA; (c) the coordinate
attention mechanism structure, where f1 and f2 are direction-aware features, and f3 and f4 are
attention weights in the vertical and horizontal directions.

Coordinate attention first splices the feature maps obtained in the previous stage
in the spatial dimension, uses 1 × 1 convolution to compress the channels, and uses the
ReLu function to perform nonlinear activation of spatial information in the vertical and
horizontal directions. The feature map is then divided into horizontal tensors and vertical
tensors. Then, 1 × 1 convolution is used to increase the channel dimension so that the
number of channels is consistent with the input feature map. Finally, the Sigmod function
is used for nonlinear activation and weighted fusion. The final output result is shown in
Equation (15).

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (15)

Among them, yc(i, j) is the output of the c-th channel; xc(i, j) is the input feature map;
gh

c (i) is the attention weight in the horizontal direction; gw
c (j) is the attention weight in the

vertical direction.
The backbone network we use is MobileNetV3-large, which has a deep network

structure and is prone to the problem of vanishing gradients. Inspired by the literature [35],
we choose to add an auxiliary classifier on the feature layer of 32 × 32 size. In order to
obtain more hierarchical features, a Bneck module is added to the classifier for feature
extraction, and then a classifier composed of Dropout, ReLU and Linear layers is used
for classification. Finally, the output results of both classifiers are calculated using cross
entropy loss and combined according to certain weights.
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Loss = β · Loss1 −(1 − β) · ln(1 − Loss2) (16)

Loss1 is the backbone network loss, and Loss2 is the auxiliary classification loss.
Through experiments, we found that the best effect is when the weight coefficient β is 0.8.

Since there are currently few publicly available terrain datasets, the GTOS-mobile [36]
dataset is used for network training. The GTOS-mobile dataset covers 31 types of outdoor
ground terrain under different weather and lighting conditions. In order to better apply it
to the terrain recognition algorithm, we have reorganized it and retained the 8 common
terrain categories in the image dataset, namely soil, pebble, sand, cement, grass, asphalt,
brick, and wood_chips. It contains 35,163 training sets and 1713 test sets. Various terrain
maps are shown in Figure 7. We named this dataset GTOS-mobile8. During the training
process, we use cutmix and mixup methods for data enhancement, and set the training and
test image sizes to 256 × 256.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Different ground terrain datasets. (From (a)–(h): soil, pebble, sand, cement, grass, asphalt,
brick, wood_chips).

3.3.2. Stability Analysis

In the static simulation, it was determined that the robot is made of stainless steel
with a density of 7930 kg/m3, and the rubber density of the tire is 1200 kg/m3. Through
the statistics of the 3D digital model with a 1:1 ratio with the real object, it is known that
the mass of the truss composed of non-standard stainless steel parts is 35.3 kg, the mass
of the 4 wheels is 10 kg, and the total mass of the 2 hip joints, 2 knee joints, and 2 ankle
joints is 36.4 kg. The total mass of the wheeled robot is 81.7 kg, and its center of gravity
coordinates are (0,0,0). Based on this, the theoretical analysis of the robot’s driving stability
on flat ground and slopes is carried out. The C++ programming language was used, and
the UG10.0 (Unigraphics NX) 3D digital model design software was used to design the
robot in 1:1 size. The ANSYS Workbench2021R2 simulation software was used to construct
the finite element space of the digital model.

Straight-line driving stability means that the tires do not slip during straight driving,
and the condition is that the tire adhesion force is not less than the driving force Ft generated
by the ankle joint motor. The driving force is the resultant force in the horizontal direction
from the ground resistance Ff , air resistance Fw and acceleration resistance Fj during tire
rolling. As shown in Figure 8a, the relationship is shown in the following formula.

Ft = Ff + Fw + Fj ≤ Fµ

f mg + 1
2 CD Aρv2 + ma ≤ µmg

(17)

In the formula, f is the rolling damping coefficient, g is the acceleration of gravity, CD
is the air damping coefficient, ρ is the air density, A is the windward area, v is the relative
speed of the robot and the air, m is the mass of the robot, a is the acceleration, and µ is the
adhesion coefficient between the tire and the road. Under normal circumstances CD, ρ, g,
A and m remain unchanged, so the instantaneous acceleration a when the robot travels
horizontally and straight mainly depends on the adhesion coefficient µ and the rolling
damping coefficient f . That is, the constraint condition for the wheel-footed robot to run
straight on flat ground without slipping is:
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a ≤ µmg − f mg − 1/2CD Aρv2

m
(18)

In the above formula, CD is 0.3, air density ρ is 1.29 kg/m3, gravity acceleration
g = 9.80 m/s2, robot windward area A = 0.45 m2, and mass m is 81.7 kg. On cement floors,
bricks and asphalt roads, the adhesion coefficient µ between the rubber tire and the ground
should be 0.7, the rolling damping coefficient f should be 0.4, and the maximum straight
speed is designed according to 10 m/s. Then, the acceleration a ≤ 2.83 m/s2 during the
straight movement of the wheel-footed robot, otherwise slipping may occur. On grass, sand,
soil, gravel and wood chips roads, the adhesion coefficient µ between the rubber tire and
the ground should be 0.6, the rolling damping coefficient f should be 0.5, and the maximum
straight speed is designed according to 6 m/s. Then the acceleration a ≤ 0.94 m/s2 during
the straight movement of the wheel-footed robot, otherwise it may slip.

As shown in Figure 8b. The distance between the grounding points O1 and O2 of the
two wheels of the robot is L. When the robot is located on a slope with a slope angle a, the
contact point between the front wheel and the ground is O1, the contact point between the
rear wheel and the ground is O2, and the height of the center of gravity O from the slope is
h, and its projection on the ground moves from point P1 on the level ground to point P2
on the sloped ground, the distances between point P2 and points O1 and O2 are L2 and L1,
respectively. At this time, L2 < L1, so the pressure of the robot on the ground at point O2 is
greater than that at point O1.

The condition for a wheel-footed robot to travel on a slope without tipping longitudi-
nally is that the vertical pressure on the ground at the contact point between the wheels
with a higher horizontal position on the slope and the ground is greater than zero. Since
the slope will affect the position of the robot’s center of gravity at point P2 on the slope,
when the slope is large enough, point P2 coincides with point O2. At this time, L1 = 0,
L2 = L, the pressure of the robot’s front wheels on the ground is 0, and the pressure of the
rear wheels on the ground is G. Since the friction force provided by the ground for the
wheels under extreme slope conditions is only used to offset the component of the robot’s
gravity parallel to the slope, it will cause the robot to tip over on the slope. At this time, the
distance from point P1 to point O2 is 0.5 L, and h is the distance from the center of gravity
O of the robot to the slope surface, as shown in Figure 8b. The expression of the limit tilt
angle according to the geometric relationship is as follows:

βo−lim = arctan
0.5L3

h
(19)

Combined with the wheel-footed robot body structure, the height of the center of
gravity h is 0.350 m, the distance L between the two wheel axes is 0.532 m, L3 is 0.710 m,
the limit tilt angle for the lateral direction is βo−lim = 45.41◦.

(a) Flat ground force analysis. (b) Slope force analysis.

Figure 8. Stability analysis of wheel-legged self-balancing robot on different terrains.
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4. Experiments and Results

In this section, we conducted terrain recognition experiments and result analysis
based on deep learning, as well as stability experiments and analysis of the two-wheeled
self-balancing vehicle in straight driving and obstacle crossing on different terrains.

4.1. Terrain Recognition Results

To verify the performance of the proposed LA-MobileNet model, we compare it with
several state-of-the-art classification methods, including VGG16, ResNet50, ShuffleNetV2,
MobileNetV3, EfficientNet [37], InceptionV3 [38] and DenseNet. The experimental results
are shown in Table 2. It can be seen that LA-MobileNet achieved better results. Compared
with Resnet50, a model with a larger number of parameters, the indicators Accuracy,
Recall, F1-score and Precision have increased by 0.7%, 1.35%, 1.34% and 0.87%, respectively.
Compared with the lightweight model ShuffleNetV2, the indicators Accuracy, Recall,
F1-score and Precision have increased by 2.16%, 4.78%, 4.33% and 2.05%, respectively.

Table 2. Experimental results of different models on the GTOS-mobile8 dataset.

Method Accuracy Recall F1-Score Precision

VGG16 [9] 0.8844 0.8036 0.7834 0.7896
Resnet50 [10] 0.9539 0.9380 0.9413 0.9515

ShuffleNetV2 [14] 0.9393 0.9040 0.9114 0.9397
MobileNetV3 [16] 0.9335 0.8881 0.8941 0.9241
EfficientNet [37] 0.9189 0.8733 0.8790 0.9407
InceptionV3 [38] 0.9317 0.9519 0.9410 0.9395

DenseNet [11] 0.9644 0.9380 0.9477 0.9673
LA-MobileNet 0.9609 0.9515 0.9547 0.9602

The results in bold mean the best performance under different metrics.

To verify the effectiveness of auxiliary loss and CA, respectively, we conducted ex-
periments, and the results are shown in Table 3. Among them, MobileNetV3+Auxloss
and MobileNetV3+CA introduce auxiliary loss and CA into the MobileNetV3 network,
respectively, and LA-MobileNet simultaneously introduces auxiliary loss and CA into the
MobileNetV3 network. It can be seen that after the introduction of auxiliary loss, Accuracy,
Recall, F1-score and Precision increased by 1.80%, 5.05%, 3.63% and 1.98%, respectively,
which verified that the auxiliary loss function can provide additional supervisory infor-
mation during the model training process, help the network learn more complete feature
information, and enhance its generalization ability, thereby improving the classification
accuracy of the model. After fusing CA, Accuracy, Recall, F1-score and Precision increased
by 2.33%, 3.93%, 3.87%, 2.96%, respectively, which verifies that CA can effectively capture
the spatial position information in the feature map, improve the model’s perception of
spatial features, and thereby improve the accuracy of classification. When the above two
improvement points are adopted at the same time, the performance of the network is
further improved, achieving 96.09% Accuracy, 95.15% Recall, 95.47% F1-score and 96.02%
Precision, which proves the effectiveness of the improvements. In addition, the number of
parameters of LA-MobileNet is 3.26 M, the floating-point operation amount is 0.31 G, and
the time required to predict a single image on our experimental platform is 24.85 ms.

Table 3. Ablation experimental results on GTOS-mobile8 dataset.

Method Accuracy Recall F1-Score Precision

MobileNetV3 0.9335 0.8881 0.8941 0.9241
MobileNetV3+Auxloss 0.9515 0.9386 0.9304 0.9439

MobileNetV3+CA 0.9568 0.9274 0.9328 0.9537
LA-MobileNet 0.9609 0.9515 0.9547 0.9602

The results in bold mean the best performance under different metrics.
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4.2. Two-Wheeled Self-Balancing Vehicle Experimental Results

The experiment of forward movement and unilateral obstacle crossing of the wheel-
legged balance robot based on the control algorithm is shown in Figure 9. Among them,
Figure 9a shows the change in the pitch angle during the advancement of the robot on the
horizontal ground. The whole process lasts for 12 s, and the pitch angle fluctuates in the
range of −2◦ < φ < 2◦, which is relatively stable. Figure 9b shows the change in the pitch
angle during the unilateral obstacle crossing of the robot. The initial speed of the unilateral
obstacle crossing is v = 2 m/s. The whole process lasts 12 s. During the time period of
0–4.92 s, the wheels are traveling on flat ground. The fluctuation range of the pitch angle
is −2◦ < φ < 2◦. At 4.92 s, the single-sided wheel touches the 15◦ slope, and at 6.21 s,
the single-sided wheel breaks away from the 15◦ slope. The maximum pitch angle change
during the entire process is −15◦ when the wheels are traveling on level ground. After
6.21 s, the pitch angle returns to near the equilibrium point, and parking is achieved at 9 s.
The time period of 9–12 s is the change in the upright static equilibrium pitch angle after
parking, and the change range is −2◦ < φ < 2◦.

(a) Go straight on level ground. (b) Unilateral obstacle crossing.

Figure 9. Experimental results of wheel-legged balancing robot.

5. Conclusions

This paper constructs a stability control system for a two-wheeled self-balancing
vehicle in complex terrain. First, a self-balancing vehicle modeling method is designed
based on complex terrain and its kinematic model is established to provide a basis for
subsequent control algorithms. Secondly, the PID control algorithm is used to adjust
parameters such as vehicle attitude, speed and acceleration to achieve smooth operation
of the self-balancing vehicle in complex terrain. In addition, in view of the problem that
the traditional terrain recognition algorithm model is large and inconvenient to deploy on
the mobile terminal, this paper proposes a lightweight terrain recognition network (LA-
MobileNet). This network can accurately identify the terrain of the self-balancing vehicle
and determine the friction coefficient, thereby ensuring the operational stability of the
self-balancing vehicle. LA-MobileNet enhances the representation ability of image features
by introducing a coordinate attention mechanism into its backbone network, avoids the loss
of position information in two-dimensional global pooling, and constructs an auxiliary loss
function to optimize the network. Finally, the effectiveness and stability of the proposed
control system in complex terrain are verified through experiments.
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