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Abstract: Oxygen consumption (
.

VO2) estimation is vital for evaluating aerobic performance and
cardiovascular fitness. This study explores various regression models to develop a real-time

.
VO2

and
.

VO2max estimation model. Utilizing a dataset from PhysioNet, encompassing cardiorespiratory
measurements from 992 treadmill tests conducted at the University of Malaga’s Exercise Physiology
and Human Performance Lab from 2008 to 2018, participants aged 10 to 63, including amateur and
professional athletes, underwent breath-by-breath monitoring of physiological parameters. The
study underlines the efficacy of regressor models in handling complex datasets and developing a
robust real-time

.
VO2 estimation model. After adjusting parameters to

.
VO2 in “mL/kg/min” from

“mL/min”, and selecting ‘Age’, ‘Weight’, ‘Height’, ‘HR’, ‘Sex’, and ‘Time’ as parameters for
.

VO2

estimation, XGBoost emerged as the optimal choice. Validation using a test dataset of 132 participants
yielded the following results for Mean Absolute Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), R-squared (R2), Root Mean Squared Logarithmic Error (RMSLE), and
Mean Absolute Percentage Error (MAPE) metrics: MAE of 0.1793, MSE of 0.1460, RMSE of 0.3821,
R2 of 0.9991, RMSLE of 0.0140, and MAPE of 0.0066. This study demonstrates the effectiveness of
various regressor models in developing a continuous

.
VO2max estimation model that has promising

performance metrics.

Keywords: machine learning; maximal oxygen consumption (
.

VO2max); estimation

1. Introduction

Oxygen consumption (
.

VO2) estimation is a vital feature in exercise physiology and
human performance assessment that offers significant insights into an individual’s physio-
logical response to exercise [1]. While traditional studies have focused on maximal oxygen
consumption (

.
VO2max) to measure aerobic capacity at peak exertion, the potential for wear-

able device applications in continuous
.

VO2 estimation is substantial [2–4]. Continuous
VO2 monitoring, explicit in various studies [5–8], provides real-time data on oxygen con-
sumption, vital for matching total body oxygen consumption and delivery. This capability
ensures optimal oxygen utilization, potentially improving overall performance and health
outcomes. Additionally, it allows for the assessment of physical activity levels, personalized
fitness tracking using heart rate-based algorithms, comparison of the effects of different
exercises on oxygen uptake, and facilitation of personalized data-driven interventions for
optimized health outcomes.

These devices facilitate continuous monitoring of
.

VO2 levels, enabling ongoing adjust-
ments in training intensity, duration, and recovery strategies. They optimize performance
outcomes across various athletic endeavors. Significantly, wearable devices extend the
utility of

.
VO2 estimation beyond exercise physiology to include personalized training opti-

mization, fatigue management, and health risk assessment during physical activities [9,10].
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Machine learning strategies are increasingly recognized for their efficiency in
.

VO2
estimation [2,11,12]. They allow the investigation of complex relationships between physio-
logical parameters and

.
VO2 levels. This offers insights into individual exercise capacities

and performance optimization strategies. By leveraging machine learning algorithms, this
study aims to enhance the methodology for continuous

.
VO2 and

.
VO2max estimation for

wearable devices, broadening our understanding of its applications in exercise physiology
and human performance assessment.

The field has primarily focused on incorporating
.

VO2max into machine learning models
using various approaches, such as Graph Neural Networks (GNN) [13] and regression
models [14]. These studies typically utilize demographic factors like age, weight, and height
to predict

.
VO2max [12,15]. However, our research takes a novel approach by considering

additional physiological parameters, including heart rate, age, sex, weight, height, and
categorically mapped

.
VO2 level. This comprehensive approach draws inspiration from the

works by Drinkwater et al. [16], Jones et al. [17], Hansen et al. [18], and Edvardsen et al. [19],
which emphasize the multifactorial nature of

.
VO2max estimation. The study integrates

these physiological variables into regression models to develop a continuous
.

VO2 and
.

VO2max estimation model. The studies utilizing PhysioNet [20] for
.

VO2max estimation
encounter limitations impacting the accuracy and reliability of their findings. This includes
challenges in measuring accurate

.
VO2max values differences between predicted and actual

values. Specific equations and methods, such as the American College of Sports Medicine
(ACSM) running equation [21], raise concerns about generalizability and methodological
issues [22,23]. Lastly, there are challenges specific to certain populations, such as patients
with chronic conditions like chronic obstructive pulmonary disease (COPD) [24]. This
approach represents a significant departure from traditional methods and holds promise
for additional precise and personalized

.
VO2 predictions, with potential applications in

sports science, healthcare, and fitness monitoring.

2. Materials and Methods
2.1. Data Characteristics

The open dataset from PhysioNet comprises cardiorespiratory measurements obtained
during maximal graded exercise tests (GETs). It offers useful insights into the dynamic
physiological responses to exercise. These measurements, encompassing parameters such
as heart rate,

.
VO2, carbon dioxide production (

.
VCO2), respiration rate, and pulmonary

ventilation, are crucial for calculating various cardiorespiratory indices utilized in sports
science and medicine. Key aspects of oxygen consumption and heart rate dynamics during
GETs, including the rate of increase at exercise onset, maximal values, changes at ventilatory
thresholds, and dynamics during recovery, are of particular interest.

The measurements were performed between 2008 and 2018, with athletes undergo-
ing maximal GETs on a treadmill connected to a gas analyzer system. The respiratory
parameters, including oxygen consumption and pulmonary ventilation, were measured
breath-by-breath using a CPX MedGraphics gas analyzer system (Medical Graphics, Saint
Paul, MN, USA) connected to a PowerJog J series treadmill (Metagenics Fitness Inc., West
Vancouver, BC, Canada), while heart rate was monitored with a Mortara 12-lead ECG
device (Milwaukee, WI, USA). The dataset includes participant information, such as age,
weight, height, humidity, temperature, and cardiorespiratory measurements, collected
during each effort test. In particular, the dataset is characterized by its extensive longi-
tudinal format that contains one line for each breath measurement across 992 effort tests.
It facilitates in-depth analyses of cardiorespiratory dynamics during exercise. It enables
the development of advanced predictive models and analytical techniques to enhance our
understanding of human performance and physiological responses to exercise.
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2.2. Data Portion

After transitioning parameters to represent
.

VO2 in “mL/kg/min” rather than “ml/min”,
this adjustment was aligned with the standard rating criteria for

.
VO2 levels in wearable

devices [25,26]. Additionally, the methodological approach incorporates the utilization
of

.
VO2max, where

.
VO2 levels are categorized into ‘Poor’, ‘Fair’, ‘Good’, ‘Excellent’, and

‘Superior’ based on age group [25]. This additional categorization parameter enriches
the model training process by providing a more subtle representation of performance of
.

VO2 levels across different age groups. The age groups below 20 years and 80 or above
were set as an exclusion criterion with a given standard rating (n = 154). This decision
provides that the analysis focuses on the target population and avoids potential biases or
confounding factors associated with extreme age groups or individuals with exceptionally
high

.
VO2 levels.
Additionally, to address participant overlap and enhance the reliability of the findings,

a 5-fold cross-validation approach was deployed. A total of 857 participants were initially
considered for the study. After excluding 154 participants due to age-related criteria and
removing 37 participants based on Z-score anomaly detection, the final dataset comprised
666 participants. This dataset was then stratified into 80% (n = 532) for model training
and 20% (n = 134) for testing. This data partitioning strategy enables a comprehensive
evaluation of the model’s performance across diverse age demographics while minimizing
the risk of overfitting and ensuring generalizability to unseen data.

2.3. Modeling

Various regression models, including Extreme Gradient Boosting (XGBoost), Light
Gradient Boosting Machine, Gradient Boosting Regressor, Linear Regression, and AdaBoost
Regressor, are trained on the training set. The best-performing model is selected based on
the Mean Absolute Percentage Error (MAPE) and further optimized via hyperparameter
tuning. The tuned model’s performance is evaluated using the test set. The accuracy of
the model’s predictions is assessed using the R-squared (R2) metric that is computed to
estimate the proportion of variance in the target variable VO2 (mL/kg/min) explained
by the model. An important step in the preprocessing pipeline involves dividing

.
VO2 by

weight (in kg) to normalize the
.

VO2 values to observe standard ratings. This normalization
enables fair comparisons across individuals of varying weights and allows the model to
capture the relative oxygen consumption per unit of body mass. The features, including
age, weight, height, HR, sex, and time, were selected based on their known physiological
influence on oxygen consumption and performance in previous

.
VO2 estimation studies

(Table 1). These variables are critical in capturing the variability in metabolic and car-
diorespiratory responses during exercise. By obtaining

.
VO2 (mL/kg/min), representing

oxygen consumption per kilogram of body weight per minute, the model’s predictions
are independent of body weight variations, enhancing interpretability and generalizability
across diverse populations.

Table 1. Various
.

VO2max equations with participant numbers with age group.

Participants Age Equation

Edvardsen et al.
(2013) [19]

n = 759
(394

M/365 F)
20–85

Female:.
VO2max (L.min−1) = 3.31 − 0.022 year
.

VO2max (mL.kg−1.min−1) = 48.2 − 0.32 year
Male:.
VO2max (L.min−1) = 4.97 − 0.033 year
.

VO2max (mL.kg−1.min−1) = 60.9 − 0.43 year
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Table 1. Cont.

Participants Age Equation

Jones et al.
(1985) [17]

n = 100
(50 M/50

F)
15–71

Female:.
VO2max (L.min−1) = −0.624 sex + 0.046 height − 0.021 age − 4.31
Male:.
VO2max (L.min−1) = −0.492 sex + 0.032 height − 0.024 age + 0.019 weight −
3.71

Hansen et at.
(1984) [18]

n = 77
(77 M) 37–74 Male:.

VO2max (mL.min−1) = weight × (50.75 − 0.372 age)

Drinkwater et al.
(1975) [16]

n = 109
(109 F) 10–68

Female:.
VO2max (L.min−1) = 2.46 − 0.016 age
.

VO2max (mL.kg−1.min−1) = 83.663 − 4.114 age + 0.127 age2 − 0.0012 age
.

VO2max (mL.kg−1.min−1) = 71.237 − 3.524 age + 0.104 age2 − 0.0010 age
.

VO2max (mL.kgLBM−1.min−1) = 90.684 − 3.808 age + 0.118 age2 − 0.0011 age
.

VO2max (mL.kgLBM−1.min−1) = 88.99 − 4.459 age + 0.140 age2 − 0.0014 age

Various regression models were compared to assess performance. However, XGBoost
was chosen based on the comprehensive comparison of metrics, such as MAE, MSE, RMSE,
R2, RMSLE, MAPE, and training time in seconds [15]. Moreover, the various configurations
operated to enrich model performance for the training process. The multicollinearity
operated to eliminate highly correlated features. Additionally, 5-fold cross-validation was
incorporated to assess the stability and generalization capability of the models (Figure 1).
This method ensures that the model is robust and performs well on unseen data, helping
to avoid overfitting and ensure that predictions generalize well to the broader population.
Further, assigning a session ID ensured reproducibility of experiments, facilitating tracking
and comparison of results. The tuned XGBoost model was optimized with a random search
with the MAPE. It involves evaluating the model’s performance on both training and testing
datasets. Yet, predictions on the test data to estimate

.
VO2 mL/kg/min values demonstrate

the suitability of XGBoost as the most appropriate model for predicting
.

VO2 mL/kg/min
values. XGBoost has been widely used across different research domains, showcasing
its versatility and effectiveness. Notable applications include predicting stock prices in
financial markets [27], proactive damage estimation in infrastructure management [28],
early earthquake magnitude prediction in earthquake research [29], forecasting air quality in
environmental science [30], improving intrusion detection in cybersecurity [31], predicting
treatment responsiveness in healthcare [32], and providing accurate forecasts of virus
spread during the COVID-19 pandemic for public health management [33].
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Figure 1. This flowchart shows the input parameters and the modeling approach. It was finalized to
approach continuous

.
VO2max estimation.

XGBoost is an acclaimed ensemble learning technique utilized for both classification
and regression tasks. It leverages multiple decision trees combined, exhibiting outstanding
computational efficiency and speed compared to traditional gradient-boosting methods.
Notable features include robust performance and speed, facilitated by parallel processing
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for handling large datasets, automatic tree pruning to prevent overfitting, and strong
regularization capabilities. Additionally, XGBoost (version 2.0.3) implements L1 (Lasso)
and L2 (Ridge) regularization techniques to manage model complexity, enabling effective
prevention of excessive tree depth and reduction of overfitting. Furthermore, it offers
pruning functionality to manage model complexity and enhance generalization, along with
automatic handling of missing data, distinguishing itself from algorithms requiring manual
intervention. Before model training, missing data were addressed using XGBoost’s built-
in handling techniques, which automatically manage incomplete datasets. Additionally,
anomalies detected in the data, such as extreme outliers, were filtered out using Z-score
thresholds to ensure model reliability and accuracy. Lastly, the model provides flexibility
by allowing custom optimization objectives and evaluation criteria, catering to diverse
business needs and research questions. The model hyperparameters include a learning rate
of 0.2. It allows the model to adapt its parameters during training. The maximum depth of
each tree in the ensemble is set to 7, controlling the level of complexity. The model builds
multiple trees to improve predictive accuracy with 220 estimators. The regularization
parameters, L1 and L2 regularization, are set to 10 and 4, respectively, to prevent overfitting
by penalizing coefficients. Other settings, such as random state, subsample, and verbosity,
are also specified to ensure reproducibility, control sampling, and manage output verbosity
during training.

The code is available at https://github.com/SeanPresent/VO2max_Estimation, ac-
cessed on 25 August 2024.

3. Results
3.1. Baseline Participant Characteristics

Based on the analysis of participant characteristics, our study comprised a total of
532 unique individuals for the training dataset. The gender distribution revealed that
the majority of participants were male, accounting for approximately 87.76%, while fe-
males comprised the remaining 12.24%. Both genders exhibited similar patterns when
examining the age distribution, with males averaging around 32.45 years (±9.08 SD) and
females around 30.11 years (±7.74 SD). The participants’ height and weight further re-
flected gender disparities, with males presenting an average height of approximately
176.72 cm (±6.73 SD) and weight of 76.24 kg (±9.95 SD), and females showing averages of
166.11 cm (±8.17 SD) and 61.67 kg (±10.98 SD), respectively. Moreover, the investigation
into

.
VO2max and min values by gender unveiled significant differences, with males showing

higher values compared to females, with
.

VO2max at 2421.38 mL/min (±985.61 SD) and
.

VO2min at 32.09 mL/kg/min (±13.10 SD) for males, and 1670.74 mL/min (±693.45 SD)
and 27.59 mL/kg/min (±10.85 SD) for females, respectively. These findings collectively
provide a comprehensive understanding of participant demographics and physiological
attributions.

3.2.
.

VO2max Parameter Composition

The study conducted feature selection using the correlation matrix for affirmation. The
Spearman correlation matrix is a statistical tool used to quantify the strength and direction
of relationships between variables in a dataset. It consists of a square matrix where each cell
represents the correlation coefficient between two variables. A correlation coefficient close
to +1 indicates a strong positive linear relationship, while a coefficient close to −1 indicates
a strong negative linear relationship. By examining the correlation matrix, the study can
identify which variables correlated with the target variable and select those as features for
our model (Figure 1). This process helps to understand the interdependencies between
variables and choose the most relevant ones for predicting the target variable accurately.

A GET involves incremental increases in treadmill speed until exhaustion. It offers
a practical means to approximate

.
VO2max. In the study, we explore several established

https://github.com/SeanPresent/VO2max_Estimation
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equations presented by Edvardsen et al., Jones et al., Hansen et al., and Drinkwater [16–19]
(Table 1). Each is suitable for specific exercise protocols and incorporates model parameters.

The equations incorporate parameters such as ‘Age’, ‘Weight’, ‘Height’, ‘HR’, ‘Sex’,
and ‘Time’ deployed to estimate

.
VO2max from GET data. Therefore, those parameters are

selected to allow machine learning to assess the
.

VO2max and continuous
.

VO2 estimation.
A weak negative relationship exists between age and

.
VO2. It is shown by a correlation

coefficient of −0.11. Moreover, weight shows a weak positive correlation with
.

VO2max of
0.25. Similarly, height has a weak positive correlation of 0.29 with

.
VO2. The heart rate (HR)

has a positive correlation with
.

VO2 of 0.78. The relationship between sex and
.

VO2 shows
a weak negative correlation of −0.22. Lastly, the correlation between time and

.
VO2max is

positive at 0.48.

3.3. Continuous
.

VO2 Estimation

In the research paper’s Section 3, various regression models were evaluated for their
performance in predicting the target variable,

.
VO2 mL/kg/min. The table (Table 2) presents

a comprehensive comparison of each model’s performance metrics, including MAE, MSE,
RMSE, R2, RMSLE, MAPE, and execution time (TT in seconds). Among the models assessed,
XGBoost exhibited the most promising results, achieving an MAE of 0.1834, MSE of 0.0640,
RMSE of 0.2529, and an impressive R-squared value of 0.9996. Importantly, XGBoost
exceeded other models in terms of predictive precision and model fit. Further analysis
involved fine-tuning the XGBoost model using 5-fold cross-validation and optimizing for
MAPE.

Table 2. Comparison of various machine learning regressors on the training set, and the performance
of XGBoost in cross-validation and on the test set.

Training Model (n = 532) MAE MSE RMSE R2 RMSLE MAPE TT (s)

Extreme Gradient
Boosting 0.1834 0.0640 0.2529 0.9996 0.0146 0.0077 0.4600

Light Gradient Boosting
Machine 0.2419 0.1274 0.3570 0.9992 0.0169 0.0090 1.0520

Gradient Boosting
Regressor 0.6158 0.6804 0.8248 0.9959 0.0282 0.0210 3.4760

Linear Regression 0.8622 1.4428 1.2011 0.9913 0.0929 0.0407 5.3260
AdaBoost Regressor 2.2091 7.4254 2.7245 0.9551 0.1206 0.0944 2.4900

Cross Validation MAE MSE RMSE R2 RMSLE MAPE

1 0.1297 0.0377 0.1942 0.9998 0.0137 0.0058
2 0.1289 0.0379 0.1947 0.9998 0.0142 0.0057
3 0.1240 0.0335 0.1829 0.9998 0.0129 0.0055
4 0.1265 0.0349 0.1869 0.9998 0.0136 0.0056
5 0.1265 0.0373 0.1933 0.9998 0.0124 0.0055

Mean 0.1271 0.0363 0.1904 0.9998 0.0134 0.0056
Standard deviation 0.0020 0.0018 0.0047 0.0000 0.0006 0.0001

Test set (n = 154) MAE MSE RMSE R2 RMSLE MAPE

Extreme Gradient
Boosting 0.1793 0.1460 0.3821 0.9991 0.0140 0.0066

This process resulted in enhanced performance metrics, with the tuned XGBoost
model demonstrating a mean MAE of 0.1217 and a mean MAPE of 0.0056 on the validation
set. These findings underscore the model’s robustness and its ability to generalize well to
unseen data. Subsequently, the tuned XGBoost model was evaluated on an independent test
dataset, where it maintained its MAE of 0.1793, MSE of 0.1460, and an R2 value of 0.9991,
indicating its effectiveness in predicting the

.
VO2 for the mL/kg/min variable. Across
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the board, the results validate the efficacy of the XGBoost model in predicting oxygen
consumption levels and highlight its potential utility in practical applications requiring
precise estimation of

.
VO2 in mL/kg/min.

3.4.
.

VO2max Estimation

In this experiment, the model’s predictions showed a high correlation with the actual
values. Specifically, the R2 value, which represents the correlation between the predicted
.

VO2 mL/kg/min and the actual values, was found to be 0.9683 (Figure 2). This indicates
that the model has generalized well to the data, suggesting its capability to accurately
predict health indicators based on the given input variables. In estimating the

.
VO2max,

the results revealed an MAE of 0.7109, MSE of 2.5859, and RMSE of 1.6081. Additionally,
the RMSLE was calculated to be 0.0277, and the MAPE was 1.2971. The R2 value of the
model stood at 0.9683, indicating a high level of explanatory power in predicting

.
VO2max

(Figure 3). Finally, a comparison of
.

VO2 with continuous
.

VO2 estimation resulted in
Figure 4. To provide a comprehensive evaluation of the model’s performance, we selected
three participants based on the accuracy of their

.
VO2 predictions: the participant with

the smallest prediction error (“best”), the participant with the largest prediction error
(“worst”), and the participant whose prediction error was closest to the median (“other”).
The absolute prediction error for each participant was calculated by taking the mean of the
absolute differences between the measured

.
VO2 and the predicted

.
VO2 values. The “best”

participant was identified as the one with the lowest mean absolute error, while the “worst”
participant had the highest. The “other” participant was chosen by finding the individual
whose error was closest to the median error across all participants.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 13

𝑉ሶ 𝑂ଶ mL/kg/min and the actual values, was found to be 0.9683 (Figure 2). This indicates 
that the model has generalized well to the data, suggesting its capability to accurately 
predict health indicators based on the given input variables. In estimating the 𝑉ሶ 𝑂ଶ௠௔௫, the 
results revealed an MAE of 0.7109, MSE of 2.5859, and RMSE of 1.6081. Additionally, the 
RMSLE was calculated to be 0.0277, and the MAPE was 1.2971. The 𝑅ଶ value of the model 
stood at 0.9683, indicating a high level of explanatory power in predicting 𝑉ሶ 𝑂ଶ௠௔௫ (Figure 
3). Finally, a comparison of 𝑉ሶ 𝑂ଶ with continuous 𝑉ሶ 𝑂ଶ estimation resulted in Figure 4. To 
provide a comprehensive evaluation of the model’s performance, we selected three 
participants based on the accuracy of their 𝑉ሶ 𝑂ଶ  predictions: the participant with the 
smallest prediction error (“best”), the participant with the largest prediction error 
(“worst”), and the participant whose prediction error was closest to the median (“other”). 
The absolute prediction error for each participant was calculated by taking the mean of 
the absolute differences between the measured 𝑉ሶ 𝑂ଶ and the predicted 𝑉ሶ 𝑂ଶ values. The 
“best” participant was identified as the one with the lowest mean absolute error, while the 
“worst” participant had the highest. The “other” participant was chosen by finding the 
individual whose error was closest to the median error across all participants.

Figure 2. The image represents a Spearman correlation matrix for various fitness indicators of age, 
weight, height, heart rate (HR), sex, 𝑉ሶ 𝑂ଶ , and a categorized measure of 𝑉ሶ 𝑂ଶ . The Spearman 
correlation coefficient measures the potency and direction of the linear relationship between two 
variables. The coefficient values range between −1 and 1, where 1 indicates a perfect positive linear 
relationship, −1 indicates a perfect negative linear relationship, and values near 0 indicate no linear 
relationship.

Figure 2. The image represents a Spearman correlation matrix for various fitness indicators of
age, weight, height, heart rate (HR), sex,

.
VO2, and a categorized measure of

.
VO2. The Spearman

correlation coefficient measures the potency and direction of the linear relationship between two
variables. The coefficient values range between −1 and 1, where 1 indicates a perfect positive linear
relationship, −1 indicates a perfect negative linear relationship, and values near 0 indicate no linear
relationship.
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Figure 3. This is indicating
.

VO2max evaluated with R2. The scatter plot illustrates the relation-
ship between the predicted

.
VO2max (mL/kg/min) and the actual

.
VO2max values. The R2 value of

0.9683 further quantifies the model’s explanatory power, showing a correlation between the predicted
and actual

.
VO2max values.
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4. Discussion

In our study, we initially examined the baseline characteristics of participants, re-
vealing a cohort of 532 unique individuals, predominantly male at 87.76%, with females
comprising 12.24%. Analysis of the age distribution showed similar patterns across genders,
with males averaging 32.72 years (±8.86 SD) and females 29.94 years (±7.44 SD). Disparities
in height and weight were evident, with males exhibiting higher averages of 176.62 cm
(±6.53 SD) and 76.40 kg (±10.07 SD) compared to females at 165.88 cm (±7.55 SD) and
60.81 kg (±10.02 SD), respectively. Moreover,

.
VO2max and min values showcased signifi-

cant gender differences, with males displaying higher values:
.

VO2max at 2421.38 mL/min
(±985.61 SD) and

.
VO2 min at 31.94 mL/kg/min (±13.05 SD), compared to females at

1670.74 mL/min (±693.45 SD) and 27.59 mL/kg/min (±10.85 SD), respectively.
Moving on to the continuous estimation of

.
VO2, various regression models were

evaluated, among which XGBoost demonstrated superior performance, with an MAE
of 0.1834, MSE of 0.0640, RMSE of 0.2529, and a significant R-squared value of 0.9996.
Fine-tuning of the XGBoost model further improved its performance, achieving a mean
MAE of 0.1217 (±0.0020) and a mean MAPE of 0.0056 (±0.0001) on validation. The model
maintained its efficacy on an independent test dataset, retaining an MAE of 0.1793, MSE
of 0.1460, and an R-squared value of 0.9991. These results underscore the robustness of
the XGBoost model in accurately predicting

.
VO2 levels. Furthermore, the estimation of

.
VO2max yielded promising results, with a high correlation reflected in an R2 value of 0.9691.
The model exhibited an MAE of 0.7109, MSE of 2.5859, RMSE of 1.6081, RMSLE of 0.0277,
and MAPE of 1.2971, indicating its effectiveness in predicting

.
VO2max. Overall, these

findings emphasize the model’s potential utility in estimating physiological parameters,
with implications for health monitoring and fitness assessment.

Our study also provides an insightful comparison between the machine learning-
based approach and traditional

.
VO2max estimation equations, such as those presented

by Edvardsen et al., Jones et al., Hansen et al., and Drinkwater [16–19] (Table 1). Unlike
the conventional equations, which rely heavily on demographic factors, like age, weight,
and height, our machine learning models incorporate real-time data, allowing for a more
accurate and individualized prediction of

.
VO2max. The improvements in the MAE, RMSE,

and other performance metrics highlight the enhanced predictive power of AI algorithms,
particularly when fine-tuned through methods like hyperparameter optimization in XG-
Boost. These advancements are critical for applications requiring continuous monitoring
and real-time feedback, which are incomprehensible with static equations.

The Spearman correlation coefficient matrix provides insights into
.

VO2 and its rela-
tionship with other parameters. Although we followed the equations to select parame-
ters, height and weight showed a relatively high correlation, along with a smaller posi-
tive correlation with age. This suggests that taller and heavier individuals tend to have
higher

.
VO2max values. The scatter plot displaying the relationship between actual

.
VO2max

(mL/kg/min) and its estimation demonstrates strong predictive accuracy, as indicated by a
high R-squared value of 0.9691. This strong linear relationship confirms the reliability of
the continuous

.
VO2 estimation methods used in this study.

Compared to the study from Rosol, M. et al. [15], our study differs in model selection,
input variables, and target population. We use machine learning models like XGBoost
and LightGBM for real-time continuous

.
VO2 estimation, relying on variables such as age,

weight, height, heart rate, sex, and time—readily available from wearables. In contrast,
the study focuses on submaximal exercise stages, which may limit real-time application.
Our dataset, primarily composed of athletes from PhysioNet, offers a more homogeneous
sample but limits generalizability to broader populations. The previous study likely
includes a more diverse population, potentially increasing variability but broadening the
applicability of its findings. However, we use 5-fold cross-validation to ensure robustness,
while the Rosol, M. et al. study may follow a different validation approach. Both studies
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use metrics like MAE and RMSE, allowing for direct comparison. However, our focus on
minimizing real-time prediction errors better suits continuous monitoring applications.
Hyperparameter tuning played a critical role in our model’s optimization, particularly
with XGBoost, using random search to refine key parameters. The Rosol, M. et al. study
may adopt a different strategy for model optimization, highlighting varying approaches to
improving performance. In terms of practical application, our study is designed for real-
time

.
VO2 estimation using wearable devices, whereas the study focuses on retrospective

analysis. Both studies acknowledge limitations; our study highlights dataset imbalance
and suggests more diverse samples for future research, while the Rosol, M. et al. study
likely addresses the limitations of submaximal stages and population diversity.

The first significant limitation of this study is that the model relies primarily on data
from athletes, which may not represent the general population or those with sedentary
lifestyles. Additionally, the lack of data from individuals with chronic health conditions,
such as cardiovascular diseases or COPD, restricts its applicability. Furthermore, the
model’s accuracy depends on the precision and consistency of data from wearable devices,
which can be affected by sensor performance and user adherence, potentially impacting real-
world reliability. By employing adaptive learning systems, wearables can be generalized
across diverse populations, including non-athletic individuals and those with chronic
conditions, addressing the generalizability and accuracy issues noted in traditional

.
VO2max

estimation methods.
Second, while our study provides valuable insights into

.
VO2 estimation, it is important

to recognize the influence of gender imbalance in our sample. Specifically, 87.76% of the
participants were male, and only 12.24% were female. This imbalance may limit the
generalizability of our findings, particularly concerning female populations, as differences
in physiological responses between genders could affect

.
VO2 estimation.

The integration of such technologies not only addresses the specific limitations under-
lined by PhysioNet but also highlights a significant opportunity to revolutionize exercise
monitoring and optimization. This approach ensures that individuals receive the most ben-
eficial and safe exercise prescriptions that are tailored to their unique physiological profiles.
By enhancing the capability of wearables to provide real-time feedback and personalized
training regimens, this research contributes to the growing field of personalized medicine
and digital health, demonstrating the extensive potential of wearable technology in improv-
ing health management and fitness strategies across various populations. In comparison
to other studies, our findings underscore the significance of continuous

.
VO2 estimation

in enhancing personalized training and health management. While traditional methods
have not entailed providing real-time feedback, wearable devices offer a promising solu-
tion by continuously monitoring

.
VO2 levels during physical activity. This capability not

only facilitates more accurate performance assessment but also enables training regimens
based on individual responses. Therefore, our research contributes to the growing body
of evidence supporting the integration of wearable technology in fitness and healthcare
domains, highlighting its potential to revolutionize exercise monitoring and optimization.
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15. Rosoł, M.; Petelczyc, M.; Gąsior, J.S.; Młyńczak, M. Prediction of Peak Oxygen Consumption Using Cardiorespiratory Parameters
from Warmup and Submaximal Stage of Treadmill Cardiopulmonary Exercise Test. PLoS ONE 2024, 19, e0291706. [CrossRef]
[PubMed]

16. Drinkwater, B.L.; Horvath, S.M.; Wells, C.L. Aerobic Power of Females, Ages 10 to 68. J. Gerontol. 1975, 30, 385–394. [CrossRef]
17. Jones, N.L.; Makrides, L.; Hitchcock, C.L.; Chypchar, T.; McCartney, N. Normal Standards for an Incremental Progressive Cycle

Ergometer Test. Am. Rev. Respir. Dis. 1985, 131, 700–708.
18. Hansen, J.E.; Sue, D.Y.; Wasserman, K. Predicted Values for Clinical Exercise Testing. Am. Rev. Respir. Dis. 1984, 129, S49–S55.

[CrossRef]
19. Edvardsen, E.; Edvardsen, E.; Hansen, B.H.; Holme, I.; Dyrstad, S.M.; Anderssen, S.A. Reference Values for Cardiorespiratory

Response and Fitness on the Treadmill in a 20- to 85-Year-Old Population. Chest 2013, 144, 241–248. [CrossRef]
20. Mongin, D.; García Romero, J.; Alvero Cruz, J.R. Treadmill Maximal Exercise Tests from the Exercise Physiology and Human

Performance Lab of the University of Malaga. Age 2021, 27, 36–32. [CrossRef]
21. Glass, S.; Dwyer, G.B. ACSM’S Metabolic Calculations Handbook; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007.
22. Koutlianos, N.; Dimitros, E.; Metaxas, T.; Cansiz, M.; Deligiannis, A.; Kouidi, E. Indirect Estimation of VO2max in Athletes by

ACSM’s Equation: Valid or Not? Hippokratia 2013, 17, 136.
23. Buttar, K.K.; Saboo, N.; Kacker, S. Measured and Predicted Maximal Oxygen Consumption (VO2max) in Healthy Young Adults:

A Cross-Sectional Study. J. Health Sci. Med. Res. 2023, 41, 2022896. [CrossRef]
24. Fregonezi, G.; Resqueti, V.; Vigil, L.; Calaf, N.; Casan, P. Maximal Oxygen Uptake Cannot Be Estimated from Resting Lung

Function and Submaximal Exercise in Patients with Chronic Obstructive Pulmonary Disease. J. Cardiopulm. Rehabil. Prev. 2012, 32,
219–225. [CrossRef] [PubMed]

https://physionet.org/content/treadmill-exercise-cardioresp/1.0.1/#files-panel
https://physionet.org/content/treadmill-exercise-cardioresp/1.0.1/#files-panel
https://doi.org/10.1123/ijsnem.20.1.56
https://doi.org/10.2147/MDER.S57281
https://doi.org/10.1016/j.jpeds.2018.04.026
https://doi.org/10.1016/j.compbiomed.2016.10.018
https://doi.org/10.1007/s00134-004-2449-4
https://doi.org/10.21608/ejmaa.2015.310714
https://doi.org/10.1177/1932296818813581
https://doi.org/10.3390/s21165589
https://www.ncbi.nlm.nih.gov/pubmed/34451032
https://doi.org/10.3390/technologies11030071
https://doi.org/10.1016/j.imu.2022.100863
https://doi.org/10.3390/electronics10161956
https://doi.org/10.3390/s23063251
https://www.ncbi.nlm.nih.gov/pubmed/36991963
https://doi.org/10.1371/journal.pone.0291706
https://www.ncbi.nlm.nih.gov/pubmed/38198496
https://doi.org/10.1093/geronj/30.4.385
https://doi.org/10.1164/arrd.1984.129.2P2.S49
https://doi.org/10.1378/chest.12-1458
https://doi.org/10.13026/7ezk-j442
https://doi.org/10.31584/jhsmr.2022896
https://doi.org/10.1097/HCR.0b013e318259b6a5
https://www.ncbi.nlm.nih.gov/pubmed/22691941


Appl. Sci. 2024, 14, 7888 12 of 12

25. VENUTM Owner’s Manual. Available online: https://www8.garmin.com/manuals/webhelp/venu/EN-US/Venu_OM_EN-US.
pdf (accessed on 10 May 2024).

26. Track Your Cardio Fitness Levels. Available online: https://support.apple.com/en-us/108790 (accessed on 26 May 2024).
27. Yu, S.; Tian, L.; Liu, Y.; Guo, Y. LSTM-XGBoost Application of the Model to the Prediction of Stock Price. In Artificial Intelligence

and Security, Proceedings of the 7th International Conference, ICAIS 2021, Dublin, Ireland, 19–23 July 2021; Sun, X., Zhang, X., Xia, Z.,
Bertino, E., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12736. [CrossRef]

28. Lim, S.; Chi, S. Xgboost Application on Bridge Management Systems for Proactive Damage Estimation. Adv. Eng. Inform. 2019, 41,
100922. [CrossRef]

29. Joshi, A.; Vishnu, C.; Mohan, C.K.; Raman, B. Application of XGBoost Model for Early Prediction of Earthquake Magnitude from
Waveform Data. J. Earth Syst. Sci. 2023, 133, 1–18. [CrossRef]

30. Lei, T.M.T.; Ng, S.C.W.; Siu, S.W.I. Application of ANN, XGBoost, and Other ML Methods to Forecast Air Quality in Macau.
Sustainability 2023, 15, 5341. [CrossRef]

31. Zivkovic, M.; Tair, M.; Venkatachalam, K.; Bacanin, N.; Hubalovsky, S.; Trojovský, P. Novel Hybrid Firefly Algorithm: An
Application to Enhance XGBoost Tuning for Intrusion Detection Classification. PeerJ Comput. Sci. 2022, 8, e956. [CrossRef]

32. Park, J.Y.; Kim, J.H.; Ryu, D.-H.; Choi, H.Y. Factors Related to Steroid Treatment Responsiveness in Thyroid Eye Disease Patients
and Application of SHAP for Feature Analysis with XGBoost. Front. Endocrinol. 2023, 14, 1079628. [CrossRef]

33. Fang, Z.; Yang, S.; Lv, C.; An, S.; Wu, W. Application of a Data-Driven XGBoost Model for the Prediction of COVID-19 in the USA:
A Time-Series Study. BMJ Open 2022, 12, e056685. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www8.garmin.com/manuals/webhelp/venu/EN-US/Venu_OM_EN-US.pdf
https://www8.garmin.com/manuals/webhelp/venu/EN-US/Venu_OM_EN-US.pdf
https://support.apple.com/en-us/108790
https://doi.org/10.1007/978-3-030-78609-0_8
https://doi.org/10.1016/j.aei.2019.100922
https://doi.org/10.1007/s12040-023-02210-1
https://doi.org/10.3390/su15065341
https://doi.org/10.7717/peerj-cs.956
https://doi.org/10.3389/fendo.2023.1079628
https://doi.org/10.1136/bmjopen-2021-056685

	Introduction 
	Materials and Methods 
	Data Characteristics 
	Data Portion 
	Modeling 

	Results 
	Baseline Participant Characteristics 
	0mu mumu VVsubsectionV.O2max  Parameter Composition 
	Continuous 0mu mumu VVsubsectionV.O2  Estimation 
	0mu mumu VVsubsectionV.O2max  Estimation 

	Discussion 
	References

