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Featured Application: Sharp pipe elbows are commonly used in industrial applications where
space is constrained. The flow downstream of a sharp elbow is highly asymmetric, and it is crucial
in some cases to determine how far this asymmetry extends. For example, accurate flow meters
are usually calibrated based on a fully developed symmetric flow profile. We showed that in
turbulent pipe flows, the recovery length is systematically shorter at higher Reynolds numbers
(Re) regardless of the criteria used. Specifically, a recovery length of 10–40 pipe diameters (D) is
observed at Re = 5600 and 10–30 D at Re = 10, 000. However, for a laminar flow, even a length of
100 D might not be sufficient for the flow to fully recover to a symmetric profile.

Abstract: Pipe bends disrupt the flow, resulting in an asymmetric velocity field across the pipe
diameter (D). We examined the recovery length required for the flow to return to a symmetric velocity
profile downstream of a sharp elbow. The wall-resolved Large Eddy Simulation (LES) approach was
applied to reproduce turbulent fluid flow at Reynolds numbers (Re) of 5600 and 10,000. An additional
case in the transitional laminar-turbulent-laminar regime was analyzed at Re = 1400. This analysis
explored the behavior of the Dean vortices downstream of the elbow and revealed that, in turbulent
cases, these vortices reverse their vorticity direction in the region between 8 D and 10 D. However,
they eventually decay in structure as far as 25 D from the elbow. Flow asymmetry was analyzed in
a 100 D long pipe section downstream of the elbow using four different criteria: wall shear stress
(WSS), streamwise velocity, its fluctuations, and vorticity fields. This study found that in turbulent
flows, the distance required for flow recovery is a few tens of D and decreases with increasing Re.
However, in the transitional case, the flow separation within the elbow induces instabilities that
gradually diminish downstream, and flow asymmetry persists even longer than the 100 D length
of our outlet pipe section. WSS proved sensitive for detecting asymmetry near walls, whereas flow
profiles better revealed bulk asymmetry. It was also shown that asymmetry indicators derived from
velocity fluctuations and vorticity were less sensitive than those obtained from streamwise velocity.

Keywords: flow asymmetry; secondary flow; flow separation; turbulent flow; recovery length; Large
Eddy Simulation (LES)

1. Introduction

In nearly every industrial process involving fluid flow in pipes, the use of pipe bends
is unavoidable. Bending redirects flow, causing pressure drops due to changes in flow
direction and the creation of secondary flows, which were first conceptualized by [1,2]
and later visualised by [3], i.e., the so-called Dean vortices shown in Figure 1a. In laminar
flow, this can be easily observed in instantaneous velocity fields, whereas in turbulent
flows, one has to analyse the time-averaged velocity fields. In straight pipes, axisymmetric
velocity profiles are expected in time-averaged fields when fully developed flow is achieved.
However, in curved pipes or downstream of a pipe bend, the flow exhibits asymmetry due
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to the flow deflection, secondary flows, coherent structures or even a separation bubble [4].
Downstream of a bend, the asymmetry is gradually damped until the flow achieves a fully
developed flow condition and forgets the presence of the bend.
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Figure 1. (a) Dean vortices downstream of the pipe bend; (b) Pipe bends with different bend angles
and bend radii.

In many industrial systems, it is important to know how far the flow asymmetry be-
hind the pipe bend propagates. For example, flow meters are usually calibrated to measure
flow that is fully developed and undisturbed, as found in long straight pipes. Therefore,
in a complex system, it is important to understand the appropriate distance downstream
of a bend where such a device should be installed to ensure accurate measurements. In
straight pipes, an entrance length is defined as the segment of a pipe, starting from the inlet,
where the flow is in the process of developing, and extending up to the point where a fully
developed flow is established. The entrance lengths in straight pipes vary widely, typically
between 25 D to 60 D for mean velocity profiles and from 70 D to 90 D when higher-order
statistics are being specified as criterions [5]. However, the entrance length increases further
when large-scale turbulent structures are present [6] or in a laminar-turbulent transition
regime [7,8]. An additional complexity is introduced with the pipe bend, which is described
with the curvature ratio γ = R/Rc, with R and Rc denoting pipe and bend radius, respec-
tively. A straight pipe corresponds to γ = 0, whereas, in the other extreme case, γ = 1
corresponds to a sharp internal edge of the pipe bend as shown in Figure 1b. The latter is
usually referred to as the pipe elbow and can be found in numerous applications where
one has limited space for pipe installation. This study investigates the velocity asymmetry
propagation downstream of a 90◦ elbow with γ = 0.93 (Rc = 1.08R), a sharp elbow that is,
to the best of the authors’ knowledge, still missing in the existing literature.

Most experimental and numerical studies of flow behaviour focus on low γ and
relatively short pipe sections. For example, flow downstream of a 90◦ pipe bend with
γ = 0.25 was measured at Re = 60, 000, showing a recovery length of 10 D needed for a
symmetrical velocity profile [9]. Similar measurements for a 180◦ bend revealed longer
recovery lengths [10]. Time-resolved stereoscopic Particle Image Velocimetry (PIV) with
Proper Orthogonal Decomposition (POD) downstream of a 90◦ bend with γ = 0.5 revealed
that the dominant structures were not the well-known Dean vortices, but bimodal single-
cell structures with alternating directions of rotation, i.e., the swirl-switching mode [11],
which was first visualized by Tunstall and Harvey [12]. The analysis indicated that Dean
vortices act as a transitional phase in swirl-switching, where one Dean vortex is suppressed,
leading to a single swirl. Turbulent swirling flow at the exit of a 90◦ pipe bend with
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γ = 0.63 was investigated for various Re in the range 14,000–34,000 [13–15]. A wide range
of imposed swirl flows was employed by axially rotating the pipe section upstream of the
bend, and it was found that the secondary motion in a curved pipe gradually diminishes
as the swirl flow increases. Unfortunately, the velocity field was measured only at one
cross-section at the bend outlet, thus, the asymmetry propagation downstream of the flow
was not measured.

High-fidelity simulations, such as Direct Numerical Simulations (DNS) and Large
Eddy Simulation (LES), provide deeper insights into flow behaviour. Global stability of
laminar flow in curved toroidal pipes has shown that a very small curvature is sufficient
to make the flow linearly unstable via a Hopf bifurcation that leads the flow to a periodic
regime [16]. Typically, as the curvature increases, the onset of turbulence occurs at lower Re.
Specifically, at a fixed curvature (i.e., γ = 0.33), the Hopf bifurcation occurs at Re = 3290
for evenly curved toroidal pipes [16], but at considerably lower Re = 2531 [17] and
Re = 2528 [18] in the flow downstream of 90◦ and 180◦ pipe bends, respectively. The
primary source of the flow instability in pipe bends is attributed to a strong shear resulting
from the backflow in the separation bubble [17]. Interestingly, turbulent flows at higher Re
in curved pipes reveal that overall turbulence decreases with increasing curvature [19,20].
Coherent structures in toroidal pipes [20] resemble the swirl-switching previously observed
downstream of pipe bends [11], which originates from a wave-like structure in the bend [21].
Turbulent flow in a 90◦ pipe bend was studied with LES and the Reynolds-Averaged Navier–
Stokes (RANS) approach [22]. LES revealed a correlation between secondary flow motion
and wall shear stresses [23], relevant for erosion wear [24–26], solid particle accumulation
in curved pipes [27] and agglomerate breakage in particle-laden flow [28]. Detached Eddy
Simulation (DES) was used to simulate turbulent flow downstream of a 90◦ bend with
γ = 0.5 [29], as well as in the Wellborn S-duct [30]. Pipe flow in bends with γ from 0.17
to 0.5 was investigated at Re from 5000 to 27,000 [31], and low frequency oscillations of
the Dean vortices were detected at largest Re. Similarly, a numerical study of flow in a
short, 90-degree elbow with a sharp internal edge also reported that the bend induced
low-frequency velocity fluctuations at Re = 51, 000 [32]. A recent study [33] used LES to
examine the decay of secondary motion downstream of 180◦ pipe bends with γ from 0.15
to 0.5. Results showed that increased curvature enhanced turbulence intensity immediately
downstream, reducing the recovery length for restoring the velocity profile. The role
of Dean vortices in thermal fatigue was studied in a T-junction with an upstream pipe
bend [34], which represents a safety concern in nuclear plant thermal-hydraulic systems, as
it may cause unforeseen piping failures as the plant ages. Similarly, thermally stratified
flow in a horizontally oriented 90◦ pipe bend was investigated [35], and the risk of material
damage due to thermal fatigue was evaluated for pipe bends with γ from 0.16 to 0.63,
finding that thermal fatigue damage increases as the pipe bend radius decreases. This
is attributed to enhanced turbulent mixing in pipes with high curvature, underscoring
the need for a comprehensive understanding of flow behaviour, especially in sharp pipe
elbows. Although understanding the unsteady nature of flow instabilities downstream of
a sharp pipe elbow is important, our present analysis focuses on information that can be
derived from time-averaged flow fields. Therefore, special care has been taken to ensure
sufficiently long time-averaging to eliminate any transient characteristics of the flow.

In the present study, we investigated the propagation length of flow asymmetry, which
was generated by a sharp pipe elbow with a curvature ratio of γ = 0.93. In Section 2, the
numerical setup is described for the LES approach to three different cases with Re of 1400,
5600 and 10,000, which correspond to the laminar-turbulent transition regime as well as the
fully turbulent regime. These particular flow conditions are relevant for the numerical and
experimental studies of slug flow in various pipes [36,37]. The main results of our study
are presented in Section 3, where we introduce four different criteria for analyses of the
flow asymmetry downstream of the flow, and conclusions are summarized in Section 4.
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2. Numerical Setup

Simulations were performed with open-source CFD toolbox OpenFOAM version 10 [38].
The simulations were carried out on the EuroHPC supercomputer Vega [39] at IZUM in
Maribor, Slovenia. Most simulations consumed in the order of 1.4–1.8 million CPU hours
for each (turbulent) simulated case, which resulted in 2–3 months of wall-clock time using
1024 cores [40].

2.1. Geometry and Computational Domain

The considered geometry consisted of a circular pipe with an inner diameter of
D = 25 mm and a sharp 90◦ elbow with the bend radius of Rc = 1.08R, as shown in Figure 2,
where R = D/2 is the pipe radius. The length of the straight pipe sections upstream and
downstream of the elbow were 10 D (250 mm) and 100 D (2500 mm), respectively.
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Figure 2. The entire computational domain with the 10 D long inlet section and a 100 D long straight
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inlet, and the sharp pipe bending detail is shown in the bottom right side.

2.2. Governing Equations and Numerical Schemes

LES was performed assuming incompressible flow, thus, a set of conservation equa-
tions for mass and momentum were solved, i.e.,

∂Ui
∂xi

= 0 (1)

∂Ui
∂t

+
∂(U iUj

)
∂xj

= −1
ρ

∂p
∂xi

+ (ν + νt)
∂2Ui

∂xi∂xj
, (2)

where liquid water properties at 30 ◦C were assumed in our simulations. Namely, a
dynamic viscosity µ = 7.97 × 10−4 Pa·s and density ρ = 995.65 kg/m3 resulted in a
kinematic viscosity ν of 8.00 × 10−7 m2/s. Turbulent (eddy) viscosity νt was calculated
with the WALE model [41], which resolved the boundary layer and provided proper y3

near-wall scaling of the modelled eddy viscosity.
We applied pimpleFOAM solver, which applies the PISO algorithm for pressure-

velocity coupling. Second-order temporal and spatial-numerical schemes were used. Specif-
ically, for time discretization, we applied an implicit backward differencing scheme based
on current and two successive old-time step fields. An adjusted time step was used with a
maximum Courant number of 0.4. The momentum matrix equation was solved using a
smoothSolver, whereas the pressure equation applied the generalized geometric-algebraic
multi-grid solver (GAMG). Both linear solvers used Gauss–Seidel smoothing.
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2.3. Computational Mesh

Our meshing strategy followed best practice experiences from LES in Open-
FOAM [42,43]. We applied fully hexahedral meshes, which were generated with blockMesh
utility in OpenFOAM. The coarsest mesh was used for fast calculation only, allowing us to
accelerate the attainment of the developed turbulent flow. The obtained turbulent fields
were then mapped to the middle and fine mesh as the initial conditions for the main
simulations. Special care was taken for the middle and fine mesh to prepare good-quality
computational cells with a maximum mesh non-orthogonality of 46◦ (average is around
4◦) and a maximum skewness of 0.88, which all respect the best practice guidelines [42,43].
The meshing details are given in Table 1, and a cross-sectional view of the pipe is shown in
Figure 3. It should be noted that the non-dimensional cell sizes presented in Table 1 are cal-
culated based on flow conditions at a Reynolds number of 5600. For our final simulations,
the middle mesh was used for Reynolds numbers of 1400 and 5600, while the fine mesh
was employed for the simulation at a Reynolds number of 10,000.

Table 1. Meshing parameters for the three applied meshes. Cell sizes in wall units are calculated for
the flow conditions at Re = 5600.

Mesh Coarse Middle Fine

Number of cells [in millions] 0.305 5.95 13.7
Number of near-wall prism layers 31 31 37

Stretching ratio (SR) 1.0 1.1 1.1
Max. aspect ratio AR 52.6 108 127

Non-orthogonality (mean/max) [◦] 5.6/35 4.1/45 3.9/46
Maximum skewness 1.22 0.86 0.88

First cell height at walls [mm] 0.3–0.6 0.04–0.56 0.02–0.56
Streamwise cell size [mm] 11.6 1.2 0.6

First cell height at walls [wall units] 2.7–5.4 0.36–4.8 0.21–4.8
Streamwise cell size [wall units] 100 10 5
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The first cell height at the pipe walls ∆y+ = ∆y·uτ/ν was kept well below 1 for most
of the cells in order to resolve the viscous sublayer of the momentum boundary layer. In
the bulk region, we applied cubed cells with an aspect ratio close to 1, which are best suited
for isotropic vortices in the turbulent flow. Grading with a constant stretching factor was
applied to the adjacent cells in the intermediate region between the bulk region and the
walls. The stretching factor was carefully chosen in order to guarantee the accuracy of the
computations [42].
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2.4. Boundary Conditions and Statistics Accumulation

The standard no-slip boundary condition was used at the walls of the pipe. In order
to achieve a fully developed velocity profile at the inlet of the pipe, we applied mapped
boundary conditions which recycled the instantaneous velocity field at 5 D downstream of
the inlet back to the inlet. This type of the inlet boundary condition is well-known since
it has been applied in numerous studies of turbulent pipe flows at similar Re [44]. The
mapped boundary condition was 5 D upstream of the pipe bend in order to avoid the
bend-affected zone [4]. The prescribed mean velocities for each of the simulated three cases
are given in the Table 2. The pressure gradient was set to zero at the inlet. Contrarily, at
the outlet, the Dirichlet boundary condition was prescribed for pressure and the Neumann
boundary condition for velocity. Namely, the pressure and the velocity gradient were set
at zero at all times, however, if backflow was detected at the outlet boundary, the velocity
was locally set to zero.

Table 2. Duration of time-averaging for all three computations.

Reynolds Number (Re) 1400 5600 10,000

Mean (bulk) velocity Ub [m/s] 0.04469 0.1792 0.32
Time-averaging duration [s] 800 400 55

Convective time units (D/Ub) 1880 3750 950
Number of time steps 10 × 106 26 × 106 15 × 106

Before we started time-averaging the calculations, simulations were run for at least
20 s of simulated time to obtain a fully developed turbulent flow in the entire pipe. For
this purpose, we monitored velocity at several monitoring points along the flow. The
time-averaging interval was at least 950 convective time units ( D/Ub) and is together with
the number of time steps summarized in Table 2 for all three considered cases.

2.5. Validation

Our simulations were validated against the DNS results of turbulent flow in straight
pipes at Re = 5310 [45] and Re = 11, 700 [46]. Figure 4 shows a comparison between the
mean streamwise velocity profiles of our LES results in the recycling inlet section and the
DNS results for two Re. LES results of turbulent flow at Re = 5600 were obtained using
the middle mesh, whereas the results at Re = 10, 000 were obtained using the fine mesh.
Comparison showed a very good agreement with the DNS results for the lower Re and
small discrepancies between the LES and DNS at the higher Re in the buffer layer. Similarly,
Figure 5 shows mean streamwise velocity fluctuations for the two Re at the same location
in the inlet recycling section. Similarly, a very good agreement between LES and DNS was
observed at Re = 5600, and slightly larger discrepancies were observed at Re = 10, 000,
particularly in the buffer layer. Nevertheless, these discrepancies are reasonable for the
applied LES method and are attributed to several factors, which are part of our numerical
approach. Namely, the observed overprediction in the peak of the streamwise velocity
fluctuation is related to the inability of the model to redistribute enough energy from the
streamwise velocity fluctuation component to the spanwise and wall-normal components.
This has been studied by Komen et al. [47], who showed that such behaviour is expected
when one applies so-called “industrial LES”: i.e., (a) a finite volume method using a
collocated mesh with second-order accurate spatial and temporal discretisation schemes,
(b) an implicit top-hat filter, where the filter length is equal to the local computational cell
size, and (c) eddy-viscosity-type LES models. This was the case for all our simulations.
However, the small discrepancies were noticeable only in higher-order statistics, thus,
the achieved accuracy of the applied numerical model was more than sufficient for our
investigation of the asymmetry propagation downstream of the pipe bend.
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3. Results

The main characteristics of the instantaneous velocity field in a pipe upstream and
downstream of the sharp bend is shown in Figure 6. Clearly, the velocity boundary
condition at the inlet provided a fully developed flow, which was axisymmetric in time-
averaged fields, regardless of the Re. This resulted in a laminar flow upstream of the
elbow for the lowest Re, Re = 1400, and a turbulent flow for the other two flow conditions,
Re = 5600 and Re = 10, 000. For each simulated case, there was a strong flow separation
observed in the elbow of the pipe. The boundary layer detached at the sharp internal edge
of the elbow, bent and reattached further downstream of the flow. The flow from the inlet
pipe section impinged into the outer wall of the pipe in the elbow as well as downstream
of it. Further downstream of the elbow, flow again achieved fully developed velocity
conditions; however, the exact recovery length was not evident from the instantaneous
velocity fields.
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The influence of the pipe elbow was more clearly depicted in the time-averaged
velocity fields, which highlighted the development of Dean vortices. As illustrated in
Figure 7, these vortices persisted for up to 25 D downstream of the elbow. At first, the
Dean vortices displayed nearly perfect symmetry up to around 7 D. However, between 8 D
and 10 D from the elbow, this symmetry broke down, resulting in chaotic behavior of the
Dean vortices. In the region from 8 D and 10 D, the vorticity of the Dean vortices reversed
direction, with the left vortex switching from clockwise to counterclockwise and the right
vortex doing the opposite, as indicated by the coloured fields in Figure 7. Downstream
of this region, the Dean vortices maintained their vorticity direction until approximately
26 D, where they began to decay in structure. These results were based on turbulent
flow conditions at Re = 5600, though similar behavior was observed at Re = 10, 000,
with vorticity reversal occurring between 8 D and 11 D and the Dean vortices persisting
up to 20 D. In contrast, under laminar conditions at Re = 1400, the development of the
Dean vortices differed, with four strong vortices appearing between 8 D and 11 D, which
gradually decayed further downstream.

In order to estimate the flow recovery length, we calculated time-averaged velocity
fields and introduced four different criteria. Namely, the first applied criterium was
based on calculation of the time-averaged wall shear stress. This criterium gives useful
information about flow anisotropy in the near-wall region; however, it reveals no or minimal
insight about the flow anisotropy in the bulk region. For that reason, we also introduced
profile asymmetry parameter α, which integrates discrepancies between profile function
f (r) and f (−r) across the pipe diameter r, i.e.,

α(x, ϑ) =

R∫
−R

| f (x, r, ϑ)− f (x,−r, ϑ)|
N

dr (3)
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where x, r, and ϑ are axial, radial and azimuthal coordinates in the pipe downstream of the
pipe elbow and R = D/2 is the pipe radius. Clearly, the flow asymmetry α is proportional
to the area between curve f (r) and its mirrored counterpart f (−r), as shown with the
purple area in Figure 8. For each axial location, a single value for α is calculated, offering a
concise insight into the flow’s asymmetry. We calculated the flow asymmetry parameter α in
two perpendicular (azimuthal) directions, i.e., y- and z-profiles, at all distances downstream
of the elbow starting at 0 up to 100 D. The asymmetry parameter was calculated for mean
streamwise velocity Ux, streamwise velocity fluctuations ux2, and vorticity magnitude ∥ω∥
at all axial locations downstream of the pipe elbow. All introduced criteria are summarized
in Table 3, and results are presented in the following subsections.
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Table 3. The introduced asymmetry parameters for different flow variables f in Equation (3).

Asymmetry Parameter α αU ασ αω

Variable f(x,r,ϑ) Ux ux2 ∥ω∥
Normalization N Ub R Ub

2 R Ub

3.1. Asymmetry in Wall Shear Stress

Wall shear stress (WSS) was used as the first criterium for estimation of the flow
recovery length. WSS is defined as

τ(x, ϑ) = ν

(
∂U
∂r

)
r=R

(4)

where x, r, and ϑ are axial, radial and azimuthal coordinates in the pipe downstream of
the pipe elbow, U is the magnitude of the time-averaged velocity and R = D/2 is the
pipe radius. Figure 9 shows the calculated WSS at the pipe walls downstream of the
exit of the sharp elbow. Location x = 0 corresponds to the outlet of the elbow, whereas
azimuth ϑ = 180◦ corresponds to the direction of the inlet pipe flow, i.e., direction z in
Figure 2. It is evident that the WSS was much smaller for the transitional case than the
other two turbulent cases. In the transitional case, the WSS gradually decreased along the
axial (streamwise) direction, but it did not achieve a converged final value within the 100 D
long domain. Contrarily, in the two turbulent cases, the converged final value of WSS was
achieved at a distance of about 30–40 D and 20–30 D downstream of the elbow at the Re of
5600 and 10,000, respectively. In the flow-developing region, the WSS exhibited dependence
not only in the axial coordinate but also in azimuth ϑ, i.e., at constant x = 20D, the WSS
was smaller at ϑ = 0

◦
than at ϑ = 180

◦
, which corresponds to the flow-impinging wall

of the pipe. Furthermore, WSS exhibited strong dependence on Re with shorter recovery
length at a larger Re, which can be attributed to better mixing in highly turbulent flows.
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Figure 9. Calculated time-averaged wall shear stress downstream of the pipe elbow is a function of
axial and azimuthal coordinates, as well as Re: (a) Re = 1400; (b) Re = 5600; (c) Re = 10, 000. In order
to visualize small variations in the calculated WSS, we plotted τ − τ0 in logarithmic scale with τ0

being a positive value of τ0 = 1.18 × 10−5 m2/s2 at Re = 1400, τ0 = 1.30 × 10−4 m2/s2 at Re = 5600
and τ0 = 3.25 × 10−4 m2/s2 at Re = 10, 000.
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3.2. Asymmetry in Mean Velocity Profiles

While WSS effectively indicates flow asymmetry in the near-wall region, it offers no
information on the flow behaviour in the core (bulk) flow region of the pipe. Thus, we ex-
amined the flow asymmetry of different time-averaged flow fields in radial profiles, which
crossed the centre of the pipe in two perpendicular directions: the y-profile (perpendicular
to the elbow plane) and z-profile (parallel to the elbow plane). For fully developed flow
in long straight pipes, both of these profiles should be symmetric, and the asymmetry
parameter should approach zero with the increased duration of time-averaging. Thus, it is
important to show that the observed asymmetry is indeed the effect of the pipe bending
and not an artefact of short time-averaging or any other reason.

Figure 10 shows the calculated asymmetry parameter αU of the time-averaged stream-
wise velocity component as a function of axial location x downstream of the elbow for three
different Re. The blue and green curves are calculated for y- and z-profiles, respectively,
while the red curve is calculated in the velocity recycling part of the inlet section, which
corresponds to an “infinite” straight pipe and serves as a threshold indicator when the
asymmetry parameter reaches the value typical for an axisymmetric flow. The recycling
part section measures only 5 D in length, leading to the results being periodically extended
in the plots of Figure 10. They serve merely as an indicator of the anticipated outcome under
symmetric flow conditions, given the specified duration of time-averaging. It should also
be noted that while this value (red curve) should be zero in the laminar case, interpolation
and rounding errors result in a very low nonzero value. The results clearly showed that
the asymmetry propagates longer in the flow with lower Re. In fact, for the transitional
case, the 100 D long pipe was too short for the flow recovery into a symmetric flow. For
the two turbulent cases, the recovery length is about 20–40 D at Re = 5600 and 10–15 D
at Re = 10, 000. The exact recovery length depends also on profile direction, i.e., it is
systematically shorter for the y-profiles than for the z-profiles. The reason for that is the
symmetry of the entire computational domain. Namely, the inlet pipe points in z-direction,
which means that the entire system exhibits reflection symmetry in y-direction but not in
the z-direction.
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Figure 10. Obtained asymmetry parameter for time-averaged velocity field Ux calculated in y- and
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quantity calculated in the recycling inlet pipe section, where no asymmetry is expected.

3.3. Asymmetry in Velocity Fluctuation Profiles

The calculated asymmetry parameter ασ in the variance of the streamwise velocity
fluctuation component is shown in Figure 11. In the transitional laminar-turbulent flow in a
straight pipe, the velocity fluctuations are, by definition, zero in the inlet region. However,
in the flow downstream of the pipe elbow, instabilities are triggered by the elbow due to
the flow separation, which are gradually damped along the pipe. Thus, the flow slowly
approaches the laminar flow again; however, the 100 D long pipe section is too short
to obtain the same level of asymmetry parameter ασ, as it is obtained in a straight inlet
pipe, i.e., the achieved 10−7 is attributed mainly to the rounding error. For the turbulent
flows, the recovery length is about 20–40 at Re = 5600 and 10 D at Re = 10, 000, which
is qualitatively in agreement with our previous observations using WSS criterium. It can
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be concluded that the flow asymmetry in velocity fluctuations does not seem to be more
persistent than the asymmetry in time-averaged velocity profiles.
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Figure 11. Asymmetry parameter for streamwise velocity fluctuations ux2 calculated in y- and
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quantity calculated in the recycling inlet pipe section, where no asymmetry is expected.

3.4. Asymmetry in Vorticity Profiles

The asymmetry parameter αω utilizes the magnitude of vorticity field, including all
three components of the vorticity field. Therefore, it considers a local flow behaviour
not only in the streamwise, but in all flow directions. Figure 12 shows the calculated
αω downstream of the elbow for the three different Re. Again, in transitional flow the
asymmetry αω is gradually decreased along the axial direction; however, the 100 D length is
too short to retain the symmetric flow conditions attained in the pipe upstream of the elbow,
i.e., the red curve in Figure 12. In turbulent flows, the recovery length is about 10–40 D at
Re = 5600 and about 10 D at Re = 10, 000, which agrees well with our previous asymmetry
indicators. In conclusion, our observations revealed that the asymmetry parameter αω does
not seem to be more sensitive to the flow asymmetry than other asymmetry parameters
applied in this study.
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Figure 12. Asymmetry parameter for vorticity field ∥ω∥ calculated in y- and z-profiles at different Re:
(a) Re = 1400; (b) Re = 5600; (c) Re = 10, 000. Red curve indicates same quantity calculated in the
recycling inlet pipe section, where no asymmetry is expected.

4. Conclusions

This study investigates propagation of flow asymmetry downstream of a sharp pipe
elbow with a bend curvature ratio γ = 0.93. Numerical simulations of incompressible
turbulent flow at Re of 1400, 5600 and 10,000 were performed using the LES approach.
Results of the turbulent cases were first validated against the DNS results of pipe flow in
straight pipes. We examined the dynamics of the Dean vortices downstream of the elbow
and discovered that, in turbulent cases, these vortices reversed their vorticity direction
within the region between 8 D and 10 D, but they persisted up to a distance of 25 D from the
elbow. Then, we introduced profile asymmetry parameters and analysed flow asymmetry
in a 100 D long pipe section downstream of the elbow using four different criteria, which
resulted in similar observations.
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The recovery length to symmetric flow is defined as the distance downstream of the
elbow where the asymmetry parameter reaches the value expected in a long straight pipe.
However, since the asymmetry parameter does not always decrease monotonically with
distance from the elbow, we slightly relaxed this criterion. As a result, we now consider
a broader range of values, from nearly symmetric (lower value) to fully symmetric flow
profiles (higher value). In the turbulent cases, the recovery length is systematically shorter
at larger Re regardless of the criteria applied. Specifically, a recovery length of 10–40 D was
observed at Re = 5600 and 10–30 D at Re = 10, 000. This analysis involved investigation
into asymmetries of the wall shear stress, streamwise velocity component, streamwise
velocity fluctuations and vorticity fields. Wall shear stress turned out to be a sensitive
indicator of flow asymmetry in the near-wall region; however, it offers very limited or no
information on the flow behaviour in the core (bulk) flow region. Contrarily, analysing flow
profiles across the pipe diameter offers an improved understanding of flow asymmetry
in the bulk region. It was found that the asymmetry parameter, when based on velocity
fluctuations and vorticity, did not yield significantly more sensitive results compared to
those based on the streamwise velocity component.

At Re = 1400, the flow is laminar at the inlet; however, flow separation inside the
elbow triggers flow instabilities which can be described as non-developed turbulence. After
that, the vortices are gradually damped as the flow approaches laminar again. Nevertheless,
the flow asymmetry is so persistent and the laminarization so slow that the 100 D long pipe
is not long enough for the flow to recover back to a fully developed symmetric profile.
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