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Abstract: Graph neural networks (GNNs) are extensively utilized to capture the spatial–temporal
relationships among human body parts for skeleton-based action recognition. However, due to the
inefficient information propagation caused by redundant sampling of video frames in the temporal
domain, we focus on refining temporal graphs through key frame selection. To this end, we propose
a multi-stage key frame selection (MSKFS) method, aiming to find the most representative frames
as the graph nodes to learn compact temporal graph representations of human skeletons for action
recognition. The MSKFS progressively selects key frames in two stages: (1) salient posture frame
selection based on the global dynamics of body parts and (2) key frame refinement and alignment
according to intra-frame correlations. The first stage captures the most salient information and
aligns the corresponding information of skeleton sequences within the same category. The second
stage enriches the subtle information for the integrity of the information derived by the salient
frames. Moreover, variational inference is applied to differentiate the key frame refinement and
alignment procedure, allowing the end-to-end optimization of arbitrary graph-based models to
represent the obtained compact graph for skeleton-based action recognition. Our MSKFS method
achieves state-of-the-art performances on two challenging action recognition datasets.

Keywords: action recognition; key frame selection; graph neural network; skeleton sequence;
variational inference

1. Introduction

Action recognition is a critical component in the field of computer vision, and skeleton-
based methods have gained growing interest due to the compact structure and background
interference resistance of the skeleton sequences. The goal of skeleton-based action recogni-
tion is to interpret human actions through the modeling of spatial and temporal patterns
embedded in sequences of skeleton data.

Early deep models often transform a sequence of skeleton data into sequential vectors
and complete the recognition task using CNNs or RNNs. These methods struggle to un-
cover the information of global relationships between human body parts either spatially
or temporally. The relationships between body parts can be modeled by graph neural
networks (GNNs). Yan et al. [1] infer the relationships between body joints via the pre-
sented spatial–temporal graph convolutional network (ST-GCN), which achieves superior
performances on the task of skeleton-based action recognition. The ST-GCN learns frame-
level features by using GNNs to reason body joints’ spatial relationships and models the
temporal relationships of the frame-level features via convolutional operations. Since then,
there has been an increasing number of methods based on GNNs for skeleton-based action
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recognition, such as refining graph topology structures [2–10], reasoning the relations be-
tween the partial and the whole graphs [11], improving the robustness of noise interference
resistance [12,13] and efficient computing [14,15]. Among them, graph topology refinement
methods mainly focus on revealing the latent spatial relationships between body parts
beyond only reasoning the physical relations.

Differently, we mainly focus on optimizing the temporal structure of the spatial–
temporal graph that represents the skeleton-based action. In this paper, we consider two
main problems in the temporal modeling of skeleton-based actions with GNNs. One
problem of modeling temporal relations in human actions stems from the inefficiency of
information propagation through frame-level features that are highly redundant. The
presence of numerous redundant and misleading frames within each skeleton sequence
poses a challenge to GNNs that aim to learn discriminative representations of temporal
relations, and these redundant frames might even lead to incorrect predictions [14,15]. We
also consider another problem of temporal relation representation with GNNs, i.e., the
performance might be affected by the dramatically variant lengths of different skeleton
sequences. For example, the action “drink water” in the NTU RGB+D 60 dataset [16] takes
66 frames for Subject No. 2 and 150 frames for Subject No. 3. Generally, two main methods
are employed to conquer this problem by fixing the lengths of different sequences: zero
or loop padding and random sampling. Intuitively, padding increases the computation
expense and introduces a lot of irrelevant frames. Random sampling makes the training
procedure unstable for the robustness of GNNs [17]. We focus on graph optimization in the
temporal domain and the uniformity of the length of the sequence by selecting a certain
number of key frames.

To tackle the above challenges, we propose a multi-stage key frame selection (MSKFS)
method, which optimizes the temporal graph by automatically discovering a few repre-
sentative frames from the skeleton sequence to recognize the skeleton-based actions. For
an arbitrary skeleton sequence, the key frame selection is accomplished efficiently in two
stages based on the global dynamics of body parts and the relationships between frames.
Firstly, each skeleton graph is separated into five human body parts, and the global dynam-
ics are used for salient posture frame selection. Secondly, we dynamically supplement and
refine the key frames by exploiting the relationships between the key frames selected in the
first phase and all the frames in the video to estimate the posterior of the key frames via
variational inference with the initially selected salient posture frames as the prior. Finally, a
new spatial–temporal graph organized by the key frames is inputted into a GNN-based
model to recognize human actions.

The primary contributions of our work are highlighted in the following points:

• We propose a new multi-stage method that conducts key frame selection to align
action sequences within the same category as well as preserves the most representative
frames including both salient and subtle dynamic information for skeleton-based
action recognition.

• We propose a plug-and-play module based on variational inference to simultaneously
refine temporal relationships for constructing the spatial–temporal graph and optimize
the parameters of the GNNs.

• The proposed method achieves state-of-the-art performances on two large-scale datasets.

2. Related Work

This work refines the temporal graph topology structure using a multi-stage key frame
selection method for skeleton-based action recognition. First of all, we discuss deep learning
methods for recognizing skeleton-based human actions from the perspective of spaces
where the skeleton sequences are processed. Then we describe the key frame selection and
its applications for computer vision tasks, especially for action recognition.
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2.1. Skeleton-Based Action Recognition

Recently, a variety of deep learning methods for skeleton-based action recognition
have been developed. These methods are mainly categorized into two types: space–time-
based methods and graph-based methods. CNNs and RNNs are typical models for the
space–time-based methods, and a representative of the graph-based methods is the GNN.

Benefiting from the recurrent connections in hidden layers [18], RNNs are able to
model temporal sequences. RNN-based methods first organize the skeleton joint coordi-
nates of their corresponding frames into a vector sequence, which is then fed into an RNN
model to learn the dynamic relationships. Meanwhile, inspired by the great success of
CNNs in 2D/3D image tasks, CNNs are also used to extract features from skeleton-based
action sequences. In CNN-based methods, the skeleton joints of a sequence are manually
transferred into a pseudo image to learn spatial–temporal features. However, they are
limited in modeling the structural relationships involved in the skeleton sequence due to
the neglect of the natural structure information of human skeletons.

Numerous advanced methods model the human skeleton sequence as a graph, a
representation that is widely used to describe relationships. The skeleton spatial–temporal
graph model (ST-GCN) proposed by Yan et al. [1] is the first model discovering spatial
structural information and temporal dynamic information from skeleton data. Owing to
the representation ability of a spatial–temporal graph and learning ability of a GCN model,
the ST-GCN has seen substantial enhancements in recognition performance. Based on the
graph representation of human skeletons, a number of GNN-based methods focusing on
optimizing the topology structure of the graph are proposed. Gao et al. [19] introduce the
graph regression model to optimize the graph topology by observing multiple frames of
skeleton data. Li et al. [2] extend a generalized spatial skeleton graph to capture higher-
order associations between body parts by inferring the connections of body joints and the
human body structure. Peng et al. [4] discover the latent relationships between joints by
searching the network architecture with a multiple-hop strategy. Gao et al. [7] add a latent
node to the skeleton spatial–temporal graph to discover the implicit connections within
individual frames and across multiple frames. Yang et al. [20] reconstruct a centrality graph
to model the topology structure of the skeleton sequence by investigating key information
on the spatial graph for recognizing human actions. Zeng et al. [8] build skeleton graphs
dynamically based on some input human poses instead of using a fixed pre-defined graph.
Chen et al. [9] optimize the channel-wise topology structure to learn various topologies in
different channels for recognizing human actions with skeleton data. Given the technical
robustness of their method in representing spatial structural information, we adopt it
as our backbone model. Our focus, however, is on capturing temporal information to
further enhance performance, especially in handling complex input data. Chen et al. [21]
present a dual-head graph network to learn a multi-granular spatio-temporal graph for
tackling the problem of large variations in human actions. To learn coarse-level action
presentation, they subsample features along the temporal dimension, while our method
directly learns to select and align key frames within the same class to capture time-invariant
representations. Liu et al. [22] propose a unified spatial–temporal graph representing
skeleton sequences with a Transformer, where the temporal information can be aggregated
for hierarchical modeling. Pang et al. [23] learn both local and global information for
the graph representation via a GCN and a Transformer, which is trained by a contrastive
learning strategy to integrate relations between human joints within and between frames.
Different from previous methods, this work aims to optimize the temporal graph via key
frame selection.

2.2. Key Frame Selection for Action Recognition

Compared to static images, videos containing human actions provide richer informa-
tion, primarily including movement patterns such as amplitude and velocity. Additionally,
the coordination among different body parts can be fully exhibited in videos.
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However, videos composed of a large number of frames contain redundant
information [24–26], so we only need a few key frames to represent the actions in videos.
There exist some studies that already explore the issues in action recognition. Zhao et al. [27]
select the discriminative frames by feature integration of the key frames and their neighbors.
Ding et al. [28] split the sequence into segments to select the key frames automatically from
each segment. Dong et al. [29] introduce a non-differentiable hard attention mechanism
where the attention block is trained via a deep reinforcement learning method to select key
frames. As for the skeleton-based action recognition task, only a few methods based on
key frames are proposed. Tang et al. [26] distill the key frames with richer information by
exploring the sequence redundancy on the basis of deep progressive reinforcement learning.
We formulate the process for selecting key frames in two stages by mining the dynamics of
human body parts and adaptively adding key frames from the sequence according to the
spatial–temporal relationships between body parts.

3. Multi-Stage Key Frame Selection

Given a skeleton sequence X = {X1, X2, · · · , XN} composed of N frames, where
Xt ∈ RC×V represents the initialized features (e.g., the spatial location information and
the motion information) of the V body joints performed by all the subjects (usually 1 or
2 subjects) in the t-th frame, our goal is to optimize the temporal graph by selecting T key
frames as the graph nodes in two stages to recognize human actions from skeleton data.
We propose a novel method called multi-stage key frame selection (MSKFS), and Figure 1
depicts the pipeline of the proposed method. Firstly, we discover global dynamics of human
body parts to find Tinit key frames based on salient postures. Then, we supplement and
refine the key frames from the number of Tinit to T using variational inference according
to the prior of the salient posture frames. Finally, a GNN-based model with a compact
spatial–temporal graph as input is utilized for the task of skeleton-based action recognition.

3.1. Salient Posture Frame Selection

We conduct salient posture frame selection by choosing some exclusive positions by
global dynamics of human body parts. An example of salient posture frame selection
(action “hand waving”) is illustrated in Figure 2. We first divide the skeleton graph in
each frame into five body parts (i.e., “trunk”, “left arm”, “right arm”, “left leg” and “right

leg”) and denote Xs
t ∈ RC×Vs as the s-th body part feature, where

5
∑

s=1
Vs = V. We conduct

average pooling across all the axes of each body part feature Xs
t to obtain the part global

pose dynamics ps = [ps
1, ps

2, · · · , ps
N ]
>, where

ps
t = AverPooling_2D(Xs

t) ∈ R1. (1)

The Savitzky–Golay (S-G) filter [30] is applied to remove the high-frequency noise
from the ps to obtain the representative dynamics:

p = S−G(ps, βl , βo). (2)

where p = [p1, p2, · · · , pN ]
>. The βl represents the length of the filter window, and βo is

the order of the fitted polynomial. Afterwards, we select the body part with the largest
variance to remove the unnecessary low-frequency information,

ŝ = argmax
s

Var(ps). (3)

Figure 3 shows a pair of the representative dynamics of the body part “left leg” of
an action “jump up” displayed by two subjects as an example. The action is composed
of five phases: stand (before jump), squat (before jump), jump, squat (after jump) and
stand (after jump). We find that the changes in actions conducted by the two subjects are
consistent, thus extracting representative frames of the corresponding phases according to
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the dynamics can help to align the inter-class actions and generate temporal scale-invariant
representations. From the figure, we also observe that the phase of standing upright is
dispensable for the “jump up” action recognition, and the other phases are more necessary
and discriminative. Frames at time steps with high volatility in the dynamics can just
satisfy the aforementioned characteristics.

Encouraged by the above observations, we select salient posture frames by simply
finding the peaks and troughs of the representative dynamics calculated by the comparison
of neighboring values, which is formulated as

ts = FindingPT(p, βd, βp), (4)

where ts ∈ RL1 is the indices of the selected salient posture frames, and βd, βp are the
hyperparameters of distance and prominence, respectively. Specifically, the distance βd
represents the minimum horizontal time steps between the sampled peaks or troughs.
If there is distance between two neighboring peaks or troughs, the smaller one will be
removed. The prominence βp is the minimum vertical distance between the peak or trough
and the surrounding baseline. The sequence of salient posture frames is generated by
extracting the corresponding selected frames of the video according to the chronologically
sorted indices.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 16 
 

However, videos composed of a large number of frames contain redundant infor-
mation [24–26], so we only need a few key frames to represent the actions in videos. There 
exist some studies that already explore the issues in action recognition. Zhao et al. [27] 
select the discriminative frames by feature integration of the key frames and their neigh-
bors. Ding et al. [28] split the sequence into segments to select the key frames automati-
cally from each segment. Dong et al. [29] introduce a non-differentiable hard attention 
mechanism where the attention block is trained via a deep reinforcement learning method 
to select key frames. As for the skeleton-based action recognition task, only a few methods 
based on key frames are proposed. Tang et al. [26] distill the key frames with richer infor-
mation by exploring the sequence redundancy on the basis of deep progressive reinforce-
ment learning. We formulate the process for selecting key frames in two stages by mining 
the dynamics of human body parts and adaptively adding key frames from the sequence 
according to the spatial–temporal relationships between body parts. 

3. Multi-Stage Key Frame Selection 
Given a skeleton sequence   composed of   frames, where 

 represents the initialized features (e.g., the spatial location information and 
the motion information) of the  body joints performed by all the subjects (usually 1 or 
2 subjects) in the -th frame, our goal is to optimize the temporal graph by selecting  
key frames as the graph nodes in two stages to recognize human actions from skeleton 
data. We propose a novel method called multi-stage key frame selection (MSKFS), and 
Figure 1 depicts the pipeline of the proposed method. Firstly, we discover global dynam-
ics of human body parts to find  key frames based on salient postures. Then, we sup-
plement and refine the key frames from the number of  to  using variational infer-
ence according to the prior of the salient posture frames. Finally, a GNN-based model 
with a compact spatial–temporal graph as input is utilized for the task of skeleton-based 
action recognition. 

 
Figure 1. Overview of our MSKFS. (a) Architecture of the proposed method. The skeleton data in-
volved in video frames are inputted into the modules of salient posture frame selection and key 
frame refinement and alignment, where the output salient posture frames of the former module are 
regarded as the prior for refining and aligning the selected frames of the latter module. The skeleton 
structures in the selected frames can thus be constructed as a spatial–temporal graph and fed into a 

Figure 1. Overview of our MSKFS. (a) Architecture of the proposed method. The skeleton data
involved in video frames are inputted into the modules of salient posture frame selection and key
frame refinement and alignment, where the output salient posture frames of the former module
are regarded as the prior for refining and aligning the selected frames of the latter module. The
skeleton structures in the selected frames can thus be constructed as a spatial–temporal graph and
fed into a GNN to generate the final predicted action category. (b) Data flow through three main
modules of our method. In the salient posture frame selection, the salient postures are selected from
the uniformly sampled frames from the input sequence. In the key frame refinement and alignment,
we refine the selection of key frames as the graph nodes with the guidance of salient postures. In the
spatial–temporal GNN, the edges of the graph can be further refined and the information of each
graph can be propagated to represent the action.
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Figure 3. Example of the dynamics of body part “left leg” in action “jump up”. The left part of the
figure is a pair of two skeleton sequences that are performed by Subject No. 2 and Subject No. 4. The
right part represents a pair of two dynamics in the body part “left leg”.

3.2. Key Frame Refinement and Alignment

In the second stage of our MSKFS, we adaptively augment and refine the key frames
based on the selected salient posture frames in the first stage. In addition to the discrim-
inative information carried by the salient posture frames, we still need more detailed
information to represent some local continuous variants (i.e., high-order features) of the mo-
tion and periodic trends that are important features of time signals. We believe that frames
containing the aforementioned characteristics share some similarities with the salient pos-
ture frames in certain spaces. For example, frames representing local continuous variants
are similar in appearance, and the most representative variants are the neighborhoods of
the salient posture frames. Accordingly, we can learn to map the joint-level features of
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the frames into a common feature space and select the final key frames according to the
similarity measurement in this space.

In this paper, we use the variational inference to estimate the posterior of the selected
key frames conditioned on the features that carry information related to the similarity
measurement. There are two benefits as follows. First, the reparameterization trick en-
ables the key frame selection operation differentiable for optimization with gradient de-
scent. Second, the variational inference allows the knowledge to constrain the distribution
of the temporal graph node, which improves the generalization and robustness of the
proposed model.

To be specific, a spatial graph convolution layer is first utilized to learn the frame-level
representation gt. At time step t, the human bodies are regarded as a graph where vertices
represent body joints and edges characterize their connections. The graph feature of the
v-th vertex at time t is calculated by

gt = AverPooling_1D(ReLU(AX>t W)), (5)

where W is a learnable weight matrix, A ∈ {0, 1}V×V represents the adjacency matrix and
AverPooling_1D(·) means the average pooling operation along the axis of body joints.

Given the frame-level graph features, we then use a multi-head attention operation
to learn the similarity-measurement-based feature st for the key frame refinement and
alignment. For the t-th frame, i-th head attention operation is formulated as

st[i]= f vi
([gts

, gt]) · Softmax(
fki
([gts

, gt])
> fqi (gt)

nhead
), (6)

where fqi (·), fki
(·) and fvi (·) are linear functions, and nhead denotes the number of attention

heads. Thus, we have the similarity-measurement-based feature st by concatenating the
features calculated by different heads of attention operations:

st = [st[1]; st[2]; . . . ; st[nhead]]. (7)

We learn the posterior of each key frame conditioned on the input human
skeleton sequence:

q(wt|X ) = Bernoulli(πt), (8)

where

wt =

{
0, if L + πt < 0,
1, otherwise,

(9)

is an indicator variable representing whether to select the frame at t as the key frame, and
L ∼ Logistic, i.e.,

L = log U − log(1−U),
U ∼ Uniform(0, 1).

(10)

Bernoulli(πt) denotes the Bernoulli distribution with parameter πt that is calculated by a
linear function given st. For variational inference, we consider the form of the prior as

p(wt) = Bernoulli(πprior
t ). (11)

However, even though we apply the reparameterization trick to the Bernoulli distribu-
tion, the parameter of the distribution still cannot be optimized during the gradient descent.
To ensure the feasibility of optimization, we relax the discrete distribution to a continuous
distribution [31] as:

q(wt|X ) = BinConcrete(πt, λ), p(wt) = BinConcrete(πprior
t λprior), (12)
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where λprior and λ are the scale parameters of the continuing distribution. The BinConcrete
distribution is defined as

wt = σ(
L + πt

λ
), (13)

where σ(·) is the sigmoid function. For the posterior distribution, the parameter
πt = fπ(st) where fπ(·) is a linear function. For the prior distribution, the parameter
π

prior
t is calculated by

π
prior
t = log(Prt)− log(1− Prt), (14)

and Prt is the frequency of the selected salient posture key frame at time step t.

3.3. Skeleton-Based Action Recognition

Using the obtained posterior distribution, we can select the key frames from all the
frames of the entire video. Multiplied with σ(wt), the graph features gt of the selected key
frames with top T posterior probabilities encoded with a Transformer encoding layer and
inputted into a GNN-based model for the final prediction. We apply the CTR-GCN [9] here
as the base GNN-based model to obtain the predicted action label y.

Consequently, the entire model can be optimized by maximizing the variational
lower bound:

VLB = Eq(wt |X )[log p(y|X , w1:N)]−
N

∑
t=1

KL[q(wt|X )||p(w t)], (15)

where p(y|X , w1:N) is obtained by the output of the GNN-based action classification model
in our method, and KL divergence is calculated as

KL[qθ(wt|X )||p(w t)]

= log λ
λprior

+ πt − π
prior
t + 1

K

K
∑

k=1
[(λprior − λ) log(w(k)

t (1− w(k)
t )) + ∆],

(16)

where

∆ = 2 log
exp(πprior

t )(w(k)
t )−λprior

+ (1− w(k)
t )
−λprior

exp(πt)(w
(k)
t )−λ + (1− w(k)

t )
−λ

. (17)

During the inference procedure, we can directly select the key frames with top T
posterior of q(wt|X ) .

4. Experiments
4.1. Datasets

Our method is evaluated on the NTU RGB+D 60 dataset [16] and the NTU RGB+D
120 dataset [32].

The NTU RGB+D 60 dataset has a total of 56,880 samples executed by 40 volunteers,
with ages spanning from 10 to 35 years. All data are captured using the Microsoft Kinect v2
sensor, capturing actions from 3 different camera positions. Within the dataset, the action
samples are classified into 60 classes: 40 of these cover common daily behaviors, 9 focus on
health-related actions and 11 involve mutual actions performed by 2 players. There are
two distinct criteria used to partition the dataset into training and test sets: (1) cross-subject
(X-sub), where the training set and the test set are split according to the character IDs; and
(2) cross-view (X-view), where the training set comprises samples from camera views 2 and
3, and the test set contains samples from camera view 1.

The NTU RGB+D 120 dataset is an extension of NTU RGB+D 60 by adding an addi-
tional 60 classes, resulting in a total of 114,480 samples across 120 classes, all performed by
106 volunteers. Like its predecessor, this dataset is split into training and test sets using
two criteria: (1) cross-subject (X-sub), where the training and test sets are derived from
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53 different subjects each, and (2) cross-setup (X-setup), where the training set consists of
samples from setups with even IDs, and the test set comprises those with odd IDs.

4.2. Implementation Details

Network setting. The numbers of channels of the backbone model are set to
64–64–64–128–128–128–256–256–256, where each module comprises a GCN and a TCN.
In the salient posture frame selection set, the filter window is configured with a length of
8, and the polynomial order is set to 2. The hyperparameters defined in Equation (4), i.e.,
distance and prominence, are set empirically to values of 7 and 0.0001, respectively.

Training. The SGD optimizer is employed with a momentum of 0.9 and a warm-up
phase is introduced for 5 epochs at a learning rate of 0.1 to enhance training stability. The
learning rate is decreased by a factor of 0.1 at epochs 20, 35, 45 and 55. We also implement
a weight decay of 0.0004. For two large datasets, the batch size is 64.

Data processing. Following [26], we first interpolate each sequence into f = 100 frames
in which the first and last frames remain the same. This strategy reduces the use of a lot
of computing resources. To augment the data during training, we utilize random rotation
following the method in [33].

Evaluation metric. Following the instructions of [16,32,34], we use the accuracy metric
to evaluate the performances of different methods on NTU RGB+D 60 and NTU RGB+D
120. The metric is calculated by

Accuracy =
1
M

M

∑
i=1

1(ŷi = yi) (18)

where M is the total number of samples, ŷi represents the prediction of the i-th sample, yi
is the ground-truth of the i-th sample and 1(·) denotes the indicator function.

4.3. Comparison with the State-of-the-Art Methods

In Tables 1 and 2, our proposed method is benchmarked against state-of-the-art
methods on the NTU RGB+D 60 and NTU RGB+D 120 datasets, respectively. In order to
ensure comparability, we employ the multi-stream fusion strategy at the score level, as
is common among most compared methods that use various types of features to boost
action recognition performance. Specifically, we first conduct experiments using two single-
stream strategies employing two different input features: joint coordinates (joint) and the
differential values of joints in the same frames (bone), respectively. Then we perform
experiments using a 4-stream strategy that leverages 4 kinds of features as input, including
the aforementioned joint and bone features, along with two motion features of the joint
and bone that are calculated by computing the differential of these features along the time
dimension (fusion-4s). To show the compatibility of our MSKFS method, in addition to
using CTR-GCN as the backbone of our approach (ours (CTR-GC [9])), we also adopted
BlockGCN as the backbone (ours (Block-GC [10])), which learns topological knowledge
from the physical connections.

Table 1. Comparison with the state-of-the-art action recognition methods (accuracy, %) on the NTU
RGB+D 60 dataset. The best results for each feature setting and split are indicated in bold.

Methods Features X-Sub X-View

ST-GCN [1] Joint 81.5 88.3
SR-TSL [35] Joint 78.8 88.2
AS-GCN [2] Joint 86.8 94.2
AGCN [3] Joint - 93.7

MS-G3D [36] Joint 89.4 95.0
PL-GCN [37] Joint 84.0 90.5

MST-GCN [38] Joint 89.0 95.1
Skeletal [8] Joint 89.0 95.3
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Table 1. Cont.

Methods Features X-Sub X-View

DualHead-Net [21] Joint 90.3 96.1
TranSkeleton [22] Joint 90.1 95.4

FR Head [39] Joint 90.3 95.3
BlockGCN [10] Joint 90.9 95.4

Ours (CTR-GC [9]) Joint 90.2 95.6
Ours (Block-GC [10]) Joint 91.5 96.1

DGNN [40] Fusion-4s 89.9 96.1
Shift-GCN [14] Fusion-4s 90.7 96.5

Dynamic GCN [5] Fusion-4s 91.5 96.0
MST-GCN [38] Fusion-4s 91.5 96.6

Skeletal [8] Fusion-4s 91.6 96.7
CTR-GCN [9] Fusion-4s 92.4 96.8

DualHead-Net [21] Fusion-4s 92.0 96.6
Ta-CNN+ [41] Fusion-4s 90.7 95.1

MCTM-Net [42] Fusion-4s 92.8 96.8
FR Head [39] Fusion-4s 92.8 96.8

BlockGCN [10] Fusion-4s 93.1 97.0
Ours (CTR-GC [9]) Fusion-4s 92.7 96.9

Ours (Block-GC [10]) Fusion-4s 93.1 97.1

Table 2. Comparison with state-of-the-art for action recognition (accuracy, %) on the NTU RGB+D
120 dataset. The best results for each feature setting and split are indicated in bold.

Methods Features X-Sub X-Setup

MST-GCN [38] Joint 82.8 84.5
Skeletal [8] Joint 83.5 85.7

DualHead-Net [21] Joint 84.6 85.9
TranSkeleton [22] Joint 84.9 86.3

HDGCN [43] Joint 85.7 87.3
FR Head [39] Joint 85.5 87.3

BlockGCN [10] Joint 86.9 88.2
Ours (CTR-GC [9]) Joint 86.2 88.7

Ours (Block-GC [10]) Joint 86.7 88.6
Shift-GCN [14] Fusion-4s 85.9 87.6

Dynamic GCN [5] Fusion-4s 87.3 88.6
MST-GCN [38] Fusion-4s 87.5 88.8

Skeletal [8] Fusion-4s 87.5 89.2
CTR-GCN [9] Fusion-4s 88.9 90.6

DualHead-Net [21] Fusion-4s 88.2 89.3
Ta-CNN+ [41] Fusion-4s 85.7 87.3

MCTM-Net [42] Fusion-4s 89.3 91.0
FR Head [39] Fusion-4s 89.5 87.3

BlockGCN [10] Fusion-4s 90.3 91.5
Shift-GCN [14] Fusion-4s 85.9 87.6

Ours (CTR-GC [9]) Fusion-4s 89.1 90.9
Ours (Block-GC [10]) Fusion-4s 90.4 91.7

As shown in the tables, our method performs better than the backbone methods on
both datasets under all the data split settings, indicating the effectiveness of our method.
Note that [9] also conduct data sampling instead of using all frames as input in their imple-
mentation. To be specific, this method randomly crops the center portion of input frames to
a target size ranging from 50% to 100% of the original length for data augmentation during
training and crops the 90% center part of the entire sequence at the test time. For a detailed
understanding of the backbone model, please consult Section 4.5. Actually, our method is
complementary to most skeleton-based action recognition methods that mainly consider
encoding the spatial relationships of action, because we concentrate on the optimization of
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temporal graph nodes at the early stage of the entire data flow, while other methods focus
on either spatial graph representation or the design of GNNs. Comparison results with
methods that process frame-level representations, such as DualHead-Net [21], show the
substantial competitiveness of our proposed MSKFS method.

4.4. Analysis on the Length of Key Frame Sequence

In this part, we analyze the effects of different lengths of selected key frame sequences.
How key frame length affects the action recognition performance is explored within the
context of the NTU RGB+D 60 dataset. According to the key frame selection and refinement
method in this paper, this section validates the effect of key frame length on classification
performance using the joint modality under the X-sub and X-view split criteria. The accuracy
of the action recognition task as it relates to key frame length is shown in Figure 4. For the
X-sub setting, when the number of frames is less than 70, the recognition accuracy is highly
sensitive to sequence length. Between 50 and 70 frames, the model’s recognition accuracy
significantly increases from 89.2% to 90.2%. This phenomenon may be due to an insufficient
number of key frames where the model cannot capture enough motion information, leading
to improved recognition accuracy as the number of key frames increases. When the frame
length reaches 70, the accuracy does not rise significantly anymore but instead shows a
certain decrease (at 80 frames), which could be mainly attributed to the inclusion of too
many key frames, leading to redundant or noisy frames in the optimized skeleton sequence,
thereby hindering the performance of the model. As the key frame length increases to 90,
the task’s accuracy experiences a slight increase but is almost indistinguishable from when
the length is 70 frames. Therefore, for the X-sub setting, we select a key frame length of 70
to maximally include useful motion information while ensuring recognition accuracy and
considering the computational efficiency of the model. Similarly, for the X-view setting, we
choose a key frame length of 80. Considering that the average length of salient pose frames
across all samples is approximately equal to 12, we set Tinit = 20.
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4.5. Ablation Study

To further show that our method can exploit more informative representations for
action recognition contributed by every module of MSKFS, we conduct an ablation study
on the NTU RGB+D 60 dataset. Firstly, we directly apply all the frames as input and
some commonly used key frame selection methods combined with our backbone model,
CTR-GCN, to study the effectiveness of the proposed key frame selection module. These
baselines are provided as follows:
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All. All skeleton sequences are interpolated to 70 frames into the backbone action
recognition model.

Uniform sampling [33]. This method segments the complete skeleton sequence into
20 equal segments and randomly selects a single frame from each segment to organize a
20-frame sequence as the input of the backbone model for training. Different from [33], we
directly sample the middle frame in each segment to avoid introducing any randomness
into the final results. In the test time, the target size is set to 20% of the original length.

Salient posture (ours). This method only selects the salient posture frames, i.e., the
frames selected by the first stage of our method, as the input of the backbone model.

In addition, we validate the effectiveness of the second stage of our method, i.e., the
key frame refinement and alignment (KFRA), by providing results of replacing the salient
posture frame selection with the uniform-sampling strategy. Table 3 shows the comparison
results. With the “all” strategy, classification accuracies of 92.3% for Top 1 and 96.3% for Top
5 are achieved, indicating that, without any manipulation, direct interpolation can reduce
the frame length to some extent. However, compared to our strategy, i.e., salient posture, the
all strategy yields lower accuracy, suggesting that selecting salient pose frames is necessary
for action recognition tasks. The “uniform-sampling strategy” involves selecting 20 frames
at equidistant intervals from the skeleton sequence, achieving classification accuracies
of 92.1% and 95.9% on Top 1. Compared to the previous strategy, this strategy shows a
decrease in classification accuracy and a noticeable gap compared to the proposed method.
This suggests that, for different action sequences, frames selected based on intervals cannot
directly be considered key frames, and uniformly selecting salient frames cannot serve as
prior knowledge to guide key frame refinement. Our MSKFS method achieves better action
recognition accuracy under both settings, proving that the proposed salient pose selection
method aids in completing action recognition tasks.

Table 3. Accuracies (%) of different baseline methods. The best results for each split are indicated
in bold.

Methods
w/o KFRA (%) w/KFRA (%)

Top 1 Top 5 Top 1 Top 5

All
X-sub 92.3 98.2 - -

X-view 96.3 99.4 - -
Uniform
sampling

X-sub 92.1 98.3 92.1 97.9
X-view 95.6 98.6 95.8 98.7

Salient
posture (ours)

X-sub 92.2 98.1 92.5 98.9
X-view 96.1 98.8 96.9 99.7

4.6. Visualization Result

We provide a visualization of some key frames finally selected by the proposed
method. Figure 5a shows the images corresponding to key frames A to H of the action
“hand waving”. In frames A and B, the subject gradually raises her left hand. By frame
C, the subject’s left hand has reached the starting position for waving and begins to wave.
Additionally, the curve shows that the subject completed four cycles of waving, with
the amplitude decreasing gradually, which aligns with the key frames selected by the
model. After key frame refinement and alignment, more frames unrelated to the action
type were removed, and more detailed information can be added to minimize information
loss. We also show the relationships between these frames by presenting the attention
maps learned in our proposed model in Figure 5b. From the figure, we can observe that
the relationship weights between these manually selected key frames, which we consider
representative, are generally large, indicating the effectiveness of the temporal graph
optimization. Another notable observation is frame C, the starting position of the action,
showing strong relationships with many other key frames, underscoring its significance.
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5. Conclusions

In this paper, we have presented a temporal graph refinement method via multi-stage
key frame selection to recognize skeleton-based human actions. Our method is capable of
reducing the scale of the temporal graph and improving the efficiency of the information
propagation between graph vertices. We have introduced a multi-stage key frame selection
(MSKFS) method to select representative frames and discard redundant and misleading
frames. The proposed MSKFS includes two stages: salient posture frame selection, key
frame refinement and alignment. The MSKFS learns the salient features and subtle dynamic
features that are consistent within inter-class for better spatial–temporal representation of
skeleton-based human action sequences. Guided by the action recognition task, an end-to-
end variational inference approach is employed to estimate the parameters of the posterior
distribution for key frame selection. Experiments on several challenging datasets on skeleton-
based action prediction demonstrate the superior performances of the proposed method.
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