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Abstract: In this study, we addressed the difficulty of systematic and accurate identification and early
warning of secondary disaster events after natural disasters. We analyzed the causes of common
secondary disaster events, established the correlation between common everyday items and the
types of secondary disasters, and constructed six secondary disaster factor datasets, namely, fire,
flammable objects, explosive objects, toxic substances, trapped personnel, and dangerous buildings.
We proposed a multi-model cluster decision method to extract the secondary disaster factors’ visual
features, and we created a ResNet-CDMV image classification algorithm with higher accuracy
recognition performance than the traditional single model. The experimental results show that
the ResNet-CDMV algorithm in this study has an identification mAP value of 87% for secondary
disaster factors. For this algorithm, Faster-RCNN, SSD, CornerNet, and CenterNet, the mAP value
of the YOLOv7 object detection algorithm is increased by 9.333%, 11.833%, 13%, 11%, and 8.167%,
respectively. Based on the systematic analysis of the formation mechanism of secondary disasters,
the high-precision identification method built in this study is applied to the identification and early
warning of secondary disasters, which is of great significance in reducing the occurrence of secondary
disasters and ensuring the protection of life and property.

Keywords: secondary disaster; disaster management; image recognition; risk management;
disaster warning

1. Introduction

Natural disasters can take a long time to threaten people’s safety and affect the order
of production [1,2]. They are characterized by their widespread nature and strong destruc-
tiveness, and common natural disaster events include earthquakes, floods, and typhoons.
In recent years, the most influential natural disasters were the Tangshan earthquake in
1976, the Wenchuan earthquake in 2008, the Chile 9.5 magnitude earthquake in 1960, the
‘JiangHuai flood’ in 1991, the ‘catastrophic flood’ in 1998, the ‘flood disaster’ in 2020, the
‘7.20 heavy rain’ in Henan Province in 2021, the ‘9.16 earthquake’ in Luxian County in 2021,
Typhoon Haiyan in 2013, Typhoon Haima in 2014, Typhoon Meranti in 2015, Typhoon
Haikui in 2023, and so on [3]. The total number of people affected by disasters in the world
between 2000 and 2022 was almost 4.5 billion [4]. The occurrence of natural disasters can
further lead to various types of disaster events, forming a chain of disasters with serial
effects and severe destruction [5]. At present, disaster management mainly focuses on the
monitoring and management of primary disasters such as floods, earthquakes, storms,
wildfires, and building fires [6]. Secondary disasters further derived from disasters are
also destructive [7]. For example, after the Wenchuan 8.0 earthquake in 2008, many houses
were seriously damaged and collapsed in succession over a long period. The 7.3 magnitude
Hanshin earthquake in Japan in 1995 caused large casualties, and gas leakage led to serious
fires [8,9]. After the occurrence of natural disasters, the on-site environment is unstable,
which can easily lead to further disaster events and thus form a disaster chain. For example,
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when a natural disaster occurs, a fire caused by a short circuit of the electrical system in
the environment can easily lead to further disaster events [10]. If there are flammable and
explosive substances in the environment, they can form combustion and explosion events
under an open flame. In addition, if there is toxic material leakage in the environment and
it is not identified and treated in a timely manner, if trapped persons are not promptly
found and treated, and if damaged houses that are threatening to collapse are not provided
with necessary early warning, it will lead to further disaster events, resulting in an even
more serious threat to life and property [11]. After natural disasters, secondary disaster
events that may occur include primary fire, flammable material burning, explosive material
explosion, toxic material leakage, injured rescue, and building collapse.

To investigate the correlation between the types of secondary disasters and common
everyday items, in this study, we establish six secondary disaster factor datasets, namely,
fire, flammable objects, explosive objects, toxic substances, trapped persons, and dangerous
buildings, of which fire is the first type of secondary disaster factor, and the other five are
the second type. The formation rules of disaster events after natural disasters occur are part
of the analysis that uses the computer vision method. A CDMV (Class Decision making by
Models Vote) decision method for improving the AP value is constructed. Based on this, the
ResNet-CDMV is formed by adding the single ResNet model [12] training method, which
realizes the classification and recognition of multiple objects in an image. The monitoring
and early warning of disaster events are of great significance.

The rest of this article is arranged as follows: Section 2 introduces the relevant research
of secondary disaster monitoring and early warning. The proposed framework is explained
in Section 3. The experimental results are presented in Section 4. Section 5 discusses
the scientific nature of the framework proposed in this article. Finally, the research is
summarized in Section 6.

2. Related Studies

In this study, the secondary disaster factors refer to common objects or phenomena in
life that can cause six kinds of disaster events, namely, fire, flammable objects, explosive
objects, toxic substances, trapped persons, and dangerous buildings, especially fire in a
natural disaster site, which worsens the other five kinds of secondary disaster events [13].
Therefore, after a natural disaster, the identification of fire and the five secondary kinds of
disaster events is the key work that needs to be completed. In this section, we summarize
and analyze the current research status of the methods of reducing secondary disasters.

In terms of fire monitoring methods, Xu et al. [14] used the YOLOv5 (You Only Live
Once v5) algorithm to identify fires and added three convolutional attention modules to
the algorithm to improve the key feature extraction capability; at the same time, the C2f
module was used to replace the original C2 module to obtain more information. Dou
et al. [15], using the convolutional attention module, optimized YOLOv5, substituting
BiFPN for Panet and transposition convolution for neighbor interpolation and ulteriorly
used MobileNet V3, ShuffleNet V2, and GhostNet to improve the performance of the
YOLOv5 model. Mondal et al. [16] proposed an integrated device of real-time fire detection
and automatic fire extinguishing based on computer vision and developed a unique local
fire location technology for fire location combined with fire color characteristics. Shen
et al. [17] introduced an improved adaptive lightweight FireViT fire identification method
based on MobileViT. To better adapt to the irregular changes in smoke and flame in fire
scenarios, deformable convolution and an improved adaptive activation function were
introduced in their study to improve the performance of the network model. Ko et al. [18]
combined the current frame of a video with the corresponding block in the previous frame
to determine whether the phenomenon with flow characteristics is smoke and used it for
fire warning. Tomoaki et al. [19] proposed a Bayes–Poisson regression analysis method to
study the relationship between fire probability and ground motion intensity during seismic
events in Japan from 1995 to 2022. The evaluation indexes of earthquake intensity are peak
ground acceleration, peak ground velocity, and Japan Meteorological Agency earthquake
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intensity. Lu et al. [20] proposed a physical model-based on-site fire spread simulation
and smoke visualization method for use after an earthquake. In this study, a fire dynamics
simulator was used to build a city-scale fire scene after an earthquake.

In terms of explosive detection, Baiyi Zu et al. [21], based on the recent progress on
nanostructured vapor phase explosive gas sensors that operate in dark conditions, high-
lighted the attractiveness of developing optoelectronic sensors for vapor phase explosive
detection and proposed employing photocatalysis principles to enhance the sensitivity.
Xuan He et al. [22] used a simple and efficient self-approach strategy to apply ultrasen-
sitivity and self-revive ZnO–Ag hybrid surface-enhanced Raman scattering sensors for
the highly sensitive and selective detection of explosive TNT in both solution and vapor
conditions. Manvinder Sharma et al. [23] studied explosive detection methods, standoff
spectroscopy-based methods, and LIBS and compared the existing methods of trace detec-
tion, providing a review of the world’s smallest drone made by Israel, which can detect
explosives and drugs from a distance of 2.8 km. In terms of chemical leakage, because
chemicals are often toxic or corrosive, the method of monitoring chemicals is relatively
complex, and it is usually carried out after an accident according to national standards and
the scientific disposal process to further identify the various types. It is often used as a
targeted reference for subsequent environmental management. It is difficult for existing
technical means to achieve timely monitoring and early warning at the scene of secondary
disasters [10,24,25]. In terms of dangerous building detection, Lu et al. [26] built a solid wall,
applied horizontal shear force onto the surface to make the wall deform and lean, simulated
the static process in the wall when an earthquake occurred, simulated the acceleration
outside the wall in the process of wall collapse using the experimental method, and studied
the triggering boundary conditions of the fall of external protective components. This study
provided an empirical model for the falling of wall attachments. Ji et al. [27] studied the
seismic performance of glass walls under different loads during earthquake occurrence,
adopted quasi-static and dynamic in-plane loading methods to simulate the load boundary
conditions of glass walls during earthquake occurrence, and carried out experimental
research in a homemade full-size all-tempered insulating glass curtain wall system. The
experimental results show that the stress concentration at the diagonal part of the glass
contact with the frame can lead to the breakage of the glass plate. Xu et al. [28] proposed to
adopt the concentrated mass shear model of multi-story structures and specific criteria for
the falling of external non-structural parts. Based on the uncertainty of the earthquake and
vibration process, the incremental dynamic analysis method was used to predict the distri-
bution probability of falling objects during the design life of building clusters, and the urban
seismic elastic–plastic analysis method was used to obtain the floor velocity of the floor
where falling objects landed. Based on this, the distribution law of falling objects landing is
obtained by jointly using the model of flat throwing motion. In terms of injured personnel
rescue, Clara Obregón et al. [29] highlighted the social systems that enable community-to-
community support as well as potential opportunities for providing external aid to support
communities more efficiently. They suggested that community-to-community support
is critical in the first weeks after a disaster and highlighted the fact that the roles that
different support networks play at different stages of disaster response are critical not only
to improve people’s and institutions’ abilities to recover from particular disruptions but
also in broader efforts to strengthen community resilience in the face of climate change. Rui
Gao et al. [30], in relation to a small-area deployment scenario, proposed a small-area UAV
deployment to improve the Broyden–Fletcher–Goldfarb–Shanno algorithm via improving
the iterative step size and search direction to solve the high computational complexity of
the traditional Broyden–Fletcher–Goldfarb–Shanno algorithm. In a large-area deployment
scenario, to address the problem of the premature convergence of the standard genetic
algorithm, the large-area UAV deployment elitist strategy genetic algorithm was proposed
through the improvement of selection, crossover, and mutation operations. Sanjoy Debnath
et al.’s [31] review provided a comprehensive survey of the widely used communication
technologies applied for setting up an emergency communication network to mitigate the
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post-disaster aftermath; their review also delivered an overview of the integration of new
technologies with the existing standards for improving the performance of the disaster
communication networks. Finally, they proposed some promising solutions to overcome
the limitations of existing emergency communication technologies to improve the overall
network performance. The situational knowledge metadata included information about
event characterization characteristics, emergency prevention preparation, and the time,
resource, information, and business continuity constraints of event disposal. The scenario
construction of electric power emergency communication support for natural disaster sites
was realized with time and space decomposition [32,33].

For the monitoring and early warning of the types of secondary disaster factors,
the current research mostly adopts a combination or independent form of basic theory,
experiment, and simulation [34,35]. At present, there is a clear demand for monitoring
and early warning of disaster factors, but the technologies and methods for the specific
implementation process are too scattered, among which the identification of flammable
objects, explosive objects, toxic substances, trapped persons, and building collapse are
all at the level of mechanism analysis, single technology realization, model analysis, and
other physical phenomena application and interpretation, which are difficult to use for
monitoring before secondary disasters.

In terms of fire identification, with the participation of advanced algorithms such
as artificial intelligence and deep learning, relevant scenes are identified [36]. Similar to
flammable objects, explosive objects, toxic substances, and trapped persons, dangerous
buildings also have clear physical sources. Visual characteristics of physical objects are
obtained by constructing the correlation between physical objects and disaster event types.
Using deep learning algorithms to identify phenomena and build early warning strategies
for secondary disaster events is an important task that needs to be carried out in step with
the current development level of science and technology.

3. Materials and Methods
3.1. Construction of Disaster Factor Dataset

After natural disasters, the main causes of secondary disaster events include fires,
electric bicycles, flammable gas storage tanks, strong alkali, acid diluents, pesticides, people
trapped in dangerous environments in need of rescue, damaged or cracked buildings that
may collapse, etc. In general, there are six types of secondary disaster sources. In this study,
these sources are divided into two types: category I includes fire, and category II includes
flammable objects, explosive objects, toxic substances, trapped personnel, and dangerous
buildings, as shown in Figure 1.

Because the luminous phenomena generated by fires are easily confused with the four
types of similar non-fire phenomena in life, such as sunsets, welding, strong light, and weak
light, to distinguish them from bright characteristics of fires, this study combined these four
phenomena with fire to constitute the category I secondary disaster factor dataset. Fire is
‘factor 1’ in the dataset (it consists of pre-fire smoke, field fire, building fire, and indoor fire
images), and the other four phenomena do not cause the occurrence of secondary disaster
events and are only used in the dataset to assist the exclusive extraction of features of fire
phenomena using the deep learning model.

The category II secondary disaster factors include flammable objects (consisting of
electric bicycles and battery images); explosive objects (consisting of liquefied petroleum
gas, acetylene, and oxygen tanks that are high-pressure combustibles, and combustion-
supporting gas images); toxic substances (consisting of corrosion-resistant plastic drums,
strong alkali, strong acid, and pesticides); ‘dangerous chemicals’ (warning signs are added
to the images to enhance the Convolutional Neural Network’s ability to learn complex
features); trapped persons (consisting of images of adults and children); and dangerous
buildings (consisting of characteristic images of cracks in buildings that can cause them
to collapse). Among these, flammable objects are disaster ‘factor 2’, explosive objects are
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disaster ‘factor 3’, toxic substances are disaster ‘factor 4’, trapped persons are disaster
‘factor 5’, and dangerous buildings are disaster ‘factor 6’.
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In this study, to better extract the characteristics of relevant factors and distinguish
them from common disaster factor analogs in everyday life, five object analogs, namely,
bicycles, iron containers, garbage cans, animals, and brick cracks, were set to correspond
with disaster factors 2, 3, 4, 5, and 6, respectively, to assist in training the deep learning
model. The dataset contains secondary disaster factors, and similar scene objects are
15 classes used for feature extraction of secondary disaster factors, each class consisting of
1000 images, comprising 800 in the training set, 100 in the verification set, and 100 in the
test set.

3.2. CNN Principles of Mathematics

As an important method of image feature deep learning [37], a CNN (Convolutional
Neural Network) uses convolution kernel and pooling to obtain the object’s feature in-
formation from the image. In this study, the CNN is used to learn the visual features of
secondary disaster factors in various types of images, as shown in Figure 1. Taking fire as
an example, the fire identification based on the CNN is shown in Figure 2.
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The CNN realizes the extraction of associated information between adjacent pixels
from the image through a convolution kernel, and its principle can be expressed as follows:

Zl+1
i,j,k = ∑

s,m,n
al

s,(j−1)d+m,(k−1)d+nwl+1
i,s,m,n + bl+1

i (1)

al+1
i,j,k = sigmoid(zl+1

i,j,k) (2)

In Formulas (1) and (2), j and k are the feature vector’s j row and k column, w is the
weight, i is the number of feature vectors of neurons in the next layer, s is the number of
feature vectors in the previous layer, m and n are the values of the convolution kernel, b is
the bias, z is the input of neurons in this layer, a is the output of neurons in this layer, and l
is the layer l.

The detailed features obtained after the convolutional calculation contain a large
amount of redundant information; therefore, to simplify the calculation, the redundant
information is filtered in a pooling kernel to reduce the number of parameters, and the pool-
ing method is used to reduce the parameters by n2 times through the n × n pooling kernel.
In this study, the average pooling kernel is used to extract the features; its mathematical
principles can be expressed as follows:

apl
i,j,k = avg

{
al

i , (j − 1)d + m, (k − 1)d + n
}

(3)

In Formula (3), ap is the output of the pooling layer, a is the output of neurons in this
layer, d is the step size of pooling, m and n represent the values of the pooled kernel, j and
k represent the j row and k column of its eigenvector, m and n represent the convolution
kernel, and l is the layer l.

The function of the linear layer is to classify the features extracted from the convolution
and pooling process. It is a standard neural network. At the end of the linear layer, the
number is designed according to the number of input layer class types. In the training,
the weight of the whole network is obtained through multiple iterations using the form of
truth tag assistance combined with the gradient descent method. As the weight is obtained
based on feature-supervised learning, the model training process is completed. When the
input obtains the test dataset’s sample, the unknown sample can be judged according to
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the value of the output node of the linear layer, and the ‘softmax’ mathematical calculation
process can be expressed as

softmax(zi) =
ezi

∑m
1 ezm

= pi, i ∈ [1 m] (4)

where z is the input prediction array, and m is the total number of classes. The decision
process of softmax function in multi-classification tasks is shown in Formula (5):

h(xi; θ) =


p(yi = 1 | xi; θ)
p(yi = 2 | xi; θ)

...
p(yi = m | xi; θ)

 =
1

∑m
j=1 eθT

j xi


eθT

1 xi

eθT
2 xi

...
eθT

k xi

 (5)

where m is the total number of classes, xi is the samples to be identified, yi is the label corre-
sponding to the samples, and θTxi is the decision boundary condition of the classification.

In training the network process, the ‘one-hot’ label is combined with the gradient
descent method to map the class of samples from the input layer. In this study, the one-hot
labels for sunset, welding, strong light, weak light, and fire, according to the order of the
corresponding neural network output of 1–5, are [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0], [0, 0,
0, 1, 0], and [0, 0, 0, 0, 1], respectively, and the CNN weight calculation process is as follows:

Si =

(
ezi

∑m
1 ezm

− 1
)
+

(
ezk

∑m
1 ezm

− 0
)
→ ∇ → min(Si),

{
i, k ∈ [1 5]
i ̸= k

(6)

where S is the value obtained after subtracting the label value from the output node value
of the linear layer, j is the j class in the five classes, k is the non-j class in the five classes, and
∇ is the gradient descent method. When the model obtained through the training dataset
is used to identify the unknown physical scene picture (from the test dataset) information,
the linear layer labels in this study are [sunset, welding, strong light, weak light, fire]T.

3.3. Image Classification Using CDMV Method Based on CNN

The CNN model learns the features of the secondary disaster factors using the training
set. The traditional strategy is to divide the proportion of each class in the training set
so that the different classes will have equal learning opportunities and the CNN model
will obtain a high mAP in the test set. If a certain class’s proportion in the training set is
increased, the CNN will have more opportunities to learn the characteristics of this class. To
improve the learning opportunity of a single class of the CNN model so that it can improve
this class’s AP, this study proposes a ‘Class Decision making by Models Vote (CDMV)’
calculation method. The implementation process is as follows:

Step 1: A CNN model has the highest AP value for one class; it is obtained by
increasing the feature learning opportunity in the training set, and each class trains a
similar CNN model.

Step 2: Multiple CNN single-class recognition advantage models obtained in step 1
are combined. A CNN model only outputs ‘softmax’ results of one class with recognition
advantage and obtains multiple probability reference values.

Step 3: Multiple probability reference values are compared, and the maximum value
is taken as the final CDMV decision result.

The advantage of the CNN-CDMV algorithm is that under the same CNN algorithm
(AlexNet, GoogleNet, ResNet-50, VGG, EfficientNet, MobileNet, ShuffleNet, etc.), the mAP
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obtained with CNN-CDMV is higher than that obtained using a single CNN model, and its
mathematical principle can be expressed as follows:

P1
1+P2

1+···+Pk
1+···+Pn

1

n = P1
P1

2+P2
2+···+Pk

2+···+Pn
2

n = P2
P1

3+P2
3+···+Pk

3+···+Pn
3

n = P3
...

P1
i+P2

i+···+Pk
i+···+Pn

i

n = Pi
P1

N+P2
N+···+Pk

N+···+Pn
N

n = PN

(7)



max
(

P1
1, P1

2, · · · , P1
i, · · · , P1

N
)
= P1

1

max
(

P2
1, P2

2, · · · , P2
i, · · · , P2

N
)
= P2

2

max
(

P3
1, P3

2, · · · , P3
i, · · · , P3

N
)
= P3

3

...
max

(
Pk

1, Pk
2, · · · , Pk

i, · · · , Pk
N
)
= Pk

i

max
(

P1
1, P1

2, · · · , P1
i, · · · , P1

N
)
= Pn

N

(8)

Pb =
P1

1 + P2
2 + P3

3 + · · ·+ Pk
i + · · ·+ Pn

N

n
(9) i f

(
P1

1 = Pk
1 ∧ P2

2 = Pk
2 ∧ · · · ∧ Pk

i = Pk
i ∧ Pn

n = Pk
n
)

i f
(

P1
1>Pk

1 ∧ P2
2>Pk

2 ∧ · · · ∧ Pk
i>Pk

i ∧ Pn
n>Pk

n
) →

{
Pb = Pk
Pb > Pk

(10)

where Pk
i is the AP of the k class of the i model, Pi is the mAP of the i model, n is a model

with a total of n classes and N models (N = n), and Pb is the mAP under the CNN-CDMV
algorithm.

Formula (7) is used to obtain n models based on N classes, Formula (8) is used to take
the CNN model with the strongest recognition performance of a single class to represent
the recognition performance of this class, and Formula (9) is used to obtain the total
classification accuracy Pb under CDMV. Because a single CNN model has cognitive bias
in recognition performance of different classes, the maximum AP value of N classes in n
models cannot appear in the same CNN model; therefore, the total classification accuracy
of CNN-CDMV is higher than that of any single CNN model (Pb > Pk), and its principle is
shown in Formula (11). Generalized to any number of classes, with the increase in classes in
the CNN model recognition task, the mAP obtained based on the CNN-CDMV algorithm
is still higher than that of a single CNN model. This process can be described as follows:

Pn+1
n+1 ≥ Pn+1

k

Pb =
n
∑

i=1
Pi

i ≥ Pk =
n
∑

i=1
Pi

k

Pb+1 =
n
∑

i=1
Pi

i + Pn+1
n+1 , Pk+1 =

n
∑

i=1
Pi

k + Pn+1
k

∆p =
Pb+1
n + 1

− Pk+1
n + 1

→ ∆p ≥ 0 (11)

In Formula (11), n is the number of CNN models (there are n models when there are
n classes), Pn is the mAP of the n models, the classification accuracy of each correspond-
ing subtype is [P1

i, P2
i,· · · , Pk

i,· · · , Pn
n], Pb is the mAP obtained with the CNN-CDMV

algorithm, and Pk is the mAP obtained for any one of the CNN models.
Assuming that among n CNN models the optimal classification of type i comes from

model i (Pi
i), the mAP obtained with the CNN-CDMV algorithm is higher than that

obtained by a single CNN model (∆P ≥ 0) when there are many arbitrarily classified
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objects. The model acquisition process of the CNN-CDMV algorithm in Algorithm 1 (based
on ResNet-50 [12] training) for fire identification is as follows:

Algorithm 1. Model acquisition process of the CNN-CDMV algorithm

Model-i
Input: Dataset D, split
Initialization: € = load CNN pretrained model,

Step 1. Split:[train validation test] = [unbalanced divided, 100 pictures, 100 pictures],
training_parameters = [epoch = 30, learning rate = 0.001, batch size = 32, validation
interval (in epochs) = 1, solver type = Adam]

Step 2. [α, β, γ] = prepare_data (D, split)
α = random (D, Datatrain)
β = random (D, Dataval)
γ = random (D, Datatest)
return [α, β, γ]

Step 3. Ω = €(α, β, training_parameters)
Step 4. [TP, FP, FN, TN] = Ω(γ)
Step 5. [TP, FP, FN, TN] → [class1: Pre = P1, class2: Pre = P2, class3: Pre = P3, class4: Pre = P4,

class5: Pre = P5]
Step 6. Pi = max{P1, P2, P3, P4, P5}, i∈[1, 2, 3, 4, 5],
Step 7. Pi → Model-i prepared
Step 8. Repeat step1-step8 → [Model-1, Model-2, Model-3, Model-4, Model-5] → Parallel

structure model
Step 9. Ω = € (Parallel structure model: γp)
Step 10. Output: Ap = Ω (γp)

α is training data, β is testing data, γ is validation data, Ω is trained model, D is dataset, A is
accuracy, TP is true positive, FP is false positive, FN is false negative, TN is true negative, Pre is
precision, Pj is probability, γp is parallel structure validation data, and Ap is parallel structure
decision layer accuracy.

3.4. Multi-Model Cluster Decision of Disaster Factors at Disaster Sites

In daily life, the main common physical objects that can cause secondary disaster
events in disaster sites include category I fire and category II combustible objects, explosive
objects, toxic substances, trapped persons, and dangerous buildings. Based on the high-
precision requirement for secondary disaster event monitoring and early warning, our
CNN-CDMV method was used to learn the visual features of secondary disaster factors. In
the process, an unbalanced training set should be divided, and a single CNN model has
advantages in the identification of a single secondary disaster factor. The training set of
each single CNN model is divided as shown in Table 1.

As shown in Table 1, the fire dataset of category I secondary disaster factors includes
five classes: sunset, welding, strong light, weak light, and fire. The four categories of sunset,
welding, strong light, and weak light have no relation to disaster events, but they are highly
similar to fire. The training set added these four categories together with fire phenomena
to reduce the influence on fire identification in practice, indirectly improving the AP value
of fire warning. Category II secondary disaster factors are flammable objects, explosive
objects, toxic substances, trapped persons, and dangerous buildings. In the process of
CNN-CDMV method identification, to minimize the influence of similar everyday objects
on these five classes, five similar objects, namely, bicycles, iron containers, garbage cans,
animals, and brick cracks, were added to the training set. Their proportion was 15%
each in the training set with the disaster factor’s proportion being 25%. Five unbalanced
training sets were constructed according to category II secondary disaster factors. Training
the advantage model on the identification of flammable objects, explosive objects, toxic
substances, trapped person, and dangerous buildings was based on the CNN. There are ten
CNN models for categories I and II, which together constitute the core of the CNN-CDMV
decision method. The construction method is shown in Figure 3.
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Table 1. CDMV model training strategy for secondary disaster factor recognition.

Category I Secondary Disaster Factors

Obtain Model Sunset Model Welding Model Strong Light Model Weak Light Model Fire Model

Unbalanced divided
training set

Sunset 800 pictures Sunset 300 pictures Sunset 300 pictures Sunset 300 pictures Sunset 300 pictures

Welding 300 pictures Welding 800 pictures Welding 300 pictures Welding 300 pictures Welding 300 pictures

Strong light
300 pictures

Strong light
300 pictures

Strong light
800 pictures

Strong light
300 pictures

Strong light
300 pictures

Weak light
300 pictures

Weak light
300 pictures

Weak light
300 pictures

Weak light
800 pictures

Weak light
300 pictures

Factor 1: Fire
300 pictures

Factor 1: Fire
300 pictures

Factor 1: Fire
300 pictures

Factor 1: Fire
300 pictures

Factor 1: Fire
800 pictures

CategoryII Secondary Disaster Factors

Obtain Model Flammable Model Explosive Model Toxic Model Trapped Persons
Model

Dangerous
Buildings Model

Unbalanced divided
training set

Factor 2
Flammable
800 pictures

Factor 3
Explosive

800 pictures

Factor 4
Toxic

800 pictures

Factor 5
Trapped person

800 pictures

Factor 6
Dangerous
buildings

800 pictures

Bicycle 480 pictures Bicycle 480 pictures Bicycle 480 pictures Bicycle 480 pictures Bicycle 480 pictures

Iron container
480 pictures

Iron container
480 pictures

Iron container
480 pictures

Iron container
480 pictures

Iron container
480 pictures

Garbage cans
480 pictures

Garbage cans
480 pictures

Garbage cans
480 pictures

Garbage cans
480 pictures

Garbage cans
480 pictures

Animals 480 pictures Animals 480 pictures Animals 480 pictures Animals 480 pictures Animals 480 pictures

Brick cracks
480 pictures

Brick cracks
480 pictures

Brick cracks
480 pictures

Brick cracks
480 pictures

Brick cracks
480 pictures
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Figure 3. ResNet-CDMV decision method kernel of secondary disaster factors.

In Figure 3, the CNN-CDMV core is composed of ten CNN models: sunset, industrial
fire, strong light, weak light, fire, combustible objects, explosive objects, toxic substances,
trapped persons, and dangerous buildings. These ten models were used to identify the
objects that could easily lead to secondary disasters. In the identification process of cat-
egory I of the secondary disaster factor model, the visual information will produce the
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corresponding ‘softmax’ result after passing through the model. The decision process
shown in Figure 2 can finally determine whether there is a fire in the scene. If the result
is a fire, the ‘softmax’ result of the fire is output. In the category II disaster identification
model, if the model determines that there is a corresponding disaster factor, the ‘softmax’
results of the disaster factor are also output. In the same scene, CNN-CDMV can output
‘softmax’ results of six disaster factors, namely, fire, flammable objects, explosive objects,
toxic substances, trapped persons, and dangerous buildings. The results will be used for
secondary disaster event identification and early warning.

4. Experimental Results
4.1. Secondary Disaster Event Classification Based on CNN-CDMV Model

The recognition process of the CNN-CDMV kernel for secondary disaster factors is
shown in Figure 4. In the figure, (A) is an example of the AlexNet algorithm’s result, the
process of obtaining the AlexNet model based on the unbalanced division of training set
and the performance in the test set, (B) is the recognition of unknown classes by the AlexNet-
CDMV model, (C) includes the pictures from unknown classes in the test set, and (D) is the
comparison of the mAP between CNN-CDMV and a single CNN algorithm model. The
seven CNN algorithms are AlexNet, GoogleNet V2, ResNet-50, VGG-16, EfficientNet-B0,
MobileNet V1, and ShuffleNet V2.
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Figure 4. Decision-making process of CNN-CDMV algorithm.

Figure 4A has the recognition performance advantage model of 1⃝ sunset, 2⃝ welding,
3⃝ strong light, 4⃝ weak light, and 5⃝ fire scene; the secondary disaster factor occupies 40%

of the training set of each model; and the proportion of each of the other classes is 15%.
After obtaining five CNN models based on the AlexNet algorithm, the 1⃝ sunset model’s
recognition of the 1⃝ sunset, 2⃝ welding, 3⃝ strong light, 4⃝ weak light, and 5⃝ fire scene’s
AP is 92%, 80%, 61%, 82%, and 72%, respectively. The 2⃝ welding model’s recognition of
the 1⃝ sunset, 2⃝ welding, 3⃝ strong light, 4⃝ weak light, and 5⃝ fire scene’s AP is 82%, 89%,
62%, 83%, and 70%, respectively. The 3⃝ strong light model’s recognition of the 1⃝ sunset,
2⃝ welding, 3⃝ strong light, 4⃝ weak light, and 5⃝ fire scene’s AP is 81%, 78%, 94%, 82%,

and 59%, respectively. The 4⃝ weak light model’s recognition of the 1⃝ sunset, 2⃝ welding,
3⃝ strong light, 4⃝ weak light, and 5⃝ fire scene’s AP is 79%, 81%, 65%, 93%, and 75%,
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respectively. The 5⃝ fire model’s recognition of the 1⃝ sunset, 2⃝ welding, 3⃝ strong light,
4⃝ weak light, and 5⃝ fire scene’s AP is 82%, 80%, 66%, 81%, and 89%, respectively.

Figure 4B uses AlexNet-CDMV to test an unknown class image, adding the 1⃝ sun-
set model, 2⃝ welding model, 3⃝ strong light model, 4⃝ weak light model, and 5⃝ fire
model obtained in (A) to the CDMV structure. The unknown image was evaluated using
CDMV, and each model provided the unknown image’s ‘softmax’ results. However, only
the probability value of the model’s cognitive bias object was provided for the CDMV.
That is, the ‘softmax’ layer of 1⃝ sunset model, 2⃝ welding model, 3⃝ strong light model,

4⃝ weak light model, and 5⃝ fire model gives the probability reference values of 1⃝ sunset,
2⃝ welding, 3⃝ strong light, 4⃝ weak light, and 5⃝ fire contained in the unknown image as
1⃝ 0.00000577, 2⃝ 0.00003941, 3⃝ 0.01625495, 4⃝ 0.00001936, and 5⃝ 0.99998190, respectively.

After the calculation of ‘softmax’ in the CDMV, we obtain 1⃝ 0.00000565, 2⃝ 0.00003877,
3⃝ 0.01599148, 4⃝ 0.00019049, and 5⃝ 0.98377361. Where the maximum value 0.98377361 is

given by the 5⃝ fire model, the unknown image contained is determined to be a fire.
Figure 4D shows a comparison between the CNN-CDMV structure calculation method

under seven algorithm models’ mAP values. It shows that the mAP obtained under the
CNN-CDMV model with AlexNet, GoogleNet V2, ResNet-50, VGG-16, EfficientNet-B0,
MobileNet V1, and ShuffleNet V2 is increased by 11.4%, 4.2%, 2.6%, 6.4%, 4.8%, 4.6%, and
9.2%, respectively. Since the CNN-CDMV algorithm is based on a single model, but under
the same CNN algorithm, it can improve the accuracy of object recognition, and different
CNN algorithms apply to this architecture, which has universal applicability. Among them,
ResNet-CDMV based on the ResNet-50 algorithm has the highest fire identification accuracy,
and the mAP is 97.6%, which identifies 13 more images than the ResNet-50 algorithm.
Among them, five more pictures of welding were identified, the welding recognition AP
increased from 93% to 98%, an increase of 5%, more than seven fire images were identified,
and the fire recognition AP increased from 88% to 95%, which is an increase of 7%. Table 2
shows the identification of the 13 images based on the CDMV algorithm.

Table 2. ResNet-CDMV model identification results.

Sample Scene Content 1. Welding 2. Welding 3. Welding 4. Welding 5. Welding 6. Fire

Sample Image
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Based on the importance of secondary disaster factor recognition for disaster event 

monitoring and early warning, the AP values of each factors composed by the ‘softmax’ 

results are greater than 0.5, and each secondary factor corresponding to similar scene 
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monitoring and early warning, the AP values of each factors composed by the ‘softmax’
results are greater than 0.5, and each secondary factor corresponding to similar scene
objects’ test sets has 100 images. The six secondary disaster factor test sets’ recognition
statistical results based on ResNet-CDMV algorithm are shown in Table 3.

Table 3. The secondary disaster factors based on ResNet-CDMV algorithm recognition

- Fire Flammable Explosive Toxic Trapped Person Dangerous Building - For Example
PP PN PP PN PP PN PP PN PP PN PP PN PP PN

AP 95 5 88 12 79 21 89 11 85 15 86 14 AP TP FN
AN 5 95 12 88 21 79 11 89 15 85 14 86 AN FP TN

Remark: AP is the number of actually positive classes, PP is the number of prediction positive classes, AN is the
number of actually negative classes, PN is the number of prediction negative classes, TP is true positive, FP is
false positive, FN is false negative, and TN is true negative.

Table 4 shows the secondary disaster factors’ AP (Average Precision) and mAP (Mean
Average Precision) values with ResNet-CDMV, and the results are compared with Faster-
RCNN (Toward Real-Time Object Detection with Region Proposal Networks) [38], SSD
(Single Shot MultiBox Detector) [39], CornerNet [40], CenterNet [41], and YOLOv7 [42].
Based on the importance of secondary disaster factor recognition for disaster event mon-
itoring and early warning, the AP values of each factor in Table 4 that are produced by
the ‘softmax’ results are greater than 0.5, and each disaster factor’s test set has 100 images.
Among the target detection algorithms, YOLOv7 has the best identification effect, correctly
identifying 473 disaster factors among the total 600 samples of various types, with an aver-
age accuracy of 78.83%. Our ResNet-CDMV algorithm correctly identified 522 secondary
disaster factors images, with an average accuracy of 87%, and compared with YOLOv7,
the average accuracy improved by 8.17%. In addition, a single 10-fold cross-validation
ResNet-50 model mAP was compared with our ResNet-CDMV results, and the mAP of our
algorithm improved by 6.5% compared with the single model.
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Table 4. Comparative experiments of different models.

Detection Method Faster-RCNN SSD CornerNet CenterNet YOLOv7 ResNet-50 ResNet-
CDMV

Secondary
disaster
factor

AP
(%)

Fire 79 78 74 78 82 91 95
Flammable 84 82 81 84 86 81 88
Explosive 68 62 63 66 68 71 79

Toxic 78 75 77 77 80 81 89
Trapped persons 73 73 70 71 72 75 85

Dangerous buildings 84 81 79 80 85 84 86
mAP (%) 77.67 75.17 74 76 78.83 80.5 87

4.2. Secondary Disaster Event Monitoring and Early Warning

The possible secondary disaster factors in the disaster site can be identified by the
ResNet-CDMV algorithm, and the information can be relayed to the emergency rescue
person in the shortest possible time. In this study, we conducted real-time on-site identifica-
tion of disaster events through the visualization platform. The construction of the visual
platform for disaster event detection and early warning is shown in Figure 5.
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Figure 5. Real-time secondary disaster management platform.

Figure 5A is our inspection robot system, which is equipped with the ResNet-CDMV
algorithm to inspect the area that needs to be monitoring secondary disaster, and (B) shows
the layout of the information displayed on the warning platform. On the left side of the
platform are the types of secondary disaster factors detected, including six objects, namely,
fire, flammable objects, explosive objects, toxic substances, trapped persons, and dangerous
buildings. In the middle of the platform, the visual scene of the disaster collected by the
image detection equipment and the probability values of the corresponding six monitoring
objects are displayed. The right side of the platform is a sign of the danger of a secondary
disaster event. In Figure 5C, the colored and gray symbols correspond to fire, flammable
objects, explosive objects, toxic substances, trapped persons, and dangerous buildings.
When the monitored secondary disaster factor’s AP is greater than 0.5, it is considered that
a corresponding disaster event will likely occur, and the corresponding event identifier
will be displayed in a colored style. When the monitored secondary disaster factor’s AP
is less than 50%, it is considered that the corresponding disaster event will not occur, the
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corresponding event is displayed in gray style, and the emergency rescue person carries
out targeted emergency rescue work according to one or more disaster events indicated by
the colored identifier.

5. Discussion

Currently, the main methods that can be used for image information recognition
are image object detection and classification. The content recognition of images using
the two methods is shown in Figure 6. Figure 6A is the recognition of the on-site image
of secondary disaster events using the object detection method, (B) is an on-site image
of disaster events, and (C) is the recognition of the on-site image of secondary disaster
events with the classification method. The disaster events in the image contain four objects:
cracks in buildings, trapped persons, flammable objects, and explosive objects. The object
detection model in (A) can identify the four objects at the same time, while the image
classification model in (C) can only recognize one object class from the image; that is,
only one class in the image can be identified, so it requires four classification models to
identify all four objects in the image. In this study, the classification method is used to
construct a CDMV algorithm through multiple models to classify multiple objects in the
image to realize the monitoring and early warning of possible secondary disaster events at
the disaster on-site monitoring points.
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In this study, the principle of CDMV can improve the accuracy of image information
recognition as a single CNN model has a cognitive bias toward different objects. Taking the
‘VOC2007 + 2012’ dataset as an example, there are significant differences in the ability of
a CNN model to recognize different objects, among which, for SSD (Backbone is VGG-16
neural network), the AP of ‘bottle’ and ‘plant’ was 50.7% and 50.1%, and the AP of ‘cat’ and
‘horse’ was 85.8% and 86.9%, respectively [43]. The DSSD (Backbone is ResNet-101 neural
network) algorithm has 52.4% and 54.5% AP for ‘bottle’ and ‘plant’ and 84.3% and 88.5%
AP for ‘cat’ and ‘horse’, respectively [44]. The FD-SSD (Backbone is VGG-16) algorithm
has 54.1% and 53.9% AP for ‘bottle’ and ‘plant’ and 86.8% and 88.0% AP for ‘cat’ and
‘horse’, respectively. The same is true for Faster R-CNN (Backbone is ResNet-101) [38],
R-FCN (Backbone is ResNet-50) [45], YOLO (Backbone is GoogleNet) [46], YOLOv5 (Back-
bone is DarkNet-19) [47], DSOD (Backbone is DS/64-192-48-1) [48], DF-SSD (Backbone
is DenseNet-S-32-1) [49], etc. In addition, to better identify certain types of features in
images, relevant scholars proposed the YOLO hybrid attention mechanism method. Such
as NAM-YOLOv7 [50], HAM-YOLOv5 [51], and EfficientNet-YOLOv5 [52], these methods
significantly improve the CNN recognition performance of a certain feature in the classes.
To improve the recognition accuracy of all classes, feasible mechanisms were also studied
based on the characteristics of the CNN itself. In the case of the same proportion of training
sets, different models vary in the feature learning ability of a single class, and this limitation
of the CNN model exists in the process of learning the features of the whole sample. Due to
the large number of weight parameters of the models and their complex compositions, it is
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difficult to describe the formation mechanism of cognitive bias [53]. To identify the disaster
factors at a disaster site, the recognition accuracy of a single class is demanding. Therefore,
it is of great significance to overcome the cognitive bias between different classes of the
single CNN model in multiple classification tasks and ensure that the overall recognition
accuracy of the model is high so that the recognition accuracy of a single class can achieve
the best state and the monitoring and early warning work of disaster events can be carried
out accurately.

There are two types of image information recognition accuracies that are improved by
the CDMV algorithm in this study, for example, the ‘softmax’ results of the ResNet-50 and
ResNet-CDMV model are less than 0.5. As shown in Figure 7, the two models identify the
scene class contained in image 7 in Table 2. The real scene in the image is fire. The ‘softmax’
probability reference values of a single ResNet-50 output for 1⃝ sunset, 2⃝ welding, 3⃝ strong
light, 4⃝ weak light, and 5⃝ fire scenarios are 1⃝ 0.533388, 2⃝ 0.001140279, 3⃝ 0.000000185,
4⃝ 0.000195662, and 5⃝ 0.46527588, respectively. The value of sunset is the largest; so,

the ResNet-50 model considers the scene contained in image 7 to be sunset. The 5⃝ fire
model in ResNet-CDMV gives the ‘softmax’ probability reference value of the 5⃝ fire in
image 7 as 0.47225126, and only this value is output. Moreover, 1⃝ 0.516423, 2⃝ 0.00204462,
3⃝ 0.001644969, and 4⃝ 0.00763621 are the ‘softmax’ probability reference values of 1⃝ sunset,
2⃝ welding, 3⃝ strong light, and 4⃝ weak light, respectively, and do not output. The 1⃝

sunset model, 2⃝ welding model, 3⃝ strong light model, and 4⃝ weak light model only
output ‘softmax’ probability reference values for 1⃝ sunset, 2⃝ welding, 3⃝ strong light, and
4⃝ weak light recognition, which are 1⃝ 0.31958973, 2⃝ 0.002117465, 3⃝ 0.029371442, and
4⃝ 0.0022207, respectively. They are normalized together with the ‘softmax’ probability

reference value of the fire at the CDMV decision level to obtain 1⃝ 0.38712312, 2⃝ 0.00256491,
3⃝ 0.03557802, 4⃝ 0.00268996, and 5⃝ 0.57204399. The normalized ‘softmax’ probability

reference value of the fire is the largest. Therefore, the ResNet-CDMV model confirms that
image 7 is the correct judgment of the 5⃝ fire, and images 1, 3, and 12 in Table 2 show the
same situation.
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The probability reference values of output ‘softmax’ after ResNet-50 and ResNet-
CDMV model identification are all less than 0.5, as shown in image 2 in Table 2; the
real scene in this image is welding. The ResNet-50 model ‘softmax’ result values of
1⃝ sunset, 2⃝ welding, 3⃝ strong light, 4⃝ weak light, and 5⃝ fire are 0.012486734, 0.32064572,

0.06004316, 0.19397007, and 0.41285425, respectively, in which the value of fire is the
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largest; therefore, the ResNet-50 model misidentifies the welding scene as the fire scene.
The ResNet-CDMV model ‘softmax’ result values of 1⃝ sunset, 2⃝ welding, 3⃝ strong
light, 4⃝ weak light, and 5⃝ fire are 0.027238317, 0.66015106, 0.27432773, 0.3358008, and
0.35803366, respectively, in which the welding value is the largest. The ResNet-CDMV
model correctly identifies the information contained in the image, and the same situation is
shown in images 4, 5, 6, 8, 9, 10, and 11 in Table 2.

The ResNet-50 algorithm can only understand a single piece of information contained
in the image, and the CDMV method proposed in this study simultaneously integrates
multiple ResNet-50 models of different purposes to realize the recognition of multiple
objects in an image. From the perspective of algorithm efficiency, compared with the
multi-target monitoring algorithm, there are two disadvantages and one advantage. The
first disadvantage is that the position of the disaster factor in the picture cannot be marked
directly. The second disadvantage is that the mAP result of the ResNet-CDMV model is
obtained through the calculation of 10 ResNet-50 models, and the time cost is 10 times
that of a single ResNet-50 model. The advantage of this algorithm is that it overcomes the
cognitive bias of a single model to multiple objects and has a higher mAP. The location of
the detection object in the field environment is determined, and the algorithm only needs
to give early warning to the types of secondary disasters existing in the scene information.
Additionally, based on the importance of secondary disaster events, the significance of the
recognition accuracy is greater than the time consumed. Therefore, the shortcomings of the
CDMV method will not have a negative impact on the early warning effect. In addition,
since the emergency handling of secondary disasters involves the allocation of emergency
resources, there are strict requirements for high-precision identification and early warning.
Therefore, the advantage of the CDMV method has important practical significance for
secondary disaster monitoring and early warning. In further research, the multi-model
parallel decision making can be integrated into a more complex model, and the nodes of
the neural network can be divided into regions, so that the memory units in a certain area
can focus on recognizing a certain type of feature, and a multi-classification recognition
model with higher accuracy can be formed under multi-region cluster decision making.

6. Conclusions

To investigate the types of secondary disasters that can be caused by common everyday
objects after natural disasters, this study constructed image datasets of six secondary
disaster factors—fire, inflammable objects, explosive objects, toxic substances, trapped
persons, and dangerous buildings—extracted visual features of secondary disaster factors
through the ResNet-CDMV algorithm, and correlated them with corresponding secondary
disaster events. In terms of improving the early warning accuracy of secondary disaster
events, this study makes two contributions:

• In addition to the secondary disaster factors, the dataset includes common non-
secondary disaster factor items in everyday life that are similar to the visual charac-
teristics of the secondary disaster factors. Their existence can effectively improve the
identification accuracy of the secondary disaster factors.

• The CDMV kernel comprises a combination of multiple dominant models, and this
overcomes the cognitive bias of a single CNN model for different types. This method
can effectively improve the identification accuracy of secondary disaster factors in the
‘softmax’ layer.

The ResNet-CDMV method obtained in this study has an mAP value of 87% for the
identification of secondary disaster factors. For this method, Faster-RCNN, SSD, CornerNet,
CenterNet, and YOLOv7 object detection algorithm increased by 9.33%, 11.83%, 13%, 11%,
and 8.17%, respectively. The high-precision early warning platform of secondary disaster
events based on the ResNet-CDMV method has important practical significance for the
prevention and management of secondary disasters after the occurrence of natural disasters.
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