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Abstract: Stilbenes, like resveratrol, are natural small molecules with several applications
in the treatment of chronic illnesses, diabetes, and neurological and cardiovascular con-
ditions. Considering the molecular structure of stilbenes and the biological activities of
resveratrol, we investigated the synthesis and biological activity of a novel styryl quino-
linium (SQ) derivative. The SQ was synthesized using the alkylation of lepidine and
methyl 4-methylbenzenesulfonate and further Knoevenagel condensation with 2-hydroxy
naphthaldehyde. Its structure was determined using NMR, IR, Raman, UV-Vis, and MS.
The current trend of research has shifted toward the synthesis of novel SQ as resveratrol’s
analog. Therefore, its anti-inflammatory and antioxidant activities were evaluated. The
compound exerted very good anti-inflammatory effects in preventing albumin denatura-
tion, which were confirmed by ex vivo immunohistochemical studies. Density functional
theory (DFT) analyses were conducted on the SQ structure to gain detailed insights into
its active sites, energy gap, quantum properties, and electronic behavior. The biological
evaluation of the compound was completed, assessing its antioxidant potential using DPPH
radical scavenging assay. In addition, molecular docking simulations were utilized to assess
the SQ compound’s potential inhibitory effect on human serum albumin (HSA).

Keywords: styryl quinolinium; synthesis; in silico; anti-inflammatory; albumin denaturation;
immunohistochemical analysis; antioxidant activity; docking
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1. Introduction
Inflammation is a dynamic reaction of the body to an external factor that disrupts

its natural balance, usually pathogenic microbes or physical agents. This procedure most
often helps to eliminate the cause of tissue damage, but in other diseases, the body’s
response is insufficient. Prolonged inflammation may cause tissue damage, cellular de-
struction, or even accelerate the development of cancer [1]. In addition to discomfort, heat,
and loss of function, localized redness and swelling are the most common first signs of
inflammation [2]. These outcomes originate from the body’s response to inflammatory
agents, which start a cascade of events that include many inflammatory mediators, such
as proinflammatory cytokines IL-1 or TNF-α, anti-inflammatory cytokines IL-10 or IL-13,
etc. [3,4]. These mediators are some of the potential key targets in the search for novel
anti-inflammatory drugs.

Stilbenes (Figure 1), as natural small molecules, are used in the treatment of chronic
disorders such as diabetes, as well as neurological and cardiovascular conditions [5,6].
Their significance as anticancer agents is very important. Resveratrol (3,5,4′-trihydroxy-
trans-stilbene), for example, is a polyphenol, having two phenol rings joined by an ethylene
bridge. It is a naturally occurring compound that is beneficial for age-related diseases,
such as oxidative stress, neurodegeneration, inflammation, diabetes, and cardiovascular
diseases. The antioxidative properties of resveratrol and its analogs have attracted signifi-
cant attention because they block reactive oxygen species, which are linked to oxidative
stress [7,8]. Resveratrol has a wide spectrum of biological activities, but its low water
solubility, instability, and low bioavailability have limited its widespread application in
pharmaceuticals, foods, and cosmetics [9–17].
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Sulfonate-based compounds, on the other hand, have been reported to inhibit the
activities of cyclooxygenases (COXs) and acetylcholinesterase (AChE) activities [18]. They
can enhance the physicochemical characteristics of the drug molecules by generating
relatively strong hydrogen bonding and electrostatic interactions with protein residues in
the receptor binding site [19,20].

Considering the molecular structure of stilbenes and the biological activities of its
derivative resveratrol, we investigated the substitution of the resorcinol ring with a naph-
thol one in order to promote the formation of intramolecular hydrogen bonds between
OH with the sulphonyl group, as well as that of the phenol ring with quinolinium and
how that substitution would affect the anti-inflammatory and antioxidant potential of the
resulting compound.

2. Materials and Methods
2.1. Chemicals

All solvents and reagents were purchased from Aldrich (Merck KGaA, Darmstadt,
Germany). The melting point was determined on a DSC. The compound was characterized
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using different techniques. The purity of the SQ was determined by TLC, which was carried
out on precoated 0.2 mm Merck silica gel 60 plates (Merck KGaA, Darmstadt, Germany),
using hexane:ethyl acetate = 1:2, petroleum ether:diethyl ether = 2:1, and n-propanol:formic
acid = 8:2 as chromatographic systems.

2.2. Measurements

The UV–visible spectra were recorded on a Cary-60 (Agilent Technologies, Santa
Clara, CA, USA) and the fluorescence spectra on a Hitachi F-2700 spectrometer (Hitachi
High-Tech Science Corp., Tokyo, Japan) ranging from 500 to 900 nm in four solvents (water,
methanol, acetonitrile, and chloroform), at a concentration of 1 × 10−5 M. The IR spectra
were determined on a VERTEX 70 FT-IR spectrometer (Bruker Optics, Ettlingen, Germany)
in KBr tablets, ranging from 4000 to 400 cm−1, 2 cm−1 resolutin ability, 25 scans.

The NMR spectra were recorded at room temperature at 500 MHz on a Bruker Avance
III HD 500 spectrometer (Bruker, Billerica, MA, USA).

A Differential Scanning Calorimeter, Phoenix DSC 204 F1 (Netzsch-Gerätebau GmbH,
Selb, Germany), was applied to carry out the thermal analysis. The experiment was
conducted under argon atmosphere (scanning rate—10 ◦C /min, cooling 40 ◦C/min).

The chromatographic system Thermo Dionex Ultimate 3000 LC and the triple-
quadrupole mass spectrometer Thermo TSQ Quantum Access MAX (Thermo Fisher Scien-
tific, Waltham, MA, USA) with Heated Electrospray Ionization (HESI) were used to perform
liquid chromatography with mass detection (LC-MS/MS) of analytes. The chromatographic
separation was carried out on an AccucoreTM RP-MS (Thermo Fisher Scientific, Waltham,
MA, USA) core-shell analytical column (100 mm length, 2.1 mm diameter, 2.6 µm particles)
under isocratic conditions.

The peak shapes and MS signals of the analytes were improved by using mobile
phases A: 0.1% formic acid in acetonitrile–water (90:10, v/v); and B: 0.1% formic acid in
acetonitrile–water (10:90, v/v) in 40:60 (A:B) ratio at flow rate of 0.150 mL min−1. HESI was
used for analyte detection in positive ionization mode with spray voltage −4000 V; source
temperature 400 ◦C; sheath gas pressure 30; vaporizer temperature 350 ◦C; and capillary
temperature 270 ◦C. Protonated molecules of the analyte were used as precursor ions for
selected reaction monitoring (SRM).

2.3. Synthetic Methods: Experimental Protocols and Spectral Data
2.3.1. Synthesis of Lepidine Methyl Tosylate

To a solution of lepidine (1) (1.0800 g, 7.5 mmol) in dry toluene (20 mL), methyl
4-methylbenzenesulfonate (methyl tosylate) (2) (2.4800 g, 7.5 mmol) was added. The
quaternary salt was obtained in 14 h reflux. The resulting crystals were filtered and washed
with toluene to remove unreacted lepidine and dried over P2O5 at room temperature, with
a yield of 84%.

IR [KBr]: ν[cm−1] 2919, 1620, 1607, 1591, 1531, 1494, 1442, 1402, 1384, 1369, 1348, 1267,
1220, 1191, 1117, 1033, 963, 828, 772.

The obtained salt was applied directly for the synthesis of SQ.

2.3.2. Synthesis of SQ (5) (E)-4-(2-(2-Hydroxynaphthalen-1-yl)vinyl)-1-methylquinolin-1-
ium 4-Methylbenzenesulfonate

Lepidine methyl tosylate (3) (0.50 g, 1.5 mmol) and 2-hydroxynaphthaldehyde (4)
(0.26 g, 1.5 mmol) were dissolved in 20 mL of dry benzene. Piperidine (0.01 g, 0.15 mmol),
glacial acetic acid (0.02 g, 0.3 mmol), and 5 mL of dimethylformamide were added, and the
reaction mixture was refluxed for 28 h (Warning: Benzene can cause cancer or birth defects!).
Then, the crystals were filtered off, washed with benzene, dried at room temperature, and
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recrystallized from methanol. The yield of orange needle crystals was 71.4%, with a melting
point of 252.6 ◦C (DSC) (Figure 2).
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in NMR.

1H NMR: 11.12 (broad s, 1H, naphtol OH), 9.27 (d, J = 6.5, 1H, quinolinium H2), 8.66
(d, J = 6.5, 1H, quinolinium H3), 8.63 (d, J = 8.4, 1H, quinolinium H5), 8.59 (s, 2H, Hα, Hβ),
8.46–8.38 (m, J = 8.4, 7.7, 2H, quinolinium H8, naphtol H8′), 8.23 (m, 1H, quinolinium H7),
8.02 (t, J = 7.7, 1H, quinolinium H6), 7.90 (d, J = 8.9, 1H, naphtol H5′), 7.87 (d, J = 7.5, 1H,
naphtol H4′), 7.58 (ddd, J = 8.4, 6.9, 1.2, 1H, naphtol H7′), 7.51 (d, J = 8.1, 2H, tosylate H2′′,
H6′′), 7.41 (t, J = 7.4, 1H, naphtol H6′), 7.35 (d, J = 8.9, 1H, naphtol H3′), 7.10 (d, J = 7.9, 2H,
Ar, tosylate H3′′, H5′′), 4.54 (s, 3H, quinolinium N-CH3), 2.26 (s, 3H, CH3 tosylate).

13C NMR: 157.24 (naphtol C2′), 153.92 (quinolinium C4), 148.32 (quinolinium C2),
146.14 (tosylate C1′′), 139.11 (quinolinium C8a), 138.12 (tosylate C4′′), 136.74 (Cβ), 135.21
(quinolinium C7), 133.30 (naphtol C8′a), 132.92 (naphtol C5′), 129.88 (quinolinium C6),
129.24 (naphtol C4′), 128.55 (naphtol C4′a), 128.53 (tosylate C3′′, C5′′), 127.99 (naphtol
C7′), 126.55 (quinolinium C4a), 126.01 (quinolinium C5), 125.96 (tosylate C2′′, C6′′), 123.92
(naphtol C6′), 123.80 (Cα), 123.32 (naphtol C8′), 119.88 (quinolinium C8), 119.00 (naphtol
C3′), 116.58 (quinolinium C3), 114.57 (naphtol C1′), 44.97 (quinolinium N-CH3), 21.23
(tosylate CH3).

HESI, m/z calculated for C22H18NO+ = 312.384, found 312.142 (mass error 2.42 ppm).

2.4. In Silico Pharmacokinetic Profiling and Toxicity Analysis
2.4.1. Theoretical Prediction of Pharmacokinetic Parameters (ADME)

The physicochemical and pharmacokinetic parameters, as well as drug-likeness of the
compound, were analyzed using the SwissADME free web tool (accessed on 21 October
2024) [21].

2.4.2. Theoretical Prediction of Toxicity

The ProTox-II free web tool (accessed on 11 October 2024) was used to predict toxicity
class and LD50 for the compound [22,23].

2.4.3. PASS Online Predictions

The computer-based PASS Online free web tool (accessed on 19 September 2024) was
used to predict the biological activities of the compound [24–26].

2.5. In Vitro Inhibition of Albumin Denaturation

The antidenaturation assay was carried out in accordance with Milusheva et al.’s
method [26]. The reaction mixture contained 0.2 mL of the tested drug dissolved in DMSO
(0.5 mg/mL) and 0.5 mL of a 5% aqueous solution of human albumin (Albunorm 20,
Octapharma (IP) SPRL, 1070 Anderlecht, Belgium). For 15 min, the samples were incubated
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at 37 ◦C. Subsequently, each tube was filled with 2.5 mL of phosphate-buffered saline
(pH 6.3), and the samples were heated at 80 ◦C for 30 min before being cooled for 5 min.
The turbidity was measured at 660 nm spectrophotometrically (Cary 60 UV-Vis, Agilent
Technologies, Santa Clara, CA, USA). For the blank sample, a mixture of 2.5 mL of buffer
and 0.2 mL of DMSO was used instead of the compounds, while the product control test
lacked the compounds, having 0.5 mL of serum albumin and 2.5 mL of buffer only. The
percentage of inhibition of protein denaturation was calculated as follows:

Percentage of inhibition denaturation = [(Absorbancecontrol − Absorbancesample)/Absorbancecontrol] × 100

The control represents 100% protein denaturation. The commercially available anti-
inflammatory drugs diclofenac and acetylsalicylic acid (ASA) were used for comparison.
Their anti-inflammatory effect was determined as a percentage of inhibition of albumin
denaturation, following the same protocol as for the novel compounds.

2.6. Ex Vivo Immunohistochemical Methods
2.6.1. Animals, Tissues, and Preparations

Eight Wistar rats (270 ± 15 g body weight, male, 11 weeks age) were purchased
from the Medical University of Plovdiv Animal Laboratory, Bulgaria. The experimental
procedures were conducted according to the previously described protocol [26,27].

2.6.2. Histology and Immunohistochemistry

The morphometric analysis involved tissue slices 5 µm in thickness, obtained from
the circular and longitudinal layer of SM cells, as well as in the myenteric plexus of the
stomach. The intensity of the immune reaction in the stomach was measured in arbitrary
units (AU) on the slices immunostained for IL-1β and nNOS. The measurements were
performed using the DP-Soft ver. 3.2 software, Olympus, Japan. The average intensity of
pixels was recorded in arbitrary units in the range of 0–256 on microphotographs of the
stomach, 0 being black and 256 being white. A minimum of 50 points were measured in
the stomach at a magnification of ×400. All measurements involved five slices per animal
and an examination of all cross-sections of the stomach.

Paraffin sections of 5 µm thickness were subjected to hematoxylin and eosin (H-E)
staining for the histochemical analysis. For all samples, immunostaining was performed
through a fully automated and standardized procedure, using an Autostainer Link 48
(Dako, Agilent Technologies Inc., Glostrup, Denmark). The paraffin sections were treated
for 20 min with an EnVision FLEX Visualization System (Dako, Agilent Technologies
Inc., Glostrup, Denmark). Endogenous peroxidase was blocked with 3% hydrogen per-
oxide for 5 min. Then, the sections were incubated for 30 min with the IL-1β primary
antibody (E-AB-52153; Elabscience Biotechnology Inc., Houston, TX, USA). The EnVision
FLEX Visualization System containing 3,3-diamino-benzidine dihydrochloride and hema-
toxylin were used for visualization. The stained sections were permanently mounted with
Canada balsam.

2.7. Ethics Statement

The experiments were approved by the Ethical Committee of the Bulgarian Food
Agency with permit No. 229/09.04.2019 and were carried out following the guidelines of
European Directive 2010/63/EU. The animals were provided by the Medical University of
Plovdiv (Animal House, Plovdiv, Bulgaria).
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2.8. DPPH Free-Radical Scavenging Assay

The DPPH free-radical scavenging activity was measured as reported in [28]: 0.12 mM
DPPH was dissolved in methanol. The absorbance change was measured at 515 nm on a
UV-Vis spectrophotometer (Cary 60 UV-Vis, Agilent Technologies, Santa Clara, CA, USA)
within 30 min. The total DPPH radical scavenging activity within 30 min was measured
in triplicate. The blank sample was prepared as above by replacing the test sample with
equivalent methanol. The IC50 value determined the effective concentration at which 50% of
DPPH radicals were scavenged. A lower IC50 value indicated a higher antioxidant activity.

2.9. Statistical Analysis

For the analysis of variance, the InStat computer program was utilized. Each group’s
mean and standard error of mean were determined. To compare various groups with their
corresponding controls for repeated measurements, a two-way ANOVA was employed.
A significant difference was deemed to be represented by a p-value of less than 0.05. The
statistical software IBM SPSS Statistics v. 26 was utilized for the analyses.

2.10. DFT Investigations

The molecular structure of the SQ compound was drawn using GaussView 6, with
comprehensive optimization performed through Gaussian 09W software [29]. To ensure
precision, the computational approach applied density functional theory (DFT) using the
B3LYP functional alongside the 6-311g (d,p) basis set, allowing the structures to remain
entirely unrestricted. A frequency analysis was integrated into the optimization, confirming
that each vibrational frequency displayed a positive value and affirming their positions
as true minima on the potential energy landscape. Further analyses at the DFT/B3LYP/6-
311g (d,p) level provided valuable insights into various properties of the compounds.
These analyses included mapping the molecular electrostatic potential (MEP) surfaces,
determining the energy levels of the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO), and calculating the quantum chemical
reactivity descriptors, which together offer a deeper understanding of the compounds’
electronic structure and reactivity.

2.11. Molecular Docking Simulation

A docking simulation is an essential tool for exploring how newly synthesized com-
pounds interact with proteins, making it invaluable for drug design and development. In
this study, molecular docking simulations were carried out to assess the inhibitory effects
of the SQ compound against human serum albumin (HSA), utilizing AutoDock 4.2 [30]
and AutoDock Tools 1.5.6 [31]. This approach allowed for a detailed analysis of the binding
affinities and interaction modes between the compound and HSA, as well as an examina-
tion of their potential anticoagulant properties. The X-ray crystal structure of HSA (PDB
ID: 2I2Z) was sourced from the Protein Data Bank, while the structure of the synthesized
compound was modeled using DFT calculations. The protein preparation followed the
protocols established in previous research [32]. The docking was conducted with a 3D grid
size of 60 × 70 × 60 Å across both HSA binding sites, using a spacing parameter of 0.375 Å,
while other docking parameters remained at their default settings. The visualization of
docking sites and interaction diagrams was achieved with Discovery Studio 4.1 software,
providing a clear depiction of the binding interactions.
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3. Results and Discussion
3.1. Synthesis, Spectral, and Structural Analysis of Styryl Quinolinium (SQ)

N-alkyl quaternary ammonium compounds are commonly used as precursors for
photochromic spiropyrans [33], various cyanine dyes [34], and RNA antagonists [35]. Here,
we describe the two-step synthesis of SQ as follows: (1) 4-methylquinoline (lepidine) (1)
is alkylated with methyl toluenesulfonate (2) to get the quaternary salt (3); and (2) the
resulting lepidinium salt (3) is then applied in Knoevenagel condensation with 2-hydroxy
naphthaldehyde (4) (Scheme 1). Dry toluene was used to alkylate equimolar quantities of
lepidine and methyl 4-methylbenzenesulfonate. The solvent was chosen due to the easiness
of crystallization and separation of the product. Lepidine has a very good solubility in
toluene, but lepidinium methyl tosylate as a salt does not dissolve in toluene. Thus, the
quaternary salt was obtained in 84% yield. The obtained salt (3) then was directly applied
in Knoevenagel condensation with 2-hydroxy naphthaldehyde (4) to the SQ (5) formation.
The SQ salt was obtained in high purity and yield.
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Scheme 1. Synthesis of SQ (5).

The obtained SQ (5) was slightly soluble in non-polar and well soluble in polar organic
solvents. The emission spectra of SQ in four solvents—water, methanol, acetonitrile, and
chloroform—were measured. The comparative ultraviolet–visible and fluorescent spectra
of the SQ (5) under study at the same concentration of the solutions are shown in Figure S1
(Supplementary Materials Figure S1).

The fluorescence spectra in the solvents chloroform, acetonitrile, and methanol were
normal with a maximum in the range of 595–615 nm (Figure S1B) and were a mirror
image of their absorption spectra (Figure S1A). This normality implies that the molecule
was behaving consistently across these solvents, and there were no unexpected solvent-
dependent changes or anomalies. In the polar water solvent, the emission spectrum had a
discrete structure. When the emission spectrum has a discrete structure, it displays distinct,
sharp lines or peaks instead of a wide, continuous band. This happens because the polar
environment influences the electronic states of the dissolved molecules. Therefore, the
solvent molecules stabilize certain electronic states of the solute. The calculated Stokes
offset according to the type of solvent used was from 126 nm to 156 nm. The infrared
spectra of SQ (5) offer the opportunity to study solid-phase effects, such as Evans’ holes
and Davydov’s splitting of salt-like bands [36].

It is characteristic of the IR spectra of charge-transfer compounds that almost all
oscillations are mixed. The reason for this phenomenon is that the charge in the cationic
part of the SQ is strongly delocalized, as a result of which an electronic and vibrational
interaction occurs. The result of this interaction is a significant shift of the bands belonging
to the corresponding normal oscillations to the lower wavenumbers and an increase in the
intensity of some of them [37,38]. The IR and Raman spectra of SQ (5) are shown in Figure
S2 (Supplementary Materials Figure S2). The NMR data of 5 are presented in Figures S3–S8
(Supplementary Materials Figures S3–S8). The methine protons of the styryl double bond of
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the compound resonate as a singlet for 2H at 8.59 ppm among the aromatic proton signals.
The probable reason is the deviation of the two aromatic cores from the plane of the double
bond. The MS spectra are presented in Figure S9 (Supplementary Materials Figure S9).

3.2. DFT Investigations
3.2.1. Molecular Geometry

The structure of the SQ compound (5) was optimized using DFT at the B3LYP/6-311g
(d,p) computational level (Figure 3). This configuration represents the compound in its
lowest energy, most stable state. The optimized geometry yields an electronic energy
of −1873.70 Hartree. Additionally, the compound displays a notable dipole moment
of 16.93 Debye, indicating a strong presence of dipole–dipole interactions within the
SQ compound.
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3.2.2. MEP Map

The molecular electrostatic potential (MEP) offers a vivid depiction of a molecule’s
electrostatic properties, projecting its potential energy onto a surface defined by constant
electron density. This mapping allows us to visualize essential features of the molecule,
such as its size, shape, and specific electrostatic potential values. MEP provides insights
into key molecular characteristics like dipole moments, electronegativity, partial charges,
and reactive sites, making it an invaluable tool for interpreting a molecule’s polarity. The
regions with negative electrostatic potential indicate areas where the molecule’s concen-
trated electron density attracts protons, while the positive regions highlight areas where
proton repulsion occurs due to a lower electron density and insufficient shielding of nuclear
charges. By examining this contrast, MEP illustrates the distribution of electron density and
its influence on molecular interactions. The electron density isosurface, a critical concept
here, is essentially a boundary on which the molecule’s electron density has a specific
value, enclosing a defined fraction of its electron probability density. This surface aids
in accurately representing the molecule’s spatial electron distribution, thereby enhancing
our understanding of its chemical behavior and reactivity [39,40]. In this visualization, a
gradient of colors represents the electrostatic potential across molecular surfaces. Each color
corresponds to distinct regions: red, orange, yellow, green, and blue, with a progression
that reflects the increasing potential. Specifically, the red areas denote zones of maximum
negative potential, while the blue regions highlight areas of maximum positive potential.
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At the midpoint, green indicates areas of neutral or zero potential [41]. This color-coded
approach offers a clear, intuitive way to understand the distribution of electrostatic forces
within a molecule, aiding in the analysis of its chemical properties and interactions. The
blue-colored regions on the surface imply an electrostatic potential that supports nucle-
ophilic reactions, while the red areas highlight a favorable environment for electrophilic
reactions [42]. To identify potential reactive sites for both electrophilic and nucleophilic
attacks in the SQ (5), the MEP surface was generated based on its optimized geometry.
This map was achieved using the B3LYP/6-311g (d,p) computational method, and the
resulting MEP distribution is shown in Figure 4. In the SQ compound, a red-colored sur-
face surrounds the O1, O2, and O3 atoms, highlighting their vulnerability to electrophilic
attack. In contrast, a blue region appears around the H1 atom, signaling its potential for
nucleophilic interaction.
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3.2.3. HOMO and LUMO Molecular Orbitals and Reactivity

The analysis of frontier molecular orbitals (FMOs), specifically the HOMO and LUMO,
provides valuable insights into a compound’s chemical reactivity, stability, biological activ-
ity, optical features, and electronic behavior [43]. The LUMO is associated with an electron’s
acceptance, while the HOMO signifies electron donation. Figure 5 presents the HOMO-1,
HOMO, LUMO, and LUMO + 1 contributions for the SQ compound, highlighting the
calculated values of EHOMO-1, EHOMO, ELUMO, and ELUMO + 1 and the energy gaps (∆E),
determined using the DFT method at the B3LYP/6-311g (d,p) level. A crucial parameter
in understanding a compound’s stability, reactivity, and potential biological effects is the
HOMO-LUMO energy gap. Molecules with smaller energy gaps typically exhibit higher bi-
ological activity and chemical reactivity but lower stability than those with larger gaps [44].
In the SQ compound, the HOMO-LUMO analysis reveals that the electron density in the
HOMO is concentrated primarily on the anionic SO3

− group, while the LUMO’s electron
density is distributed across the cationic regions, suggesting an electron transfer pathway
from the SO3

− group to the cationic portions of the molecule. For SQ, the energy gap
is calculated to be 1.87 eV, which is relatively low and implies enhanced reactivity and
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biological activity. This narrow HOMO-LUMO gap indicates that the HOMO and LUMO
energy levels are close, allowing for easy excitation of outer-layer electrons, which supports
the compound’s pronounced chemical and biological activity. Furthermore, the energy gap
between HOMO-1 (−5.35 eV) and LUMO + 1 (−1.99 eV) is determined at 3.36 eV.
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In addition to fundamental calculations, a deeper quantum chemical analysis was
conducted to further elucidate the reactivity of the compound. The key descriptors were
evaluated, including absolute hardness (η = (ELUMO − EHOMO)/2), which reflects the
compound’s resistance to charge transfer, and absolute softness (σ = 1/η), indicating its
adaptability to electronic changes. This study also computed the absolute electronega-
tivity (χ = −(EHOMO + ELUMO)/2), which describes the compound’s affinity for electrons,
as well as the chemical potential (Pi = −χ), representing the compound’s tendency to
release or accept electrons. Additional values, such as the additional electronic charge
(∆N = −Pi/η) and global electrophilicity (ω = Pi

2/2η), which gauge its propensity to in-
teract with electron-rich species, were calculated to provide a comprehensive view of the
SQ compound’s reactivity characteristics. The values of Pi, ω, η, χ, σ, and ∆N for SQ are
calculated to be −4.10 eV, 9.03 eV, 0.93 eV, 4.10 eV, 1.07 eV−1, and 4.41, respectively. In
the synthesized compound, the Pi parameter is consistently negative, indicating that its
structure remains stable and does not break down into fundamental elements. The ω value
suggests that this compound is capable of forming multiple binding modes with biological
macromolecules [45], potentially enhancing its inhibitory effects. Additionally, the SQ
compound shows a low absolute hardness of 0.93 eV, highlighting its increased reactivity.

3.3. In Silico Calculations

The compound’s drug-likeness and ADMET characteristics have also been theoretically
predicted using an in silico approach. When this non-covalent contact is included in the



Appl. Sci. 2025, 15, 284 11 of 20

drug design, it causes the conformational restriction of tiny drug molecules, which results
in increased pharmacological activity, lipophilicity, and membrane permeability [46,47].

To be deemed a potential drug candidate, a molecule must fulfill three requirements: it
must enter the body, reach its pharmacological target, accumulate sufficient concentration
at the target site, and remain in active form for an extended period of time to demonstrate
the expected biological activity. Several substances failed as medicines due to their limited
bioavailability and poor pharmacokinetics.

PASS Online predicted the anti-inflammatory and antioxidant activity of 5.
The ADME profile of the SQ was clarified using the SwissADME web tools (Table 1).

Eight physicochemical characteristics, including the four factors outlined in Lipinski’s “rule
of five”, are used to measure a compound’s drug-likeness [48–50]. A molecular weight less
than 500 g/mol, XLOGP3 (−0.7 to +5.0), topological polar surface area between 130 Å2,
predicted solubility not exceeding 6, and flexibility or rotatable bonds not exceeding 9 are
some of the requirements.

Table 1. ADME parameters of the SQ (5) representing drug-likeness.

Compound MW, g/mol XLOGP3 ESOL Log S TPSA, Å2 RB BA SA LD50, mg/kg

5 483.58 6.60 −7.35 107.41 3 0.55 3.22 5000
MW: Molecular weight; XLOGP3: octanol/water partition coefficient; ESOL LogS: estimated aqueous solubility;
TPSA: topological polar surface area, RB: rotatable bonds; BA: bioavailability; SA: synthetic accessibility; predicted
LD50: lethal dose to 50% of animals.

The synthesized SQ salt satisfied the standard values of the drug-likeness notion by
having three rotatable bonds, a molecular weight of 483.58 g/mol, and a TPSA of 107.41 Å2.
Good oral absorption was associated with the compound’s bioavailability score of 0.55 [51].
It also has an excellent synthetic accessibility score of 3.22, which is a crucial factor in the
process of finding new drugs. Cytochrome P450 (CYP) inhibition results in pharmacological
toxicity [52,53]. The named molecule is not anticipated to inhibit the CYP1A2, CYP2C9,
CYP2C19, CYP2D6, or CYP3A4 isoforms, according to the calculations. With a log Kp
of −4.62, the compound demonstrated good skin permeability. The SQ’s toxicity falls
into the safer zone (toxicity class: 5), according to acute toxicity data (ProTox-II). Since
the compound’s calculated LD50 was 5000 mg/kg, it can be regarded as nearly non-toxic.
While there was no evidence of other organ toxicities, immunotoxicity was expected to be
present (0.71% chance).

To confirm the predicted biological activities, the compound was assessed in vitro for
its antioxidant capacity and in vitro/ex vivo for its anti-inflammatory potential.

3.4. Anti-Inflammatory Potential
3.4.1. Inhibition of Albumin Denaturation

Inflammation is a complex defense mechanism of the body that fights off dangerous
microbes or damaged cells [54,55]. Nonetheless, this response needs to be controlled to
avoid the development of clinical disorders linked to the immune system [3]. Disorders
of inflammation are the body’s response to tissue damage. The body is more vulnerable
to the development of cancer, neurological illnesses, and autoimmune diseases when
unchecked acute inflammation leads to chronic inflammation [56,57]. Conversely, chronic
inflammation is a long-term response that is characterized by a gradual alteration in the
cells that are present at the site of inflammation [57,58]. The immune response involves the
nuclear factor-kappa B signaling pathway. It is essential to inflammatory processes due
to its involvement in the transcription of cytokines such as nitric oxide (NO), interleukin-
1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Substances that
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can disrupt this route are of interest to the pharmaceutical sector [59–61]. Patients with
inflammatory illnesses are most frequently prescribed glucocorticoids or nonsteroidal
anti-inflammatory drugs. The severe adverse effects of these drugs, like bleeding and
stomach ulcers, have decreased their therapeutic effectiveness and usually lead to patients
stopping their therapy [62]. In this context, the pharmaceutical industry has focused its
efforts on finding novel bioactive compounds that have fewer adverse effects and superior
therapeutic outcomes.

Based on its structure, the in silico calculations predicted the anti-inflammatory
potential of SQ (5). Therefore, the main goal of this research was to establish the anti-
inflammatory potential of SQ. In vitro antidenaturation of albumin was used to evaluate
its anti-inflammatory properties. The obtained data showed that the IC50 of the compound
was 350 µg/mL, while the IC50 of diclofenac was 471.3 µg/mL, which confirms a better
anti-inflammatory effect of SQ (5). We can assume that the better anti-inflammatory effect
of SQ is also due to the presence of a sulfonate group in the tosylate counterion [63,64].

3.4.2. Immunohistochemical Analysis

As one of the eleven members of the cytokine family, IL1 is mainly produced by the
majority of immune cells in reaction to other cytokines or microbial stimuli [65]. Since
IL-1β plays a part in both autoimmune and inflammatory diseases, it is crucial to inhibit
its activity in order to lower the inflammatory response. In necrotizing enterocolitis and
inflammatory bowel disease, IL-1β and other proinflammatory cytokines are increased,
causing intestinal inflammation via breaking down the intestinal barrier [66]. This causes
inflammation in the intestine. Furthermore, through regulating neuro-immune interactions
across neuronal ganglia in the central nervous system, spinal cord, and digestive tract,
IL-1β is essential for the development and maintenance of neuropathic pain in a range of
chronic illnesses [67]. Inflammation is one of the adaptive responses to a variety of traumas,
including those caused by physical, chemical, and biological agents [68]. IL-1β can cure
acute inflammation and activate adaptive anti-tumor responses. Chronic inflammation,
however, increases the risk of cancer [69]. Along with phenotypic changes in B and T cells,
the production of cytokines through processes mediated by lipotoxicity and macrophage
infiltration into adipose tissue, chronic and low-grade inflammation is the foundation of
metabolic disorders [70,71]. Pro-inflammatory cytokines such as TNF-a, IL-8, and IL-2 are
signs of intestinal dysbiosis. TH1 cells and macrophages produce the pro-inflammatory
cytokines IFN-, IL-2, IL-3, and TNF, which can be blocked by the anti-inflammatory cytokine
IL-10 [72]. On the other hand, cytokine IL-1β directly affects the SMs and neurons in the
stomach [73]. The innate immune system produces the potent pro-inflammatory cytokine
IL-1β. Unlike the usual method, it secretes proteins through one or more unconventional
secretion pathways and is manufactured without the need for a signal sequence.

The immunohistological expression of IL-1β in smooth muscle preparations (SMPs)
incubated with SQ (5) was utilized in a semiquantitative manner (Figure 6, Table 2).

Table 2. Expression of IL-1β and SQ’s response.

Control SQ’s Response

IL-1β ++ +/−
SM ++ +/−
MP ++ −

SM and neurons in the MP were shown to express IL-1β on a panel. By measuring the expression of IL-1β in
tissue slices using immunohistochemical staining, the semiquantitative method for reporting its expression was
established. ++, moderate; +, low; −, absent.
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Any histological changes between the SQ-incubated preparations stained with H-E
and the control were noted (Figure 6B). Weak IL-1β expression was observed in the MP
in control preparations (Figure 6C). The preparations incubated with SQ (5) in the MP
showed no expression of IL-1β, with only a tiny percentage of SM cells labeled with IL-1β
(Figure 6D).
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expression in the MP (black arrows) (×400).

We found that both SM and MP neurons showed the anti-inflammatory activity of SQ,
which we observed as reduced or absent IL-1β expression in preparations. This suggests
that the SQ might be able to lessen inflammatory processes in many somatic constituents
of cells. For this reason, SQ may be able to reduce gastrointestinal tract inflammation [29].
Therefore, SQ (5) will be established as a potential medication to treat inflammatory illnesses
through future preclinical experiments.

3.4.3. DPPH Radical Scavenging Activity

Finally, the DPPH radical scavenging assay [74] was used to assess the SQ’s antioxidant
capacity in vitro using rutin and quercetin as standards. At a dosage of 24 ± 0.1 µM, we
found that the SQ (5) showed a 32% percentage inhibition, in contrast to the antioxidant
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activity of rutin (40 µM with 40% inhibition) and quercetin (20 µM with 49% inhibition).
The data obtained indicated that SQ (5) had lower antioxidant activity than quercetin but
better than rutin.

3.5. Molecular Docking Simulation

Molecular docking simulation is a computational approach used to model interac-
tions between macromolecules and smaller compounds, particularly highlighting the
non-covalent biochemical interactions between them. This method enables a detailed
visualization and assessment of these molecular interactions, providing valuable insights
into potential binding affinities and interaction modes [75]. Additionally, in vitro findings
on anti-inflammatory activity can be further correlated with the binding affinities and
interaction patterns identified in docking studies. In this study, molecular docking of the
SQ compound was conducted to investigate its binding affinity and interaction mode with
HSA in order to elucidate its anti-inflammatory properties. HSA contains two primary
drug-binding sites, known as Sudlow sites I and II. Docking simulations were performed
at these sites using a grid box with the dimensions of 60 × 70 × 60 Å. The results indicated
a more favorable binding free energy (∆G) at Sudlow site I compared to Sudlow site II,
suggesting a stronger interaction of the SQ compound with Sudlow site I of HSA. Figure 7
shows the binding representation of the synthesized compound with HSA. The amino acid
residues of HSA involved in the interaction with the SQ compound are represented as
3D and 2D diagrams in Figure 8. The ∆G value for this compound was calculated to be
−8.18 kcal/mol, indicating a strong binding affinity. This high affinity suggests that the
SQ compound has a significant inhibitory effect on HSA, supporting its potential as an
effective inhibitor of this protein.

Moreover, the docking analysis revealed that the binding interactions between the title
compound and HSA are significantly influenced by a combination of hydrogen bonding,
van der Waals forces, hydrophobic interactions, and electrostatic attractions. This interplay
of forces underscores the complexity and specificity of the binding process, highlighting
how each interaction contributes to the stability and affinity of the compound within the
HSA binding sites. The SQ compound forms a complex network of interactions with
several key amino acid residues of HSA. It establishes two hydrogen bonds with residues
LYS 195 and GLU 153, reinforcing stability. Additionally, the compound engages in three
electrostatic attractions with LYS 195, GLU 292, and GLU 153, which further stabilize the
binding. Hydrophobic interactions are prevalent, with five key connections to ARG 257,
HIS 242, VAL 241, and ALA 291. Lastly, four van der Waals forces with residues ILE 290,
LEU 260, LEU 238, and SER 192 contribute to the overall structural cohesion of the complex.

A high degree of interaction between the SQ (5) and amino acid residues within HSA
plays a crucial role in stabilizing the albumin’s structure. These interactions contribute
to preserving the integrity of albumin, preventing its denaturation even under inflamma-
tory conditions [76]. The results of this study align well with the observed experimental
evidence of the compound’s anti-inflammatory effectiveness, affirming its protective role
during inflammation.
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4. Conclusions
In conclusion, a new SQ salt was obtained as stilbene’s analog. The compound was

characterized using its NMR, IR, Raman, UV-Vis, and MS spectra. The SQ has been
determined by in silico data as an orally active compound with high gastrointestinal
absorption, anti-inflammatory, antioxidant activity and no toxic effect. The HOMO-LUMO
analysis revealed that the electron density in the HOMO is concentrated primarily on the
anionic SO3

− group, while the LUMO’s electron density is distributed across the cationic
regions, suggesting an electron transfer pathway from the SO3

− group to the cationic
portions of the molecule. The biological evaluation results showed that SQ exhibits a
preventive effect better than diclofenac on albumin denaturation. Furthermore, the ex vivo
investigations assessing SQ’s impact on IL-1 expression validated its anti-inflammatory
capabilities. The DPPH radical scavenging data indicate that SQ exhibits lower antioxidant
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activity than quercetin but better levels than rutin. Future preclinical experiments will
therefore help to establish SQ as a viable therapeutic alternative for the treatment of
inflammatory diseases. Furthermore, the docking simulation demonstrated that a high
degree of interaction between the SQ compound and amino acid residues within HSA
plays a crucial role in stabilizing the albumin’s structure. Our future plans involve the
synthesis of novel SQ derivatives with N,N-dimethylamino groups instead of hydroxyl
groups in a naphthyl ring and longer alkyl groups attached to quaternary nitrogen, as well
as a comparative study of their anti-inflammatory, antimicrobial, and antioxidant activity.
Future in vivo and preclinical experiments will contribute to the establishment of these
novel SQ derivatives as potential drug candidates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app15010284/s1, Figure S1: Electronic spectra of SQ, measured
in acetonitrile, water, methanol, and chloroform at the same concentration of solutions, Figure S2:
(A) Solid-state IR spectrum of SQ in the region of 4000–400 cm−1 measured in a KBr disc, (B) Raman
spectrum of SQ in the region of 1800–400 cm−1, Figure S3: 1H NMR spectrum of SQ measured in
DMSO d6 presented in the 9.4–6.0 ppm region, Figure S4: 1H NMR spectrum of SQ measured in
DMSO d6 presented in the 6.0–0 ppm region, Figure S5: 13C NMR spectrum of SQ measured in
DMSO d6, Figure S6: COSY spectrum of SQ presented in the 9.4–7.0 ppm region, Figure S7: HSQC
spectrum of SQ, Figure S8: HMBC spectrum of SQ in the region 9.7–6.7 ppm, Figure S9: HESI of SQ.
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