% applied sciences

Article

A New Pabs Model for Quantitatively Diagnosing Phosphorus
Nutritional Status in Corn Plants

Xinwei Zhao

check for

updates
Academic Editors: Rui Sun,
Jiang Chen and Wen Zhuo

Received: 28 November 2024
Revised: 12 January 2025
Accepted: 13 January 2025
Published: 14 January 2025

Citation: Zhao, X.; Chen, S.; Xu, Y,;
Wang, Z. A New Pabs Model for
Quantitatively Diagnosing
Phosphorus Nutritional Status in
Corn Plants. Appl. Sci. 2025, 15, 764.
https://doi.org/10.3390/
app15020764

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

, Shengbo Chen *, Yucheng Xu

and Zibo Wang

College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China;
xinwei22@mails.jlu.edu.cn (X.Z.); yexu2l@mails.jlu.edu.cn (Y.X.); zbwang22@mails.jlu.edu.cn (Z.W.)
* Correspondence: chensb@jlu.edu.cn

Abstract: Accurate diagnosis of plant phosphorus nutritional status is critical for optimiz-
ing agricultural practices and enhancing resource efficiency. Existing methods are limited
to qualitatively assessing plant phosphorus nutritional status and cannot quantitatively es-
timate the plant’s phosphorus requirements. Moreover, these methods are time-consuming,
making them impractical for large-scale application. In this study, we developed an ad-
vanced phosphorus absorption model (Pabs) that integrates the phosphorus nutrition
index (PNI) and phosphorus use efficiency (PUE). The PUE, a critical metric for assessing
phosphate fertilizer use efficiency, was quantified by comparing yields under fertilized and
unfertilized conditions. Utilizing the Agricultural Production Systems Simulator (APSIM)
model, we simulated maize (Zea mays L.) phosphorus concentration (P) and aboveground
biomass (Bio) under varying phosphorus application rates. The model exhibited robust
performance, achieving an R? above 0.95 and an RMSE below 0.22. Based on the APSIM
model simulations, a phosphorus dilution curve (Pc = 3.17 Bio %%, R? = 0.98) was estab-
lished, reflecting the dilution trends of phosphorus across growth stages. Furthermore,
the use of vegetation indices (VIS) to evaluate phosphorus nutritional status also showed
promising results, with inversion accuracies exceeding 0.70. To validate the model, field
sampling was conducted in maize-growing regions of Changchun. Results demonstrated
a correct diagnosis rate of 75%, underscoring the model’s capacity to accurately estimate
phosphorus requirements on a regional scale. These findings highlight the Pabs model
as a reliable tool for precision phosphorus management, offering significant potential to
optimize fertilization strategies and support sustainable agricultural systems.

Keywords: phosphorus status diagnosis; precision phosphorus management; phosphorus
absorption model; phosphorus nutrition index; agricultural production systems simulator

1. Introduction

Phosphorus is essential for regulating plant physiological processes and enhancing
tolerance to abiotic stresses, such as heat, salinity, drought, waterlogging, elevated CO,, and
heavy metal toxicity [1,2]. Plants are capable of sensing changes in phosphorus availability
and responding through specific signaling pathways, adjustments in root architecture,
and modifications in stomatal morphology [3,4]. A deeper understanding of how plants
perceive and respond to phosphorus availability is vital for developing strategies to improve
crop yield and stress resilience. Phosphorus also plays a critical role in key metabolic and
physiological processes, such as energy metabolism, ATP, DNA synthesis, cell division,
and phospholipid biosynthesis, primarily in the form of phosphate (Pi) or Pi esters [5]. A
deficiency in Pi severely impacts root development, vegetative growth, fruit production,
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and quality, ultimately leading to a decrease in crop yields [6-8]. Therefore, precision in
phosphorus fertilizer application and effective management strategies are paramount for
optimizing production.

Plant phosphorus concentration (P) is a widely recognized indicator of crop phos-
phorus nutritional status. To enhance the precision of phosphorus diagnostics, the critical
phosphorus concentration (Pc) concept was introduced, representing the minimum phos-
phorus level required to achieve maximum aboveground biomass (Bio). Pc decreases
as biomass increases, and their relationship is described by a negative power function,
forming the critical P dilution curve [9,10]. This curve allows for the determination of Pc at
any given biomass. Researchers worldwide have developed critical phosphorus concentra-
tion dilution curve models for various crops in different regions, climate conditions, and
environments. For example, critical phosphorus dilution models have been established
for potato (Solanum tuberosum L.) [9,11], cotton (Gossypium hirsutum L.) [12], and Timothy
grass (Phleum pratense L.) [13], with corresponding models as follows: Pc = 3.92 Bio~%-3°
and Pc =5.23 Bio 1%, Pc = 7.84 Bio~ 9?2 and Pc =7.74 Bio 9%, and Pc = 5.23 Bio %4 and
Pc = 3.27 Bio %29, respectively. The comparison of P to Pc, expressed as the phosphorus nu-
tritional index (PNI), provides a robust assessment of phosphorus supply status. However,
PNI calculations traditionally involve destructive sampling and chemical analysis, which
are time-intensive, costly, and impractical for large-scale applications, akin to the nitrogen
nutrition index (NNI) [14].

In nitrogen nutrition research, combining vegetation indices (VIs) with NNI has
emerged as an efficient, non-destructive diagnostic approach. This method leverages re-
mote sensing technologies to assess nitrogen content rapidly and accurately, facilitating
effective management in large-scale agricultural systems, such as rice (Oryza sativa L.),
wheat (Triticum aestivum L.), and maize (Zea mays L.). For example, GreenSeeker NDVI and
RVI explained 47% and 44% of the variability in winter wheat NNI across different sites and
growth stages, respectively, demonstrating their effectiveness in nitrogen monitoring [15].
Additionally, using two vegetation indices—Green Re-normalized Difference Vegetation In-
dex (GRDVI) and Modified Green Soil Adjusted Vegetation Index (MGSAVI)—was effective
in estimating winter wheat NNI across various site years and growth stages, achieving an
R? value between 0.77 and 0.78 [16]. For rice, the GreenSeeker system explained 25-34% of
NNI variability at the stem elongation stage and 30-31% at the heading stage, indicating the
relevance of growth-stage-specific nitrogen assessments [16]. Furthermore, four red-edge
based indices—Red Edge Soil Adjusted Vegetation Index (RESAVI), Modified RESAVI
(MRESAVI), Red Edge Difference Vegetation Index (REDVI), and Red Edge Re-normalized
Difference Vegetation Index (RERDVI)—showed similar effectiveness in estimating rice
NNI across growth stages, with an R? of 0.76 [17]. These results highlight the importance
of VIs in optimizing nitrogen management, reducing excessive nitrogen applications, and
improving fertilizer efficiency.

Phosphorus nutrition diagnostics remain less explored compared to nitrogen moni-
toring, with existing methods such as soil testing and tissue analysis presenting notable
limitations. Soil testing, which offers insights into available phosphorus in the soil, is
typically used for proactive fertility management before planting and is based on corre-
lations between nutrient levels and crop yield responses [18]. However, it has significant
drawbacks, primarily due to its reliance on a single snapshot of soil phosphorus status,
which fails to capture the temporal variations in phosphorus availability throughout the
growing season. Additionally, the accuracy of soil tests is influenced by the testing method
and variability in soil sampling across large areas, resulting in inconsistencies. Similarly,
while tissue analysis is crucial for evaluating phosphorus status during the growing season,
it too has limitations. It can only be conducted when the crop is actively growing, and
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even if phosphorus deficiencies are detected, the effectiveness of in-season amendments re-
mains uncertain because phosphorus is immobile in the soil, limiting plant access to added
nutrients [19]. Moreover, interpreting phosphorus tissue concentrations is challenging
as the critical and sufficiency ranges—representing nutrient concentrations below which
yield responses occur and where added nutrients no longer increase yield but can still
influence nutrient levels—vary by growth stage and plant part [20]. These complexities
make it difficult to apply tissue analysis consistently across different growth stages and
plant parts, limiting its practical use in large-scale phosphorus management for crops such
as corn. Together, these challenges highlight the need for alternative, dynamic, and real-
time phosphorus-monitoring systems. The combination of VIs and PNI offers a promising
solution, enabling continuous, non-destructive monitoring of phosphorus status through-
out the growing season. By integrating these indices, it becomes possible to capture the
temporal fluctuations in phosphorus availability and better align fertilization practices
with the crop’s actual nutrient requirements, thus improving phosphorus use efficiency
and minimizing environmental impact.

This study investigates the potential of vegetation indices for estimating phosphorus
nutritional status under varying phosphorus fertilizer levels. The objectives of the research
are as follows: (i) to assess the relationship between vegetation indices and phospho-
rus nutritional status in maize under different fertilizer treatments and (ii) to construct a
phosphorus absorption (Pabs) model for regional-scale phosphorus optimization and quan-
titative phosphorus nutrition diagnostics. The findings provide a theoretical framework
for improving phosphorus management in maize, with practical implications for reducing
fertilizer inputs and promoting sustainable agricultural practices.

2. Materials and Methods
2.1. Experimental Design

This study was conducted at the Agricultural Experimental Base of Jilin University in
Changchun City, Jilin Province, China, situated within the coordinates 43°05’ —45°15' N and
124°18'-127°02" E (Figure 1). This region, characterized by flat terrain and fertile black soil,
is highly conducive to crop cultivation. During the 2023 corn-growing season, the research
integrated remote sensing observations and ground-based biochemical measurements
to assess phosphorus fertilization in maize (Xianyu 335). Four phosphorus application
levels—0, 50, 100, and 150 kg /ha—were applied based on local soil phosphorus conditions
and prior experimental data, with additional nutrient supply of 220 kg/ha nitrogen and
100 kg /ha potassium incorporated before sowing. Each phosphorus treatment was repeated
in four groups, resulting in a total of 16 experimental units, from which 96 samples were
collected. Data collection was conducted across key growth stages of maize, including
jointing, large trumpet, tasseling, silking, grain formation, and milk maturity, with a focus
on critical indicators, such as canopy spectral data, plant phosphorus concentration, and
aboveground biomass. Canopy spectral data were obtained using a FieldSpec 3 Hi-Res
Pro portable spectrometer, manufactured by Analytical Spectral Devices, Inc. (ASD) in
Longmont, CO, USA, with measurements taken between 10:00 and 14:00 under clear
weather conditions and minimal wind (<2 m/s). The spectrometer sensor was positioned
1 m above the canopy, at a 25° field of view angle, covering a ground area with a diameter
of 0.22 m. Spectral readings, which were averaged from ten measurements per sampling
point, were repeated three times per treatment to ensure accuracy in calculating the mean
canopy reflectance. Calibration with a standard whiteboard was performed before and
after each measurement set to minimize measurement errors. For biomass estimation,
three representative maize plants from each plot were selected, and their plant organs
were separated and dried at 105 °C for 30 min to kill green tissue, followed by drying at
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75 °C until a constant weight was achieved. The resulting dry weight was recorded to
calculate biomass per unit area. Phosphorus concentration in plant tissues was determined
by grinding the samples through a 0.425 mm sieve, followed by digestion using an HySO4-
H,0; method and subsequent vanadate-molybdate colorimetric analysis.
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Figure 1. The geographical location of the experimental area.

2.2. Data

In this study, multispectral data for calculating vegetation indices were sourced from
Google Earth Engine (https:/ /earthengine.google.com (accessed on 1 July 2024)). Sentinel-
2, offering high-spatial-resolution optical imagery at 10 m resolution in both visible and
near-infrared bands, is well-suited for large-scale environmental monitoring, agricultural
assessments, and vegetation analysis [21].

For maize classification in Changchun, a 10 m resolution crop type map was utilized,
derived from Sentinel-2 imagery and processed using a random forest algorithm on the
Google Earth Engine platform [22].

Climate data, including daily maximum (Tmax) and minimum (Tmin) temperatures,
precipitation (Rain), solar radiation (SRAD), relative humidity (RH), wind speed (WS), and
potential evaporation (PET), were retrieved from the China Meteorological Administration
platform (http://data.cma.cn/ (accessed on 1 May 2024)). These parameters were integral
to APSIM model simulations, facilitating an in-depth analysis of crop responses to climate
variability [23].

3. Methodology

The workflow of this study, as illustrated in Figure 2, outlines the steps involved in
simulating key agronomic indicators and developing models for phosphorus nutrition and
biomass in maize. Measurements were taken at six critical growth stages—jointing, large
trumpet, tasseling, silking, grain formation, and milk maturity—across four phosphorus
application levels (0, 50, 100, and 150 kg/ha), with each treatment replicated four times.
To ensure the accuracy and reliability of the data, special attention was given to the tim-
ing of data collection, the phenological phase of maize, and the number of replications.
Instruments were calibrated before and after each session, and standard procedures were
followed to minimize environmental and procedural errors, ensuring consistency across all
measurements. This rigorous approach allowed for the accurate reflection of phosphorus
dynamics and maize’s response to varying phosphorus application levels throughout the
growing season. The data collected, including canopy spectral data, plant phosphorus
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concentration, and aboveground biomass, were integrated with Sobol sensitivity analysis
to identify the vegetation index most strongly correlated with these indicators. These
results formed the basis for developing inversion models for both maize’s aboveground
biomass and phosphorus concentration, contributing to the construction of a phosphorus
nutritional index (PNI) model. Additionally, the agricultural production systems simu-
lator (APSIM) model was employed to simulate phosphorus concentration and biomass,
with the simulation results forming the foundation for developing the critical phosphorus
concentration (Pc) model. To enhance the model’s accuracy, phosphorus use efficiency
(PUE) was incorporated, leading to the development of the phosphorus absorption (Pabs)
model, which facilitated the quantitative monitoring of phosphorus concentration in maize
throughout the growing season in Changchun.

| -
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P cld bxperime @ - N Soil Parameters Crop Parameters | |
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Figure 2. Flowchart of this study.

3.1. Sobol Sensitivity Analysis

Numerous spectral indices have been developed to estimate key plant biophysical
variables, including chlorophyll concentration, leaf area index, and biomass. This study
employed Sentinel-2 satellite imagery to explore the potential of vegetation indices in assess-
ing maize phosphorus status. A comprehensive analysis was conducted on 50 vegetation
indices (Table 1; [24-45]).

Table 1. Multispectral vegetation index.

Vegetation Index Formula Ref.
Two-band vegetation indices
Ratio Vegetation Index 1 (RVI1) NIR/B [24]
Ratio Vegetation Index 2 (RVI2) NIR/G [25]
Ratio Vegetation Index 3 (RVI3) NIR/R [24]
Difference Index1 (DVI1) NIR — B [24]
Difference Index2 (DVI2) NIR - G [24]

Difference Index3 (DVI3) NIR — R [24]
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Vegetation Index Formula Ref.
Normalized Difference Vegetation Index 1 (NDVI1) (NIR — R)/(NIR + R) [25]
Normalized Difference Vegetation Index 2 (NDVI2) (NIR — G)/(NIR + G) [26]
Normalized Difference Vegetation Index 3 (NDVI3) (NIR — B)/(NIR + B) [25]
Renormalized Difference Vegetation Index 1 (RDVI1) (NIR — B)/SQRT(NIR + B) [27]
Renormalized Difference Vegetation Index 2 (RDVI2) (NIR — G)/SQRT(NIR + G) [27]
Renormalized Difference Vegetation Index 3 (RDVI3) (NIR — R)/SQRT(NIR + R) [27]
Wide Dynamic Range Vegetation Index 1 (WDRVI1) (0.12NIR — R)/(0.12-NIR + R) [28]
Wide Dynamic Range Vegetation Index 2 (WDRVI2) (0.12NIR — G)/(0.12-NIR + G) [28]
Wide Dynamic Range Vegetation Index 3 (WDRVI3) (0.12 NIR — B)/(0.12-NIR + B) [28]
Soil Adjusted Vegetation Index (SAVI) 1.5(NIR — R)/(NIR + R + 0.5) [29]
Optimization of soil-adjusted VI (OSAVI) (1+0.16)(NIR — R)/(NIR + R + 0.16) [30]
Green Soil Adjusted Vegetation Index (GSAVI) 1.5(NIR — G)/(NIR + G + 0.5) [29]
Blue Soil Adjusted Vegetation Index (BSAVI) 1.5(NIR — B)/(NIR + B + 0.5) [29]
Modified Simple Ratio (MSR) (NIR/R — 1)/SQRT(NIR/R + 1) [31]
Green Optimal Soil Adjusted Vegetation Index (GOSAVI) (1+0.16)(NIR — G)/(NIR + G + 0.16) [30]
Blue Optimal Soil Adjusted Vegetation Index (BOSAVI) (1 +0.16)(NIR — B)/(NIR + B + 0.16) [30]
Modified Soil Adjusted Vegetation Index (MSAVI) 0.5{2:NIR + 1 — SQRT[(2:NIR + 1) 2 — 8(NIR — R)]} [32]
Modified Green Soil Adjusted Vegetation Index (MGSAVI1) 0.5{2-NIR + 1 — SQRT[(2-NIR + 1) 2 — 8(NIR — G)]} [32]
Modified Blue Soil Adjusted Vegetation Index (MBSAVI) 0.5{2-NIR + 1 — SQRT[(2-NIR + 1) 2 — 8(NIR — B)]} [32]
Three-band vegetation indices
Simple Ratio Vegetation Index (SR) R/G x NIR [33]
Modified NormahzezlmDI\lIfge\l;(irll)ce Vegetation Index 1 (NIR — R +2.G)/(NIR + R — 2.G) [34]
Modified Normahze((:lnllDl\llffDe\r]elg)ce Vegetation Index 2 (NIR — R + 2.B)/(NIR + R — 2.B) [34]
New Modified Simple Ratio (mSR) (NIR — B)/(R — B) [35]
Visible Atmospherically Resistant Index (VARI) (G-R)/(G+R-B) [36]
Structure Insensitive Pigment Index (SIPI) (NIR — B)/(NIR — R) [37]
Structure Insensitive Pigment Index 1 (SIPI1) (NIR — B)/(NIR — G) [37]
Normalized Different Index (NDI) (NIR — R)/(NIR — G) [33]
Plant Senescence Reflectance Index (PSRI) (R — B)/NIR [35]
Modified nonlinear VI (MNVTI) 1.5(NIR2 — G)/(NIR2 + R + 0.5) [38]
Plant Senescence Reflectance Index 1 (PSRI1) (R — G)/NIR [35]
Triangular Vegetation Index (TVI) 0.5[120 (NIR — G) — 200 (R — G)] [39]
Modified Triangular Vegetation Index 1 (MTVI1) 1.2[1.2(NIR - G) — 25 (R — G)] [40]
Modified Triangular Vegetation Index 2 (MTVI2) L5[1.2 (NIR —(6§1)\I;R2f éléc—g RGT)(] I{ )S?IBT;)(]Z'NIR 2= gy
Modified Triangular Vegetation Index 3 (MTVI3) 1o 12 (NIR 7(6]~31)\HiR2.—5 éié[f%%{{??Rg 5[)(]2 NIR+1)2 = [40]
Enhanced Vegetation Index (EVI) 2.5(NIR — R)/(1 + NIR + 6R — 7.5B) [41]
Triangular Chlorophyll Index (TCI) 1.2(NIR — G) — 5(R — G)(NIR/R)%> [42]
Modified Chlorophyll Absorption in ReflectanceIndex [(NIR — R) — 02(R — G)] x (NIR/R) [43]
(MCARI)
Modified Chlorophyll Absorption in Reflectance Index 1
(MCARI1) 1.2[2.5 (NIR — R) — 1.3 (NIR-G)] [40]
Modified Chlorophyll Absorption in Reflectance Index 2 12[2.5(NIR — R) — 1.3 (R — G)]/SQRT [(2-NIR + 1) 2 — [40]
(MCARI2) (6-NIR — 5-SQRT(R) — 0.5)]
Transformed Chlorophyl% Flz%olz%%)tion in Reflectance Index 3[(NIR — R) — 0.2 (NIR — G)(NIR/R)] [44]
TCARI/OSAVI TCARI/OSAVI [44]
MCARI/MTVI2 MCARI/MTVI2 [45]
TCARI/MSAVI TCARI/MSAVI [44]
TCI/OSAVI TCI/OSAVI [42]

In this study, the Sobol sensitivity analysis was employed to assess the influence of

input variables on the performance of the LIBSVM surrogate model. The Sobol method

decomposes the variance of the output to calculate the first-order sensitivity index (S) and

total effect index (ST) for each input parameter.
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3.2. APSIM Model

Model simulations allow for the quantitative assessment of how different environmen-
tal conditions and management practices influence corn phosphorus concentration and
aboveground biomass. The agricultural production systems simulation (APSIM) model is
widely recognized for its flexibility and accuracy in simulating crop growth and nutrient
cycling. Over the years, APSIM has been used to evaluate corn growth under various fertil-
ization and irrigation strategies, with a particular focus on phosphorus uptake efficiency
and its contribution to biomass accumulation [46]. In this study, APSIM was utilized to
simulate two key agronomic indicators—plant phosphorus concentration and aboveground
biomass—across critical growth stages: jointing, trumpet, tasseling, silking, grain formation,
and milk ripening. The model incorporated variety-specific genetic parameters, with sce-
nario and field trial settings remaining consistent throughout the experiment. Calibration
and validation were conducted using experimental data, with parameter adjustments made
through a “trial-and-error” approach.

3.3. Model Construction
3.3.1. Phosphorus Dilution Curve

The phosphorus dilution curve (Pc) model was defined according to the method
outlined in [11], and the model construction approach proposed by Belanger et al. [10] was
applied to develop the critical dilution curve model, as expressed in Equation (1):

P.=a * Bio P, (1)

where a represents the phosphorus concentration of the plant when the aboveground
biomass is 1 t/ha; Bio is the aboveground biomass of the plant, measured in t/ha; and b is
the statistical parameter controlling the slope of the curve.

3.3.2. Phosphorus Nutrition Index
The phosphorus nutrition index (PNI) [11] is calculated as shown in Equation (2):

PNI = P/Pc, ()

where Pc is the percentage of the critical phosphorus concentration of the plant in dry
matter, and P is the percentage of the actual measured phosphorus concentration of the
plant in dry matter.

3.3.3. The Pabs Model

To enhance the timeliness of crop phosphorus nutrition diagnosis and support large-
scale phosphorus management, we developed a corn phosphorus absorption (Pabs) model.
The phosphorus standard accumulation (Psa) and phosphorus actual accumulation (Paa)
in corn plants were calculated by multiplying the critical phosphorus concentration (Pc)
and the plant’s phosphorus concentration (P) by its aboveground biomass (Bio), as shown
in Equations (3) and (4):

P, = a * Bio! P, (3)

P.. = P x Bio, 4)

The Pabs model was derived by subtracting the standard phosphorus accumulation
from the actual phosphorus accumulation, as indicated in Equation (5):

Pabs = (1 — PNI) (a * Biol*b>, ®)
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where 1 represents the value of PNI under the optimal phosphorus nutrition state of the
plant [11], recorded as PNlItarget.

To further optimize the model’s accuracy, we incorporated the phosphorus use effi-
ciency (PUE) [47], as given by Equation (6):

puE — (AP —PB)

x 100% (6)
where AP represents the treatment of corn with phosphorus fertilizer, PB represents the
treatment of corn without phosphorus fertilizer, PF is the amount of phosphorus fertilizer
used for corn, and the value of PAE in this study is 37%.

The final optimized phosphorus absorption model is represented in Equation (7):

b Ak Bio! ™ (PNltarget — PNI) ;
abs = PUE @)

4. Results
4.1. Establishment of Pc

The APSIM model demonstrated strong performance in simulating two key agro-
nomic indicators: plant phosphorus concentration (Figure 3a) and aboveground biomass
(Figure 3b). For plant phosphorus concentration, the model achieved a high coefficient of
determination (R? = 0.967) and a low root mean square error (RMSE = 0.027), indicating
a strong agreement between observed and simulated values, with minimal deviations.
Similarly, for aboveground biomass, the model exhibited robust predictive accuracy, with
an R? of 0.956 and an RMSE of 0.219. These results highlight the model’s ability to ac-
curately reflect the dynamics of phosphorus uptake and biomass accumulation in maize.
Figure 3a illustrates the linear relationship between observed and simulated plant phos-
phorus concentrations, where the regression Equation y = 0.986x + 0.039 closely aligns the
two datasets. In Figure 3b, the relationship between observed and simulated aboveground
biomass is represented by this Equation: y = 0.905x + 1.091, further demonstrating the
model’s strong predictive capability. Both diagrams show data points closely distributed
along the 1:1 line, emphasizing the consistency of the model’s simulations across a wide
range of values. These findings suggest that, with localized parameter adjustments, the
APSIM model effectively simulates both plant phosphorus concentration and aboveground
biomass within acceptable ranges.

(a) ° (b)
y=0.986x+0.039 125 - y=0.905x+1.091 °

I8 R™-0.967 R?=0.956

RMSE=0.027 b 120 RMSE=0.219 °

Simulated value
Simulated value

10.5

10.0

1.3 1 L L 1 1 9.0 1 I 1 1 1 L 1
1.3 1.4 15 1.6 1.7 1.8 1.9 9.0 9.5 10.0 10.5 11.0 1.5 12.0 12,5 13.0

Observed value Observed value

Figure 3. Comparison between measured and simulated values: (a) phosphorus concentration and
(b) aboveground biomass.
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Variance analysis was conducted on simulated data for plant aboveground biomass
and phosphorus concentration across six growth stages: jointing, trumpet, tasseling, silking,
grain formation, and milk maturity. This analysis identified phosphorus-sufficient and
phosphorus-deficient points, with phosphorus-deficient points defined as those where
biomass significantly increased with phosphorus application, and phosphorus-sufficient
points showing no such increase. For phosphorus-deficient points, biomass within the same
growth stage was plotted as the x-axis and the corresponding phosphorus concentration as
the y-axis. Linear fitting was applied to derive a regression line. The average biomass of
phosphorus-sufficient points was considered the maximum biomass, and a vertical line
was drawn from this value on the regression line. The intersection of the vertical line
with the regression line determined the minimum phosphorus concentration required for
maximum growth, defined as the critical phosphorus concentration. The Pc values for
the jointing, trumpet, tasseling, silking, grain formation, and milk maturity stages were
calculated as 2.44, 2.05, 1.82, 1.66, 1.45, and 1.27 g/kg, respectively, with corresponding
biomass values of 2.14, 4.52, 6.75,9.32, 13.58, and 18.24 t/ha. These Pc values were then
fitted against the maximum aboveground biomass to establish the Pc model (Figure 4). The
coefficient of determination (R?) for the model was 0.98, indicating an extremely high level
of significance (p < 0.001).

Pc=3.17*Bio "
R*=0.98

1.0 L L 1 1 1 L 1 1 L
0 2 4 6 8 10 12 14 16 18 20

Biomass(t/ha)
Figure 4. P dilution curves model.

4.2. Sobol Sensitivity Analysis

Figures 5 and 6 illustrate the predictive accuracy of the LIBSVM model in identifying
optimal vegetation indices related to maize phosphorus concentration and aboveground
biomass. For phosphorus concentration, the model performed well in the training set
(Figure 5a), achieving an R? of 0.834 and an RMSE of 0.048, indicating high fitting accuracy.
However, in the test set (Figure 5b), the R? decreased to 0.615, explaining 61.5% of the
variance, while a higher RMSE of 0.073 suggested greater prediction errors and lower
accuracy and reliability during testing. For aboveground biomass prediction, the model
exhibited superior performance in the training set (Figure 6a), with an R? of 0.838 and
an RMSE of 0.322, explaining 83.8% of the variance. In the test set (Figure 6b), the R?
remained relatively high at 0.770, explaining 77.0% of the variance, but the RMSE increased
to 0.368, indicating larger prediction errors and reduced accuracy during testing. While
the predictive performance for both variables was moderate during the testing phase, the
model’s strong performance in the training phase and overall robustness highlight its
reliability and potential for sensitivity analysis and vegetation index selection.
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Figure 5. Comparison of predicted plant phosphorus concentration: (a) LIBSVM proxy model training
set; (b) testing set.
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Figure 6. Comparison of predicted aboveground biomass: (a) LIBSVM proxy model training set;
(b) testing set.

Using the prediction results, the first-order impact index (S) and total effect index (ST)
were computed (Figure 7). Figure 7a illustrates the impact of different vegetation indices
on predicting plant phosphorus concentration, while Figure 7b shows the corresponding
indices for predicting aboveground biomass. Among the indices evaluated, MNVI exhibited
the highest S and ST values in Figure 7a, indicating its significant direct and overall impact
on predicting plant phosphorus concentrations, making it the most effective index for this
parameter. In contrast, GSAVI showed the largest total effect and highest first-order index
in Figure 7b, emphasizing its key role in the sensitivity analysis and its suitability as the
optimal index for predicting the aboveground biomass. The vertical axes in both Figures
represent the values of the S and ST for each vegetation index, providing a clear comparison
of their contributions to the model predictions.

4.3. Diagnosis and Verification

Figures 8 and 9 illustrate the effectiveness of the vegetation index models and the
derived PNI. The vegetation index models for phosphorus concentration (Figure 8a) and
aboveground biomass (Figure 8b) were constructed using the optimal vegetation indices
identified through the sensitivity analysis. Both models exhibited high coefficients of deter-
mination (R?), confirming the reliability and robustness of the selected vegetation indices
as strong predictors of phosphorus concentration and aboveground biomass. Figure 9
demonstrates the correlation between the estimated PNI, derived indirectly from plant
phosphorus concentration and aboveground biomass, and the measured PNI. The esti-
mated PNI values exhibited a strong linear relationship with the measured PNI, achieving
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an R? value of 0.706 and an RMSE of 0.082. These results highlight the feasibility and
accuracy of using this indirect method for PNI estimation, providing a valuable approach
for assessing phosphorus nutritional status in maize.
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The multispectral inversion model was applied to assess the spatial distribution of
phosphorus status indicators in corn fields across Changchun. The spatial distribution
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of the corn plant phosphorus concentration (Figure 10a) reveals minimal variation, with
values predominantly between 1.2 and 1.5 g/kg. Similarly, the spatial distribution of
aboveground biomass (Figure 10b) shows limited variation, with biomass values mostly
ranging from 11 to 12.5 t/ha. The inversion model also provided an indirect estimate
of the PNI for corn plants in the region (Figure 10c). The results indicate a generally
uniform phosphorus nutrition status, with PNI values predominantly between 0.92 and
1.02, suggesting adequate phosphorus levels. Higher PNI values (1.02-1.12) were observed
in some areas of northeastern Yushu. The phosphorus demand distribution, derived from
the Pabs model (Figure 10d), confirms that phosphorus deficiency is uncommon, with
most regions showing sufficient phosphorus levels, consistent with field survey results.
The phosphorus demand was largely concentrated within the 0 to 8 kg/ha range. Areas
identified as phosphorus-deficient were primarily located in northeastern Yushu, aligning
with local phosphorus nutrition diagnoses. This deficiency is likely due to excessive
phosphorus fertilization practices employed by farmers to ensure crop yields.
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Figure 10. Examples of predicted corn P status indicators map at regional scale. (a) P; (b) biomass;
(c) PNIL; (d) Pabs, jointing stage in Changchun, China.

To assess the diagnostic accuracy of the remote sensing model for phosphorus nutrition,
corn yield data were collected from 20 sampling points across corn-growing regions around
Changchun. Some studies have shown a strong relationship between phosphorus fertilizer
and maize yield. [48]. Accordingly, it is assumed that when the grain yield at a sampling
point is lower than the local target yield, the phosphorus nutrition is considered deficient,
while a yield meeting or exceeding the target indicates sufficient phosphorus nutrition.
Sampling points where the PNI exceeds the target value (PNItarget) and the plant is not
phosphorus-deficient, as well as those where PNI is below PNItarget and the plant exhibits
phosphorus deficiency, are classified as correct diagnosis points (Figure 11). The correct
diagnosis points, located in the first and third quadrants, account for 75% of all sampling
points. This demonstrates that the model effectively identifies the phosphorus nutritional
status of corn, confirming its strong applicability for phosphorus management.



Appl. Sci. 2025, 15, 764

13 of 18

15 ,
2 ° L
14 | '
|
— (0] © |.
g6 % o _. e,
=1 o o ° [ ©
— ‘.
212 | 3 ol 4
> (6} I
e 0
e |
11+ |
o (6] I
10 @ Sampling points | |
0.90 0.95 1.00 1.05
PNI

Figure 11. The relationship between PNI and maize yield.

5. Discussion
5.1. Application Differences in the Pabs Model Across Growth Stages

The Pabs model developed in this study to estimate maize phosphorus uptake across
six growth stages demonstrates distinct advantages over previous approaches by address-
ing key limitations in existing research. Prior studies primarily relied on critical phosphorus
concentration and phosphorus nutrition index [49] to evaluate crop phosphorus status.
While these studies provided valuable insights, their methods were inherently qualitative,
offering only a broad categorization of phosphorus status (e.g., deficiency or sufficiency)
without the ability to quantify actual phosphorus uptake. This qualitative limitation re-
stricts their applicability for precise nutrient management.

In contrast, our Pabs model provides a quantitative evaluation of maize phospho-
rus uptake, capturing phosphorus dynamics across different growth stages. The model
achieves its highest accuracy during the jointing stage, surpassing the performance of pre-
vious methods. Moreover, this study highlights a critical advancement: the recognition that
the optimal PNI is not static but varies across growth stages, typically peaking during the
tasseling and silking stages and declining with plant maturation. By incorporating this vari-
ability, the Pabs model enhances its predictive capability and offers stage-specific insights,
which were absent in earlier studies that relied on fixed PNI thresholds. Furthermore,
while existing Pc-based methods focused on diagnosing phosphorus nutritional status
qualitatively [50], the Pabs model enables precise, quantitative estimations of phosphorus
uptake. This capability not only facilitates more accurate nutrient management decisions
but also improves the understanding of phosphorus dynamics throughout the growth cycle.
Compared to previous models, the Pabs model represents a significant advancement by
combining qualitative diagnostic insights with quantitative precision.

In summary, the Pabs model addresses the limitations of existing methods by offering
a more comprehensive and accurate evaluation of maize phosphorus nutrition. Its ability to
quantitatively assess phosphorus uptake at a regional scale, coupled with its stage-specific
adaptability, makes it a superior tool for improving phosphorus management strategies
and optimizing maize production in different agricultural systems.
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5.2. Estimation of Corn Phosphorus Status Indicators

Phosphorus is an essential element for crop growth, playing a crucial role in the compo-
sition of proteins, phospholipids, enzymes, and nucleic acids. Additionally, phosphorus is
integral to metabolic processes such as carbohydrate synthesis, transport, and photosynthe-
sis, including photophosphorylation, sucrose phosphate transport, and cell division [51-53].
The role of phosphorus in these biochemical pathways significantly impacts the spectral
characteristics of crops. Specifically, chemical bond changes, such as those involving N-H
and O-H bonds induced by light exposure, alter light absorption and reflection, producing
distinct spectral curves that reflect the crop’s phosphorus status [54].

Crop sensitivity to phosphorus is primarily observed in the near-infrared (NIR) spec-
tral region, as phosphorus’s key role in photosynthetic activity is closely associated with
structural indicators like biomass and leaf area index (LAI) [55]. However, studies have
shown that phosphorus-responsive wavelengths are distributed across both visible and
near-infrared regions. Research by Ayala-Silva and Beyl demonstrated a significant re-
duction in chlorophyll content in wheat under phosphorus and potassium deficiency
conditions. This reduction is primarily attributed to phosphorus’s critical influence on
crop chlorophyll and anthocyanin content [56]. Phosphorus deficiency typically leads to
increased anthocyanin accumulation [57], which produces specific spectral responses in
the 550 nm green light region and the 700 nm red-edge region [58]. The intensity of these
spectral peaks is directly correlated with anthocyanin concentration, resulting in decreased
spectral reflectance as anthocyanin levels increase [59]. Furthermore, the green light re-
gion (540-560 nm) and the red to red-edge region (640-760 nm) are particularly sensitive
to anthocyanin concentration, underscoring their potential for monitoring phosphorus
nutritional status [60,61].

In this study, vegetation indices related to the phosphorus nutritional status of maize
were primarily derived from combinations of visible and near-infrared bands. The inversion
accuracy of these indices exceeded 0.70, indirectly demonstrating the potential of combining
visible and NIR bands to monitor maize phosphorus status. This potential arises from the
significant impact of phosphorus application on maize chlorophyll, anthocyanin, biomass,
and other structural canopy indices.

5.3. Challenges and Future Research Needs

The current model demonstrates significant potential for assessing phosphorus nutri-
tional status in maize, but its broader applicability to other crops with similar physiological
structures remains uncertain. Future research should focus on adapting this model to
a wider range of crops by considering variations in plant morphology and nutrient up-
take patterns, thereby enhancing its versatility and enabling its integration into diverse
agricultural systems.

Additionally, satellite imagery from platforms like Sentinel-2 provides valuable data,
but its spatial and temporal resolution is insufficient for identifying phosphorus deficiencies
at the field level. Since farmers make fertilizer application decisions at different growth
stages, relying solely on satellite data for such critical decisions is impractical. Meanwhile,
the model is also influenced by climate conditions, as fluctuations in temperature and
weather events, such as rain, can complicate satellite data collection and impact crop
growth. To mitigate these challenges, drone-based low-altitude remote sensing can be
employed to provide more frequent and precise image acquisition throughout the crop’s
growth cycle. Drones offer a valuable supplement to satellite data, enabling more accurate
and timely assessments of phosphorus status. Furthermore, the use of high-temporal-
resolution satellites, such as FORMOSAT-2, which revisits daily and provides enhanced
spatial and temporal resolution compared to Sentinel-2, could significantly improve large-
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scale agricultural monitoring. The final fertilization prescription maps for maize could also
be integrated with yield-monitoring equipment to enable more effective applications at
the field scale. By combining these technologies, the model’s reliability and practicality for
phosphorus management can be further enhanced.

6. Conclusions

This study achieved the remote sensing inversion of plant phosphorus concentration
and aboveground biomass using field data and Sobol sensitivity analysis. Key findings
demonstrate that the Pabs diagnostic model provides accurate quantitative estimation of
phosphorus absorption in corn. Using PNI, a diagnostic model of Pabs was developed
to estimate phosphorus demand at the regional level, revealing sufficient phosphorus
levels across most areas of Changchun, with a phosphorus deficiency identified only
in northeastern Yushu. Field validation indicated a 75% accuracy rate for the remote
sensing diagnosis, underscoring the model’s applicability for regional-scale phosphorus
demand estimation in corn cultivation. Additionally, the phosphorus nutrition diagnosis
model effectively estimates the phosphorus nutritional status of corn. The Sobol sensitivity
analysis identified the vegetation index with the highest correlation, which was utilized to
construct multispectral inversion models for these parameters. The R? values of 0.722 for
phosphorus concentration and 0.721 for aboveground biomass confirmed the adequacy of
remote sensing-based parameter estimation. These inversion results were applied within
the phosphorus diagnostic model, yielding an R? of 0.706 and an RMSE of 0.082 for the
PNI, demonstrating the model’s effectiveness in accurately estimating corn phosphorus
nutritional status.
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