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Abstract: Aeromagnetic compensation is the main method for eliminating magnetic inter-
ference on flight platforms. With the improved sensitivity of aeromagnetic sensors, the
generalization and compensation accuracy of existing aeromagnetic compensation methods
have become insufficient to meet the needs of current aeromagnetic survey applications.
In this article, we propose an aeromagnetic compensation method based on temporal
convolutional networks to improve both generalization and compensation accuracy. In the
proposed method, a neural network based on separable convolution with a residual con-
nection is employed to improve the compensation accuracy and convergence stability, and
a gradient correction loss function based on the Tolles-Lawson model is used to improve
the generalization ability. We conducted experiments based on both simulated and real
datasets and compared typical neural network compensation methods proposed by previ-
ous researchers. The results indicate that the method proposed in this article can achieve
a lower standard deviation of residual magnetic interference than other neural network
methods, demonstrating a better compensation performance and generalization ability.

Keywords: aeromagnetic compensation; deep learning; temporal convolutional network

1. Introduction

Aeromagnetic surveys are widely used to aid in the production of geological maps
and are also commonly used during mineral exploration and petroleum exploration. The
signals collected during aeromagnetic surveys include various interferences, which affect
the survey’s accuracy. Therefore, it is necessary to study aeromagnetic compensation to
eliminate aeromagnetic interference.

In the early 1950s, Tolles and Lawson first analyzed the main sources of magnetic
interference on flight platforms [1-4], including those from intrinsic magnetic fields, in-
duced magnetic fields, and eddy-current magnetic fields. In 1961, Leliak further proposed
a mathematical model for describing aeromagnetic interference: the Tolles-Lawson model
(T-L model) [5]. In 1980, Leach described the solution of the T-L. model as a linear regres-
sion problem and proposed a ridge regression method, which reduces the multicollinearity
of the solving process [6]. In 2022, Feng proposed a compensation method to resist the
interference of geomagnetic gradients in aeromagnetic surveys [7]. In 2023, Chen proposed
a joint compensation method based on an inertial navigation system and a three-axis
fluxgate magnetometer to improve the compensation accuracy [8] and then proposed a
compensation method for airborne electronic equipment interference [9].

Considering the insufficient accuracy of traditional linear regression methods, more
researchers have started studying neural-network-based aeromagnetic compensation meth-
ods. In 1993, Williams first used neural networks for aeromagnetic compensation and
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tested the effects of fully connected neural networks at different layers. The results showed
that the neural network compensation method had a similar accuracy to the T-L model
compensation method and could be used as an alternative [10].

In the study on maneuvering interference and low-frequency interference compensa-
tion methods (usually within 0.1-0.6 Hz frequency [11]), Ma proposed a dual estimation
method based on an unscented Kalman filter in 2017, which combines the T-L model with
a neural network to improve the compensation accuracy, and noise was added manually to
solve the overfitting problem of neural networks [12]. In 2020, Xu proposed an end-to-end
neural network model for magnetic anomaly detection and aeromagnetic compensation.
The model consisted of two parts: a binary classification network for magnetic anomaly
detection and a regression network for geomagnetic noise suppression [13]. In 2021, Yu
proposed a neural network compensation method based on a generalized regression neural
network to solve the overfitting problem of neural networks [14]. In the same year, Li
designed a neural network compensation method based on physical features with the
Levenberg-Marquardt backpropagation algorithm, which displayed an improved com-
pensation accuracy [15]. In 2022, Yu proposed a neural network compensation method
that combines a backpropagation neural network and a residual connection to address the
vanishing-gradient problem during neural network training [16]. In the same year, Zhou
proposed a compensation method based on a radial basis function artificial neural network,
which uses the radial basis function as the activation function to improve the neural net-
work’s generalization [17]. Jiao proposed a model compression method to optimize the
backpropagation neural network to solve the problem of insufficient computing resources
during the training process on unmanned aerial vehicles [18]. In 2024, Wang proposed an
incremental learning neural network compensation method that reduces the time required
for neural network retraining [19].

In the study of high-frequency interference compensation algorithms, Albert used
open flight data from the Massachusetts Institute of Technology and the Department of the
Air Force Artificial Intelligence Accelerator Program (hereafter DAF-MIT AIA Open Flight
Data) [20] and a simple, fully connected neural network to analyze the impact of different
inputs on compensation accuracy in 2022 [21]. The results show that the current and voltage
data input of some airborne electronic equipment can significantly improve compensation
accuracy. In the same year, Wang proposed a compensation method combining wavelet
decomposition and a long short-term memory neural network to reduce interference with
airborne electronic equipment [22].

In recent years, time convolutional networks have been widely applied in various
temporal tasks [23-25]. In order to establish connections between features and aeromag-
netic interference in time series, improve both generalization and compensation accuracy,
prevent exploding gradients, and achieve fast convergence, in this article, we propose an
aeromagnetic compensation method based on temporal convolutional networks (hereafter
MagTCN). In the proposed method, a neural network based on separable convolution with
a residual connection is employed to improve the compensation accuracy and convergence
stability, and a gradient correction loss function based on the T-L model is used to improve
the generalization ability. MagTCN was applied to simulation datasets and DAF-MIT AIA
Open Flight Data to verify its effectiveness.

The structure of this article is as follows: Section 2 describes the proposed method.
Section 3 discusses the experimental details, including dataset preparation, model param-
eters, and evaluation metrics. Section 4 provides the results and discussion. Section 5
summarizes the conclusions.
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2. Materials and Methods
2.1. Tolles—Lawson Model

The Tolles-Lawson model (T-L model) is widely used in aeromagnetic compensation
of fixed-wing aircraft. The basic idea is to use the magnetic measurements of the vector
magnetometer to calibrate the scalar magnetometer.

The main components of aeromagnetic survey data can be expressed as follows:

Bimi = Bgeo + Btgt + Ba + B 1

where Byy,; represents the total magnetic field acquired by the magnetic sensor; Bgeo
represents the geomagnetic field; Bigt represents the magnetic anomaly of the target; B,
represents the magnetic interference caused by the flight platform; and By, represents the
diurnal variation in the geomagnetic field.

During short-term navigation, the diurnal variation in the geomagnetic field By, can
be removed through monitoring stations. When there is no target, it can be assumed that
the total magnetic field Byy; only includes the geomagnetic field Bge, and the magnetic
interference of the flight platform B,, which can be expressed as follows:

Btmi - Bgeo + Ba (2)

The above equation can be further derived as follows:

2
|Bge0’ = Bgeo'Bgeo = (Btmi - Ba)'(Btmi - Ba) ©)
2
|Bgeo’ = Bimi'Btmi — 2Btmi'Ba + BaBa (4)
|Bgeo| = \/|Btmi|2 - 2Bt-mi’Ba + |Ba‘2 (5)

Btmi'Ba ‘Ba|2
|Btmi |2 |Btmi |2

|Bgeo‘ = |Btmi| 1-2 (6)

The magnetic interference of a flight platform, with a capacity of about 100 nT, is
much smaller than that of the geomagnetic field, with a capacity of about 50,000 nT, so
the |B,|*/|Bimi|* term can be ignored. Therefore, the above equation can be simplified

Bini-B
Bgeo| ~ [Bmil |1 —2——2 )
|Btmi‘

Bgeo| can be expressed

as follows:

Using the first-order form of the series expansion formula,

as follows:
Btmi : Ba

|Btmi|

By using a three-axis fluxgate magnetometer, the direction of the total magnetic field

(8)

|Bgeo‘ ~ [Bimi| —

can be measured:

PR Bimi
BimiBimi = ‘B:ml| )
mi

Substituting Equation (9) into Equation (8) yields the following;:

|Bgeo‘ ~ [Bimi| — Ba-Bimi (10)

B, Bimi represents the projection of the magnetic interference of the flight platform
onto the total magnetic field, as shown in Figure 1.
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Figure 1. Modulus variation in the total magnetic field. (a) The situation where magnetic interference
is in the same direction as the background geomagnetic field; (b) the situation where the magnetic
interference is opposite to the background geomagnetic field.

If we can restore the geomagnetic field strength |Bgeo , we can further obtain B,-Bim;
and establish the relationship between the flight platform attitude angle and B,-Byy;. Then,
in the aeromagnetic survey, we can obtain the magnetic interference through the attitude

angle and restore the magnetic anomaly of the target Bygt.
From the quasi-static electrodynamics model developed by Darwin [26], magnetic
induction H can be expressed as follows:

VxH:]—GO%EC (11)

where ] represents the current density; €y represents the permittivity of free space; and E.
represents the electric field generated by Coulomb charges.
According to Ohm’s law, Equation (11) can be further expressed as follows:

1 d
VxH= Jperm — €00 l%]eclcly (12)

where J,oi, represents any unchanging currents; —ego ! %Jeddy represents the eddy currents.
Assume that J is permanent magnetization. Therefore, the time-varying field can be

expressed as
1d

V x Heddy = —€o0 ajeddy (13)

A magnetization density M can be expressed as a bound current J. Then, Equation (13)
can be further expressed as

1 d
Heddy = —€0 1EMeclcly (14)

Further assuming that Meqgy is proportional to the external field Hexternal, the relation-
ship between the B-field and the H-field can be expressed as

B = jio(H+ M) (15)

where pg represents the vacuum magnetic permeability.
In general, the magnetization model can be expressed as

M= Mperm + ”’Hexternal (16)

where u represents a constant magnetic permeability.

Permanent magnetization Mperm and induced magnetization are both related to
Heyternal- Considering the contribution of eddy currents, the total magnetic field Byp;
can be expressed as

1 d
Bt—mi = .MOHexternal + Ho <Mperm + P‘Hexternal —€o l dtMEddy) (17)
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The second part on the right side of the above equation is the magnetic interference
B., which can be expressed as

1 d
B, = ,uOMperm + popHexternal — Ho€o IE

 Meddy (18)

The above equation can be simplified as follows:

By = a -+ bByn; + Bimi (19)

where a, b, and ¢ represent the unknown coefficient vector; () represents a time-derivative.

Based on the above equation, the T-L. model identifies the magnetic interference of the

flight platform B, in three parts: the constant magnetic interference field By, the induced

magnetic interference field Bi,q, and the eddy-current magnetic interference field Begqy- It
can be expressed as follows:

B, = Bp + Bing + Beddy (20)

The inherent magnetic field of the flight platform is generated by permanent magnets,
such as engines and motor cores, and its direction remains unchanged relative to the axial
direction of the flight platform. The contribution of multiple intrinsic magnetic field sources
to the load of the optical pump magnetic sensor is formed by vector superposition to form
a fixed magnetic field bias, which can be expressed as follows:

Bp:<a1 ap LZ3)T (21)

where a represents the intrinsic magnetic field coefficient composed of a;.

The induced magnetic field of the flight platform is the result of the ferromagnetic
components of the aircraft being excited by the background magnetic field, and its magni-
tude and direction are influenced by the strength, direction, and material magnetization of
the components. The contribution of the induced magnetic field of the flight platform can
be expressed as follows:

b1 bip b3
Bind = [Btmi| | b21 b2z D23 [ Bmi (22)
b31 bz b33

where b represents the induced magnetic field coefficient composed of b;;.

The eddy-current magnetic field of the flight platform is generated by the change
in magnetic flux caused by the cutting of magnetic induction lines on the fuselage metal.
Eddy currents generate eddy magnetic fields through electromagnetic induction, and their
magnitude and direction are influenced by the properties of conductive materials and the
relative rate of change in external magnetic fields. They can be expressed as follows:

€11 C12 €13 .
Beddy = [Btmil | ¢21 22 23 | Bimi (23)
C31 C32 (33

where c represents the eddy-current magnetic field coefficient composed of Cijs Bimi repre-

sents the rate of change in direction of Byp;.
Based on the above Equations (20)—(23), B, can be expressed as follows:

B, = (a + |Btmi‘ b ﬁtmi + ‘Btmi| Y Btmi) 'ﬁtmi (24)
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Let cos X, cos Y, and cos Z represent the direction cosine of the angle between the air-
borne coordinate system and the geomagnetic field vector, and let #; = cos X, up = cos Y,
and u3 = cos Z. The relationship between u1, u, and u3 is as follows:

{u%—l—u%—f—u%—l 25)
uyuy + upuh + uzuy =0
B, can be simplified as follows:

[ P1 17 -ul/Bgeo_

p2 uZ/Bgeo

p3 u3/Bgeo

P4 u

ps Uiz

Pe Uius

p7 Mz;l:%

By = Bygeo | 1 = 26)

P9 Uiy

P10 M2M'1

Pu M3M'1

P12 7«!1“3

P13 7«!2”'3

P14 M3M’3

P15 ”1”/2

Lpe] | usup |

where p1~p16 represent the 16 coefficients to be calculated in the T-L. model; Bge, represents
the background magnetic field strength.

The background magnetic field term Bge, can be considered a constant and calculated
together with the coefficient, so the value of B, can be further simplified as follows:

B, = AC (27)

where A represents the coefficient matrix to be calculated in the T-L model; C represents
the direction cosine matrix of the angle between the airborne coordinate system and the
geomagnetic field vector.

During the calibration flight phase, we first collect C and B, and then calculate the co-
efficient matrix A. During the survey phase, we calculate B, through A and the collected C.

2.2. MagTCN
2.2.1. Separable Convolution Module

In MagTCN, we introduce separable convolutions, including depth-wise convolutions
(DWConv) and point-wise convolutions (PWConv) [27]. Compared with the traditional
convolution that mixes multi-dimensional information, the decoupled design makes it
easier for MagTCN to model magnetic interference and reduces computational complexity.

As shown in Figure 2, for an input with a sequence length of T and K channels,
DWConv simultaneously uses a 1 x n x 1 filter for each channel, resulting in an output
dimension of 1 x Tfm x K.
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Figure 2. The convolution process of depth-wise convolutions. (*) indicates the operation of convolu-
tion on the input.

As shown in Figure 3, for an input with a sequence length of T and K channels,
PWConv uses a filter with a dimension of 1 x 1 x M to cover all of the K channels. This
performs stationary convolution on multiple variables at each time point, resulting in an
output dimension of 1 x T x M.

©
&\@ ,/\,\’\/\ F |\ ~N

‘b‘ Q'Ql A [~

|\/\/\ Fl— -
A e
|/\/\/\,\,2 ’:> l\ N \1

T Length 1 x 1 x M Filters T Length

Figure 3. The convolution process of point-wise convolutions. (*) indicates the operation of convolu-
tion on the input.

2.2.2. Gaussian Error Linear Unit

The Gaussian Error Linear Unit (GELU) is a nonlinear activation function that provides
random regularity to the activation function by inputting its own probability statistics to
improve the generalization of neural networks [28]. The specific form can be expressed

as follows:
GELU(x) = x x P(X < x) = x X ®(x) (28)

where ®(x) represents the cumulative function of the Gaussian normal distribution of x,
which can be expressed as follows:

<X—u>2

e

where y and ¢ represent the mean and standard deviation of a normal distribution, respectively.
For input x > 0, the GELU has approximately linear output; for input x < 0, the
output of the GELU is 0; when input x approaches 0, the GELU has nonlinear output,

x X P(X <x) (29)

maintaining the continuity of the entire activation function.

2.2.3. Reversible Instance Normalization Module

In time-domain aeromagnetic compensation tasks, the difference in the mean or
variance between the training and testing datasets leads to a decrease in compensation
accuracy. To address the issue of distribution differences between different survey data,
we introduced a reversible instance normalization module (RevIN) [29], on both sides of
MagTCN, consisting of a normalization module and a denormalization module.

N
The input of the MagTCN backbone is represented as X = {x(’) } . and the corre-
i=
AN
sponding output is represented as Y = { y() } .. If Kis the number of channels, Ty is the

length of the input sequence, and T, is the lengh of the output sequence, then there exists
an input x() € RK*Tx and an output y(i) € RKXTy,
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For the normalization part of the MagTCN backbone input, the mean and variance are
used for normalization. The mean can be expressed as follows:

[xkt } ;x i xk] (30)

The variance can be expressed as follows:

H1\2
Var [xkt] = —Z(xk] —E; [xkt D (31)
The normalization process can be expressed as follows:

(i) (i)
X — Er|x;
2 = n A ] + B (32)

Var {xlgﬂ +e€

where v, € RK represent learnable affine transformation parameters.
The denormalization process can be expressed as follows:

ﬁ%—w¢ﬂ+(wwm)E&ﬂ (33)

2.2.4. The Structure of MagTCN

The structure of MagTCN is shown in Figure 4, where M represents the variable
dimension, D represents the time dimension, and N represents the feature dimension. In
MagTCN, we refer to the design of the Transformer [30]. DWConv is used to learn the
time information between tokens for each feature, and a large kernel is used in DWConv to
increase the receptive field and improve the temporal modeling ability, which has the same
function as the self-attention module of the Transformer. Each point-wise convolutional
block (PWBIlock) consists of two PWConvs and one GELU. The first PWConv in PWBlock
increases the dimension of the input vector, and the second one reduces the dimension of the
vector again, which has the same function as the feedforward layer of the Transformer. The
GELU in PWBIlock is used to improve the generalization of MagTCN. Reshape and permute
are used between the two PWBlocks to allow MagTCN to learn the temporal dependency
and cross-variable dependency of features at the same time. The input of MagTCN is first
normalized by RevIN’s normalization module and then fed into the MagTCN backbone.
After backbone processing, the data are fed into RevIN’s denormalization module and
residual connection. Finally, the output is formed by a linear layer and a flat layer.

The residual connection in MagTCN can be expressed as follows:

7= f(zi“) 4 zin (34)

where Z' represents the output of the residual connection; Z™" represents the input of
MagTCN; and f(-) represents the backbone of MagTCN.
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Zin € RMxDxN

Input
PWBIlock RevIN(Norm)
. Reshape
PWConv L 4 7' € Rlx(MxD)xN
DWConv
PWConv
2 PWBIockl
Reshape
‘ A= Rlx(DxM)xN
PWBIlock2
Reshape
X 7" € RMXDXN
'j P
y
RevIN(DeNorm)
¥
Linear&Flatten

Output Z°OUt ¢ RMxDx1

Figure 4. The neural network structure of the proposed method.

2.3. Loss Function

In order to ensure the steady improvement in the compensation accuracy and the gen-
eralization of MagTCN during neural network training, two types of losses are introduced:
loss L11, based on the T-L model, and truth loss Ly,.. These two types of losses are based
on the mean square error (MSE), which can be expressed as follows:

1 n

MSE = ;Z(yi — ;) (35)
i=1

where y; is the true label of the i-th sample, and ¥; is the predicted value of the neural
network model. When calculating L1}, y; is the signal after aeromagnetic compensation
via the T-L model; when calculating L., y; is the signal without interference.

In addition, the above two types of losses are combined and applied to neural network
training through weights: at the kth iteration, the weight decay rate is v, the initial value of
the weight decay coefficient is pg, and the total weight value is W. The loss function £ can
be expressed as follows:

L =Ly X e vk + Lirye X (W — e_”k) (36)

To prevent vanishing gradients, the gradient correction algorithm fe(-) is introduced
for the above two losses.

The cosine similarity ®(g;, g]-) between the gradients g; and g; of the loss terms
L1 X pg and Ly X (W — pg) is calculated as follows:

23l
(7) = —silellsills

(37)
2
lgill2” + gl
The gradient g; is updated to the following:
Si=8i— 38 gjwhen ® <0, else g; (38)

2
sl
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The final loss function £ can be expressed as follows:
L=fy (ETL X e Lie X (w - e*vk)) (39)

3. Experimental Details

3.1. Data Preparation
3.1.1. Simulation Dataset

Based on the ArduPilot simulation flight control software, we simulated the aeromag-
netic compensation calibration flight process for the fixed-wing aircraft Cessna-208B. The
simulated flight path and maneuvering angle changes are shown in Figure 5, where the
start recording position is 112.729° E, 16.720° N, the stop recording position is 112.734° E,
16.779° N (excluding takeoff and landing), and the average flight altitude is 3000 m. The
simulated flight consists of two maneuvering circles, each consisting of four orthogonal
flight segments with a length of 10 km on one side. The aircraft performs pitch, yaw, and
roll movements of 5° to 15° in each of the four orthogonal directions.

16.76

—— First maneuvering circle 350 —— Roll
- Second maneuvering circle Pitch
300 — Yaw
7 End Recording Poirit, 7
250
& 2> 200 1
by
o
\ 5 150
j*)
a
Start Recording Point 501
BLURMN LUH || DO LLE | DALY | DL || DOSTIMLLN || DAL (20 L | DR
i -50
11270 11272 112.74 11276 11278 0 2000 4000 6000 8000 10,000 12,000 14,000
Longitude (°) Sampling Points

(a)

(b)

Figure 5. The flight maneuver simulation results: (a) the longitude and latitude of the flight path;
(b) flight attitude changes during the route.

We simulated the main magnetic interference components of the flight platform based
on the magnetic inclination, magnetic declination, and geomagnetic field strength at an
altitude of 3000 m in the South China Sea (112.7° E, 17.6° N). The intrinsic magnetic field
was simulated through the magnetic dipoles of motors and engines located on the aircraft’s
flaps, elevators, and rudders as field sources, as shown in Figure 6a. The induced magnetic
field was simulated through finite element models of the aircraft’s aluminum fuselage,
steel fuel tank, and engine compartment, as shown in Figure 6b. In order to simulate the
eddy-current magnetic field, the aircraft skin was regarded as equivalent to multiple coils
located on the wings, nose, and tail, as shown in Figure 6¢. Changes in the background
magnetic field will cause changes in the magnetic flux passing through the coils, thereby
generating eddy currents. The current will continue to change to form the corresponding
eddy-current magnetic field. An optical pump magnetic sensor and a three-axis fluxgate
sensor are installed in the center of the cabin to calculate the three types of magnetic
interference at the sensor location.
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Figure 6. Illustration of flight platform interference simulation, where the gray part represents the
aircraft model: (a) position of magnetic dipoles in intrinsic magnetic field simulation (indicated by
red dots); (b) finite element division in induced magnetic field simulation (indicated by the purple

square); (c) position of equivalent coils in eddy-current magnetic field simulation (indicated by
red lines).

The magnetic signal on the route was collected at a frequency of 10 Hz based on the
above simulation strategy, as shown in Figure 7.

37,200 4

37,100 4

37,000

36,900 1

36,800 1

Magnetic Intensity (nT)

36,700

36,600

0 2000 4000 6000 8000 10,000 12,000 14,000
Sampling Points

Figure 7. Total magnetic signal collected on the simulated route.
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3.1.2. Real Dataset

The real dataset is based on flights 1002.02, 1002.20, and 1006.06 of the DAF-MIT AIA
Open Flight Data [20], with 1002.02 used for training and the rest used for testing. The data
collected include the aircraft attitude angle, magnetic sensors, accelerometers, longitude,
latitude, altitude, current, and voltage. Among the five optical pump magnetic sensors,
sensor 1 is located on the tail of the aircraft; sensors 2 and 5 are located at the front and
rear of the cabin, respectively; and sensors 3 and 4 are located in the middle of the cabin.
Fluxgate sensor B is located in the rear of the cabin, while sensors A, C, and D are located
in the middle of the cabin. In this article, we will use data from optical pump sensor 5 and
fluxgate sensor B.

3.2. Model Parameters

In terms of the input dimension of the neural network, based on a 10 Hz sampling
rate, the input sequence length was set to 320 sampling points (32 s). The different datasets
have different input features. In the simulation dataset experiment, 16 direction cosine
coefficients (mentioned in Section 2.1) and three attitude angles (roll, pitch, and yaw) were
selected as input features. In the real dataset experiment, nine additional current and
voltage terms were added.

In terms of the convolutional layer parameters, the convolution kernel size of DWConv
is set to 51, and the stride is set to 1; the convolution kernel size of PWConv is set to 1, and
the stride is set to 1. For model training, the batch size is set to 256, the neural network
optimizer is Adam, the learning rate is set to 0.001, and the number of training epochs is
set to 200. In terms of the hardware environment, we used a computer with an Intel 12th
Core Gen i5-13600KF CPU and a GeForce RTX 4060Ti GPU.

3.3. Evaluation Metrics

The standard deviation (STD) of the residual magnetic interference after aeromagnetic
compensation and the improvement ratio (IR) are usually used to evaluate compensation
accuracy. The standard deviation can be expressed as follows:

STD = ,/%Zle(xi —p)? (40)

where x represents the residual magnetic interference of the signal after aeromagnetic
compensation, which is obtained by bandpass filtering (usually within 0.1-0.6 Hz fre-
quency [11]); i represents the i-th sampling point; y represents the arithmetic mean within
the bandpass; and n represents the number of sampling points, which is consistent with
the length of the original signal before aeromagnetic compensation.

The improvement rate is used to evaluate the degree of reduction in magnetic interfer-
ence. It is calculated as the ratio of the standard deviation of magnetic interference in the
bandpass before and after compensation and can be expressed as follows:

_ STD,

IR = STD,

(41)

where STD,, represents the standard deviation of the magnetic interference in the bandpass
of the original signal; STD, represents the standard deviation of the magnetic interference
in the bandpass after aeromagnetic compensation. The higher the improvement ratio, the
higher the compensation accuracy.
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Loss

4. Results and Discussion
4.1. Simulation Dataset Test Results

In this section, we compare MagTCN with several typical aeromagnetic compensa-
tion methods, including the three-branch neural network method proposed by Williams
(hereafter WilliamsNN) [10], the simple backpropagation neural network method without
a convolution structure (hereafter BPNN) [19], the convolutional residual neural network
method using normal convolution (hereafter ResNet) [16], and the traditional linear regres-
sion T-L. model method (hereafter T-L model) [6].

During the neural network training phase, we compared the convergence capabilities
of several methods based on the data from the first maneuvering circle, as shown in
Figure 8 and Table 1. The x-axis (Epochs) represents the number of times the entire
training dataset is propagated forward and backward in the neural network. The y-axis
(Loss) represents the error between the model’s predicted values and the actual target
values, as described in Section 2.3. Curves of different colors represent the loss between
the predicted and label values of the corresponding neural network during the training
process as the number of epochs increases. The faster the loss drops to a flat state, the
faster the convergence. In Figure 8, WilliamsNN and BPNN do not fully converge at
the 200th epoch. WilliamsNN has the slowest convergence speed and maintains a stable
decline rate throughout the training phase. BPNN has a slightly better convergence speed,
maintaining a faster decline rate before the sixth epoch and then maintaining a stable
decline rate. ResNet and MagTCN both have faster convergence speeds and can achieve
lower losses in the first few epochs, reaching full convergence in the 150th and 110th
epochs, respectively. However, ResNet'’s loss fluctuates throughout the training phase and
is relatively unstable. In contrast, MagTCN'’s loss is the fastest to reach a stable state with
the same hyperparameters, demonstrating its fast and stable convergence ability.

—— Williams NN
BP NN
| ResNet
80,000 —— MagTCN
60,000 | \
40,000 —
200
20,000 1
0 LA——A D
25 50 75 100 125 150 175 200

Epochs

Figure 8. The losses of neural networks using simulation datasets.
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Table 1. Statistics of neural network losses using simulation datasets.

Epoch WilliamsNN BPNN ResNet MagTCN
Loss Loss Loss Loss
0 93,392.16 47,583.50 969.29 826.76
50 72,419.97 17,197.35 154.81 39.44
100 36,749.54 9321.64 47.71 16.32
150 11,337.10 1408.63 48.01 9.84
200 1792.37 303.06 42.36 13.76

Next, we compared the compensation accuracy and generalization of several compen-
sation methods based on the data from the second maneuvering circle. Figure 9 shows the
residual interference in the bandpass (0.1-0.6 Hz) of the magnetic signal on the route, where
the curve named “origin” represents the interference before compensation, and the other
curves represent the residual interference after compensation by the corresponding method.
Large maneuvers during flight can cause large interferences (such as in the interval around
the 1000th sampling point). The purpose of the compensation method is to eliminate these
interferences as much as possible. The less residual interference there is after compensation,
the better the compensation method. WilliamsNN has the worst compensation effect,
and there is still more than 10 nT residual interference in some intervals (such as in the
intervals from 4000 to 5000 sampling points and from 1500 to 2000 sampling points). BPNN
has a slightly better compensation effect and can keep the residual interference within
1 nT in most intervals. However, in some intervals, residual interference is greater with
BPNN than with WilliamsNN (as shown in the local enlarged figure of Figure 9). The T-L
model, ResNet, and MagTCN all maintain low residual interference in the entire interval,
making them much better than BPNN and WilliamsNN. In order to further compare the
performance of several compensation methods, we calculated their STDs and IRs after
compensation (as defined in Section 3.3, the lower the STD and the higher the IR, the better
the compensation performance). As shown in Table 2, WilliamsNN has the worst STD
and IR, which are 1.320 nT and 12.276, respectively. Those of BPNN are slightly better:
0.551 nT and 29.401, respectively. The compensation performance of the T-L model is
better than that of BPNN and WilliamsNN, with an STD and IR of 0.037 nT and 427.641,
respectively, which shows that the neural network compensation method that has not fully
converged performs worse than the traditional T-L model compensation method. ResNet
and MagTCN achieve full convergence in the training phase due to the convolutional
structure and residual connection. Therefore, they are better than the T-L model in com-
pensation performance. Among them, the STD and IR of ResNet are 0.033 nT and 480.082,
respectively, and those of MagTCN are 0.024 nT and 651.61, respectively. The above results
show that, based on the separable convolutional neural network structure and loss function
proposed in this article, MagTCN is better than ResNet in compensation performance and
has achieved the best compensation performance and generalization ability among the
above compensation methods.

Table 2. The statistics of compensation results within the bandpass from simulation datasets.

WilliamsNN BPNN ResNet MagTCN T-L Model

STD (nT) 1.320 0.551 0.033 0.024 0.037
IR 12.276 29.401 480.082 651.61 427.641
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Figure 9. Compensation results within the bandpass from simulation datasets.

4.2. DAF-MIT AIA Open Flight Data Test Results for Flight 1002.20

In this section, we compare MagTCN with several typical aeromagnetic compensation
methods, including WilliamsNN, BPNN, and ResNet.

During the neural network training phase, we compared the convergence capabilities
of several methods based on flight 1002.02 of the DAF-MIT AIA Open Flight Data men-
tioned in Section 3.1.2, as shown in Figure 10 and Table 3. The x-axis (Epochs) represents
the number of times the entire training dataset is propagated forward and backward in
the neural network. The y-axis (Loss) represents the error between the model’s predicted
values and the actual target values, as described in Section 2.3. Curves of different colors
represent the loss between the predicted and label values of the corresponding neural
network during the training process as the number of epochs increases. The faster the loss
drops to a flat state, the faster the convergence. In Figure 10, WilliamsNN and BPNN do
not fully converge at the 200th epoch. WilliamsNN has the slowest convergence speed
and maintains a stable decline rate throughout the training phase. BPNN has a slightly
better convergence speed, maintaining a faster decline rate before the sixth epoch and
then maintaining a stable decline rate. ResNet and MagTCN both have faster convergence
speeds and can achieve lower losses in the first few epochs, reaching full convergence in
the 150th and 100th epochs, respectively. However, ResNet’s loss fluctuates throughout
the training phase and is relatively unstable. In contrast, MagTCN'’s loss is the fastest
to reach a stable state with the same hyperparameters, demonstrating its fast and stable
convergence ability.

Next, we compared the compensation accuracy and generalization of several compen-
sation methods based on flight 1002.20 of the DAF-MIT AIA Open Flight Data. Figure 11
shows the residual interference in the bandpass (0.1-0.6 Hz) of the magnetic signal on the
route, where the curve named “origin” represents the interference before compensation, and
the other curves represent the residual interference after compensation by the correspond-
ing method. Large maneuvers during flight can cause large interference (such as around
the 1000th sampling point). The purpose of the compensation method is to eliminate these
interferences as much as possible. The less residual interference there is after compensation,
the better the compensation method. WilliamsNN has the worst compensation effect, and
there is still more than 5 nT residual interference in some intervals (such as in the intervals
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from 5000 to 5500 sampling points, from 7500 to 8000 sampling points, and from 12000 to
12500 sampling points). BPNN has a slightly better compensation effect and can keep the
residual interference within 5 nT in most intervals. However, in some intervals, residual
interference is greater with BPNN than with WilliamsNN (as shown in the local enlarged
figure in Figure 11). ResNet and MagTCN all maintain low residual interference in the
entire interval, making them much better than BPNN and WilliamsNN. In order to further
compare the performance of several compensation methods, we calculated their STDs and
IRs after compensation (as defined in Section 3.3, the lower the STD and the higher the IR,
the better the compensation performance). As shown in Table 4, WilliamsNN has the worst
STD and IR, which are 1.399 nT and 8.342, respectively. Those of BPNN are slightly better:
1.098 nT and 10.629, respectively. ResNet and MagTCN are better than WilliamsNN and
BPNN in compensation performance due to their convolutional structures and residual
connections. The STD and IR of ResNet are 0.028 nT and 402.786, respectively, and those of
MagTCN are 0.025 nT and 455.920, respectively. The above results show that MagTCN has
achieved the best compensation performance and generalization ability among the above
compensation methods.

140,000 1 ——  Williams NN
BP NN
120,000 —— ResNet
—— MagTCN
100,000
80,000
60,000 - \
2500 -
40,000 1
20000 0 50 100 150 240
O_
25 50 75 100 125 150 175 200
Epochs

Figure 10. The losses of neural networks using real datasets.

Table 3. The statistics of neural network losses using real datasets.

Epoch WilliamsNN BPNN ResNet MagTCN
Loss Loss Loss Loss
0 136,413.27 4169.42 3383.46 545.77
50 1003.05 2757.40 547.61 48.16
100 827.44 634.97 381.90 24 .51
150 581.94 498.35 369.87 19.68

200 301.49 366.99 288.07 11.99
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Figure 11. Compensation results within the bandpass of the flight 1002.20 signal.

Table 4. The statistics of compensation results within the bandpass of the flight 1002.20 signal.

WilliamsNN BPNN ResNet MagTCN
STD (nT) 1.399 1.098 0.028 0.025
IR 8.342 10.629 402.786 455.920

4.3. DAF-MIT AIA Open Flight Data Test Results for Flight 1006.06

In this section, we compare the compensation accuracy and generalization of several
compensation methods based on flight 1006.06 of the DAF-MIT AIA Open Flight Data.
Figure 12 shows the residual interference in the bandpass (0.1-0.6 Hz) of the magnetic
signal on the route, where the curve named “origin” represents the interference before
compensation, and the other curves represent the residual interference after compensation
by the corresponding method. Large maneuvers during flight can cause large interference
(such as around the 5000th sampling point). The purpose of the compensation method is to
eliminate these interferences as much as possible. The less residual interference there is
after compensation, the better the compensation method. BPNN has the worst compen-
sation effect due to its poor generalization ability, and the residual interference is close to
that before compensation in most intervals. Only some intervals (such as in the interval
from 4000 to 6000 sampling points) have compensation effects. WilliamsNN has a better
compensation effect and can keep the residual interference within 10 nT in most intervals.
However, in some intervals (such as around the 500th and 6000th sampling points), there
are still obvious residual interferences. ResNet and MagTCN all maintain low residual
interference in the entire interval, which is much better than BPNN and WilliamsNN. In
order to further compare the performance of several compensation methods, we calculated
their STDs and IRs after compensation (as defined in Section 3.3, the lower the STD and the
higher the IR, the better the compensation performance). As shown in Table 5, BPNN has
the worst STD and IR, which are 10.664 nT and 1.436, respectively. Those of WilliamsNN are
better: 2.099 nT and 7.298, respectively. ResNet and MagTCN are better than WilliamsNN
and BPNN in compensation performance due to their convolutional structures and residual
connections. The STD and IR of ResNet are 0.049 nT and 308.679, respectively, and those of
MagTCN are 0.037 nT and 414.090, respectively. The above results show that MagTCN has
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achieved the best compensation performance and generalization ability among the above
compensation methods.
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Figure 12. Compensation results within the bandpass of the flight 1006.06 signal.

Table 5. The statistics of compensation results within the bandpass of the flight 1006.06 signal.

WilliamsNN BPNN ResNet MagTCN
STD (nT) 2.099 10.664 0.049 0.037
IR 7.298 1.436 308.679 414.090

4.4. Compensation Algorithm Resource Consumption Test Results

In this section, we compare the time cost and floating-point operations (FLOPs) of
MagTCN and the other compensation algorithms mentioned above to ensure that the
proposed method can meet the requirements of real-time aeromagnetic compensation. The
hardware and hyperparameters used in the experiment are basically the same as those in
Section 3.2. In addition, we set the batch size to 1 to simulate the real-time environment
and selected 30,000 inputs to test the average time cost.

As shown in Table 6, BPNN and WilliamsNN have lower average time costs and
FLOPs due to their simple structures. The average time cost and FLOPs of BPNN are
0.428 ms and 0.238 MB, respectively, and those of WilliamsNN are 0.428 ms and 0.238 MB,
respectively. ResNet and MagTCN take more time, 1.240 ms and 1.837 ms, respectively, but
still meet the real-time requirements at a sampling frequency of 10 Hz (<100 ms). Their
FLOPs can also be achieved by most graphics processing units [31].

Table 6. Resource consumption of several compensation algorithms.

WilliamsNN BPNN ResNet MagTCN
Average Time Cost (ms) 0.428 0.046 1.240 1.837
FLOPs (MB) 0.238 0.684 105.541 95.722

5. Conclusions

Past research into neural-network-based aeromagnetic compensation methods usually
employed normal convolution structures, resulting in low generalization of the algorithm.
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In this article, we propose an aeromagnetic compensation method, MagTCN, based on
temporal convolutional networks, to improve both generalization and compensation accu-
racy. In the proposed method, a neural network based on separable convolution with a
residual connection is employed to improve the compensation accuracy and convergence
stability, and a gradient correction loss function based on the Tolles—-Lawson model is
used to improve the generalization ability. We conducted experiments based on both
simulated and real datasets and compared typical neural network compensation meth-
ods proposed by previous researchers. The results indicate that the method proposed in
this article can achieve a lower standard deviation of residual magnetic interference than
other neural network methods, demonstrating a better compensation performance and
generalization ability. In future work, we will further study the relationship between the
input sequence length, convolution kernel receptive field, and compensation accuracy in
temporal convolutional networks to achieve higher compensation performance.
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