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Featured Application: The results of this study can be applied to the optimization of
resource allocation in drone–server collaborative computing. This method has been
successfully used in a decentralized resource-trading framework in an edge computing
environment, and has broad application potential in scenarios such as smart manufactur-
ing, smart transportation, and the industrial Internet of Things. It provides theoretical
support and practical guidance for efficient and secure resource scheduling.

Abstract: UAV-assisted mobile edge computing combines the flexibility of UAVs with the
computing power of MEC to provide low-latency, high-performance computing solutions
for a wide range of application scenarios. However, due to the highly dynamic and hetero-
geneous nature of the UAV environment, the optimal allocation of resources and system
reliability still face significant challenges. This paper proposes a two-stage optimization
(DSO) algorithm for UAV-assisted MEC, combining Stackelberg game theory and auction
mechanisms to optimize resource allocation among servers, UAVs, and users. The first
stage uses a Stackelberg game to allocate resources between servers and UAVs, while the
second stage employs an auction algorithm for UAV-user resource pricing. Blockchain
smart contracts automate task management, ensuring transparency and reliability. The
experimental results show that compared with the traditional single-stage optimization
algorithm (SSO), the equal allocation algorithm (EAA) and the dynamic resource pricing
algorithm (DRP), the DSO algorithm proposed in this paper has significant advantages
by improving resource utilization by 7–10%, reducing task latency by 3–5%, and lowering
energy consumption by 4–8%, making it highly effective for dynamic UAV environments.

Keywords: drones; blockchain; Stackelberg games; auction algorithms; two-tier games

1. Introduction
More and more fields are being impacted by the rapid development of the Internet

of Things (IoT), artificial intelligence (AI), and 5G communication technologies [1], and
mobile edge computing (MEC) has become an important cornerstone for supporting these
emerging technologies and applications. By deploying computing and storage resources
at the edge of the network, MEC can significantly reduce the latency of data processing,
improve computing efficiency [2], and support a variety of real-time applications, such
as smart cities [3], autonomous driving, healthcare, and industrial IoT. MEC has attracted
widespread attention as an emerging computing paradigm. By pushing computing and
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storage resources from the cloud to the network edge, MEC significantly reduces latency
and improves the responsiveness of services. However, due to the limited resources of edge
devices, how to efficiently manage and allocate these resources has become an urgent issue.

Unmanned aerial vehicles (UAVs) are widely used in MEC environments as flexible
and mobile computing nodes [4]. Drones can not only provide computing resources for
users on the ground, but also act as relay nodes to enhance the coverage and quality of
communication. Drones can be dynamically deployed in areas that require computing
resources to provide users on the ground with low-latency, high-bandwidth computing
services. Drones can also act as relay nodes to extend network coverage, especially in
disaster areas or remote areas where traditional infrastructure is difficult to cover. Drones
can dynamically adjust task offloading and resource allocation strategies based on real-time
network and user requirements to improve overall system efficiency [5].

Blockchain technology has attracted increasing attention due to its decentralized,
tamper-proof, and transparent characteristics [6]. By introducing blockchain technology
into MEC, the security and trust of the system can be significantly improved. Through
the distributed ledger technology of blockchain, decentralized resource management and
transactions can be realized, avoiding single points of failure. Blockchain ensures the
privacy and security of user data through encryption technology and smart contracts,
preventing data leakage and tampering. Smart contracts automate resource transactions
and management, improving the efficiency and transparency of resource allocation and
reducing manual intervention. Overall, blockchain-based systems have the characteristics
of decentralization and tamper-proof data recording, laying a solid foundation for informa-
tion security. This security has enabled blockchain technology to be widely used in many
scenarios with extremely high system security and confidentiality requirements [7].

In the UAV-based MEC environment, resource allocation is a multi-level decision
problem with significant hierarchical characteristics. The Stackelberg game, as a typical
hierarchical game model, is suitable for this scenario. The Stackelberg game model opti-
mizes resource pricing and allocation strategies through a hierarchical decision-making
process between the leader (server) and the followers (drones). The leader sets the price and
the followers respond to the price. The Stackelberg game model can effectively optimize
the balance between resource supply and demand, improve system utility, and through
reasonable strategy adjustments during the Stackelberg game process, the system can reach
a Nash equilibrium and maximize the utility of each participant [8,9].

Most existing resource allocation methods focus on static or single optimization strate-
gies, which have difficulty coping with dynamic and complex system environments. In
addition, traditional centralized resource allocation methods have trust and security prob-
lems, making it difficult to ensure system reliability and stability in an open environment.
To overcome these problems, this paper proposes a two-stage optimization algorithm (DSO)
based on blockchain smart contracts, which combines Stackelberg games and auction algo-
rithms to optimize resource allocation among servers, drones, and users, and improve the
computational efficiency and reliability of the system.

In practical applications, blockchain-based UAV-assisted mobile edge computing
(UAV-MEC) faces many challenges. The first is network latency and performance bot-
tlenecks. Because blockchain relies on consensus mechanisms such as PoW or PoS, the
process requires a lot of time for transaction verification and data synchronization, which
may affect the efficiency of UAVs in performing real-time computing tasks. Especially in a
high-concurrency environment, system throughput and response speed will be severely
constrained. The next challenge is the limitation of computing and storage resources. Due
to their small size and hardware limitations, drones cannot store the blockchain ledger
and verify transactions for a long time, especially as the blockchain scales, the problem of



Appl. Sci. 2025, 15, 4048 3 of 28

resource consumption becomes more and more prominent. In addition, energy efficiency is
also a major challenge. Blockchain operations and computing tasks require a lot of energy,
and drones rely on battery power. The increase in computing and communication loads
will significantly shorten the drone’s battery life and affect the stability and continuity of its
tasks. In terms of system scalability, as the number of drones and user requests increases,
the blockchain network needs to have efficient scalability to ensure that transactions can still
be processed in a timely manner and data consistency can be maintained in a multi-node
environment. However, existing blockchain technologies face problems such as insufficient
throughput and synchronization delays in large-scale scenarios. In order to reduce the
impact of these problems on the experimental results, the experimental parameters in
this paper are applicable to scenarios with large-scale user needs. The following text also
verifies the rationality of the blockchain in this system through designed experiments.

Specifically, first, a resource allocation mechanism between the server (leader) and
the drone (follower) is constructed based on the Stackelberg game model. The resource
allocation strategy is optimized based on a comprehensive consideration of factors such
as the computing power, energy consumption, and task processing time of the drone to
maximize the overall system efficiency. Second, this paper introduces an auction algorithm
to optimize resource pricing between drones and users, making resource allocation more
efficient and fairer. Finally, blockchain smart contract technology is used to automate task
assignment, result verification, and reward management, enhancing the security, reliability,
and transparency of the system.

The main contributions of this paper are as follows:
(1) We propose a two-stage DSO game algorithm to optimize resource allocation and

improve resource utilization. In the first stage, we express the trading interactions between
servers and drones as a Stackelberg game, where ECSs are leaders and drones are followers.
ECSs control the unit price of edge computing resources to maximize the profit earned by
drones. Drones control the amount of edge computing resources needed to maximize their
goals. For the game between drones and users, we use an auction algorithm to optimize
the resource allocation between the two.

(2) We propose a blockchain-based secure resource trading framework in the proposed
network. ECS acts as an edge computing resource provider and a mining task publisher in
the blockchain-based network, where the drone is an edge computing resource requester.
Transaction information about edge computing resource transactions, including resource
request and resource price, is recorded in the blockchain.

(3) Experimental results demonstrate that the proposed two-stage optimization (DSO)
algorithm outperforms traditional approaches, including the single-stage optimization
algorithm (SSO), equal allocation algorithm (EAA), and dynamic resource pricing algorithm
(DRP). Specifically, the DSO algorithm achieves the following advantages:

Improved resource utilization: the DSO algorithm increases computing resource
utilization by approximately 7–10% compared to SSO and EAA, ensuring more efficient
use of available resources.

Reduced task processing latency: by optimizing resource allocation and leveraging
UAV mobility, the DSO algorithm reduces task processing delays by 3–5% compared to
DRP and SSO, meeting the low-latency requirements of time-sensitive applications.

Lower energy consumption: the DSO algorithm minimizes energy consumption
by 4–8% compared to traditional methods, extending UAV operational endurance and
reducing operational costs.

The rest of this paper is organized as follows. Section 2 first discusses related studies,
followed by the system model and blockchain framework in Section 3. Section 4 is the
simulation design and experimental analysis, and the Conclusion follows.
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2. Materials and Methods
Related Work on UAV-MEC

UAV-assisted mobile edge computing (UAV-MEC), an emerging technology that
combines unmanned aerial UAVs and mobile edge MEC, has already demonstrated great
potential in areas such as disaster relief, environmental monitoring, and traffic management.
This technology can provide low-latency, high-performance computing services in a wide
range of application scenarios by pushing computing and storage resources to the edge of
the network, combined with the flexibility and mobility of drones. With the development
of 5G and the Internet of Things (IoT) technology, the application prospects of UAV-MEC
have been gradually recognized and have become a significant research topic. A large
amount of research has been conducted on UAV-MEC in terms of path planning, resource
allocation, network optimization, and security at home and abroad.

In order to optimize the UAV offloading strategy and resource allocation efficiency,
Tian J et al. [10] conducted a study on the UAV-MEC network. They proposed a user
grouping method based on the k-means algorithm to group users into different groups,
and designed a new user satisfaction model by jointly considering the task processing
delay and energy efficiency. Based on this model, the researchers further proposed an
optimization problem to maximize the overall user satisfaction, aiming to jointly opti-
mize the task offloading decision and the UAV scheduling strategy, thereby improving
the overall performance of the system. Qin X et al. [11] focused on the energy efficiency
of the UAV-MEC system under the RIS-assisted non-orthogonal multiple access protocol,
and proposed a dual-loop iterative algorithm based on the Dinkelbach method and the
block coordinate descent technique to optimize the bit allocation, transmission power,
phase shift, and UAV trajectory. This method effectively improves the energy efficiency
of the system, reduces the energy consumption, and optimizes the system performance.
In terms of research supporting applications in remote areas, Chigullapally S et al. [12]
proposed a UAV-enabled MEC service solution designed to serve IoT devices randomly
distributed on the ground. This solution takes full advantage of the aerial mobility of UAVs
to provide low-latency computing and communication services to devices in remote areas,
thus solving the problem of scarce computing resources in remote areas. Qin X et al. [13]
investigated task offloading schemes in asynchronous MEC systems, especially considering
the heterogeneity of task generation moments among UAVs, and proposed a solution
framework based on deep reinforcement learning. This framework can handle mixed dis-
crete and continuous action spaces, and effectively improve the efficiency of computational
offloading and system performance. Through deep reinforcement learning, the system
can adaptively adjust the task offloading strategy to optimize the allocation of computa-
tional resources. In addition, Zheng X et al. [14] studied a novel multi-user multi-hotspot
MEC network supported by UAVs. In this network architecture, UAVs help to offload
computational tasks from end-users in multiple hotspots, which greatly improves the
computational performance and efficiency of the system. Through the flexible scheduling
of UAVs, the resource allocation in a multi-point environment can be adjusted in real time,
improving the overall processing capability of the network. Mao W et al. [15] analyzed
the task transmission and computation problems in a multi-antenna UAV-assisted MEC
network, and proposed a scheme that takes into account the dual functions of UAVs. The
UAV not only processes tasks as an antenna MEC node, but also serves as an antenna
relay node, which improves the reliability and safety of task transmission. This solution
effectively solves the task transmission bottleneck in the UAV network and ensures the
robustness and security of data transmission. Luo Y et al. [16] proposed a decentralized
user assignment and dynamic service solution specifically for UAV deployment in a multi-
UAV MEC system. The solution designs a two-layer training framework through deep
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reinforcement learning (DRL) technology. The lower layer optimizes the UAV trajectory
and offload bit allocation (continuous action space), and the upper layer optimizes the
user assignment strategy (discrete action space). This decentralized solution effectively
enhances the system’s dynamic adaptive capabilities, allowing the UAV to flexibly respond
to different computation needs and resource conditions, thereby improving the system’s
intelligence and adaptability.

Chen C L et al. [17] proposed a solution to this problem, exploring the application of
blockchain technology and smart contracts in the UAV application of e-commerce, espe-
cially the potential to ensure the security of the logistics process and improve transparency.
This solution ensures the traceability and security of task processing through the mech-
anism of smart contracts, effectively reducing the uncertainty and security risks in the
logistics process. In terms of research on UAV cluster communication, Zhou J. et al. [18] pro-
posed a blockchain-based certificate-free dynamic group key agreement scheme specifically
for the security of UAV cluster communication. This scheme uses blockchain technology
to achieve group key negotiation, which not only ensures the protection of user privacy,
but also improves the transparency of the whole key negotiation process. Specifically, the
blockchain records every detail of the key generation process, allowing all nodes in the
network to verify the key generation process and ensuring its fairness and security. At
the same time, the consensus algorithm in the blockchain effectively prevents interference
from malicious nodes and guarantees the security and fairness of communication. Feng H.
et al. [19] discussed the impact of blockchain technology on the age of information peaks
during transaction confirmation from the perspective of UAV-assisted wireless sensor net-
works. The study analyzed that in wireless sensor networks, the timeliness of information
may be affected due to the delay in the data transmission process, which in turn affects
the overall performance of the system. In the literature, a blockchain-based solution is
proposed to improve the timeliness and accuracy of data transmission by optimizing the
data transmission method between nodes and reducing the lag time during transmission.

In addition, Islam A et al. [20] proposed an innovative data collection scheme in which
UAVs act as relay nodes to securely transmit the information collected by IoT devices to
the server. This solution not only ensures the security of information transmission by using
blockchain technology, but also effectively reduces the energy consumption of the system.
Asheralieva A et al. [21] investigated a UAV-assisted IoT system based on blockchain
and MEC technologies. In this system, UAVs not only provide computing offloading for
ground devices, but also collaborate with other UAVs to perform tasks and form an efficient
cooperative computing system. The research proposes a cooperative computing offload
scheme that maximizes the system benefits by using a hierarchical deep learning algorithm
to solve the interference problem from UAVs to devices. This scheme demonstrates the
broad application prospects of combining blockchain and MEC technology with UAVs in
the Internet of Things, and provides new technical ideas for the future development of smart
logistics and the Internet of Things. Blockchain technology solves the security problems
of end-to-end data transmission and cross-domain authentication; however, equipping all
users with a complete blockchain application would lead to a waste of resources [22–25].

Jones K et al. [26] explored the impact of artificial intelligence, open innovation, and
industry evolution on the future of foreign exchange trading, stating that technological
convergence will drive changes in the financial market and improve trading efficiency and
risk management. Patni and Lee et al. [27] introduced the EdgeGuard framework in several
papers, which leverages the decentralized nature of blockchain and the federated learning’s
data privacy protection advantage to achieve intelligent management and secure sharing
of medical resources in the Internet of Medical Things (IoMT) network, which significantly
improves the utilization efficiency and data security of medical resources. Badid et al. [28]
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investigated the combination of edge computing and blockchain, and proposed a solution
for a digital transportation system, which ensures the security and tampering of the data
through blockchain technology, while using edge computing to reduce latency and improve
the operational efficiency and security of the transportation system. Al-Yarimi et al. [29]
proposed a blockchain-based data sharing framework for edge computing networks, which
solves the challenges of data security and privacy protection in edge computing environ-
ments, and provides reliable technical support for data sharing in distributed networks.
Yuan et al. [30] conducted a study on a blockchain supported edge video streaming system
and proposed an adaptive incentive and resource allocation method based on cooperative
learning, which optimizes the resource allocation efficiency and improves the user expe-
rience. Liu et al. [31] investigated an industrial IoT project scheduling method based on
smart contracts and edge computing, which achieves high efficiency and trustworthiness
of project management through the automatic execution feature of smart contracts and the
low-latency advantage of edge computing that provides new ideas for project scheduling
in the industrial IoT environment. Zhonghua et al. [32] proposed an attribute-based access
control model based on smart contracts, which combines blockchain and edge comput-
ing technologies to provide a strong security and privacy protection mechanism for IoT
systems, effectively preventing data leakage and illegal access.

3. Model of a Drone-Assisted Mobile Edge Computing System
3.1. System Model

We consider a UAV-supported MEC network consisting of multiple edge servers
(ECSs), unmanned aerial vehicles (UAVs), and users (UEs). The set of ECSs is denoted by E,
E = {1, 2,..., E}, and the set of UAVs served by ECS m is denoted by U m, U m = {1, 2,..., U m},
as shown in Figure 1. The entire network can be divided into three layers: the ECS layer, the
UAV layer, and the UE layer. In the ECS layer, there are multiple ECSs that are responsible
for allocating edge computing resources to UAVs. They can control the transaction price
of the allocated edge computing resources. In the UAV layer, each UAV can provide
computing services to mobile users. To improve the quality of service (QoS) provided
to mobile users, UAVs with limited on-board resources should apply to ECSs for edge
computing resources. At the user layer, each mobile user will upload service requests to
UAVs. The service requests include computation tasks, communication requests, and so
on. It is assumed that each UAV accesses its nearest ECS, and each mobile user accesses its
nearest UAV. Then, all the service requests of the mobile users can be transmitted to the
drones, and all the drones can use the edge computing resources obtained from the ECS to
provide satisfactory services to the mobile users.

This paper introduces a multi-layer architecture and key parameter settings in the
simulated system model, as shown in Table 1, to fully reproduce the core features of the
actual deployment. Specifically, we simulate the dynamic movement of the drone, in which
the drone flies according to a preset trajectory, combined with random path deviations to
simulate changes in mobility in complex environments. For resource and communication
constraints, the computing power and bandwidth of the edge server (ECS) and the drone
are set to finite values. The relevant parameters are based on the existing literature and
actual systems to ensure the reliability and reference value of the simulation results. In
terms of task characteristics, user service requests include two types: computation-intensive
and communication-intensive. Task requirements are generated randomly, following the
distribution characteristics of user requests in the real environment. In addition, it is
assumed that each drone and user accesses its nearest ECS and drone, simulating the access
mechanism in the real environment. Although this paper has verified the effectiveness of
the proposed algorithm by simulating a detailed environment to restore the operational
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characteristics of the real UAV-assisted MEC system as much as possible, we also recognize
that there are still complex factors in real deployment, such as multipath interference,
resource heterogeneity, and dynamic changes in the environment. Future work will further
promote the implementation and testing of the algorithm in actual UAV networks, evaluate
its applicability and performance in complex dynamic environments, and enhance the
practical value of the research for engineering.
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Table 1. System model parameters.

Category Parameter Value Description

Drone dynamics Number of drones (USD) 10 Typical drone swarm size in a
simulated urban environment

Coverage area 500 m × 500 m Reference city-level MEC
network coverage

Flight speed 5–15 m/s Speed range based on commercial
UAVs (e.g., DJI Matrice 300)

Flight path Randomized waypoint model
with path updated every 10 s

Simulates the dynamic
maneuvering characteristics

of the UAV
Resource and

communication
constraints

Number of edge servers (USD) 3 Reflects multi-region edge computing
deployment scenarios

ECS computing power 8 GHz/unit Refers to actual edgecomputing devices
(e.g., NVIDIA Jetson TX2)

Drone computing power 2 GHz/frame Refers to commercial UAV embedded
computing module

ECS–UAV communication bandwidth 20 MHz Refers to downlink bandwidth
for 5G MEC systems

Drone–user communication bandwidth 5 MHz Typical configuration for reference
drone to terminal communication

Communication latency (ECS–drone) 10 ms Approximate low-latency MEC
network characteristics

Communication delay (UAV–user) 5 ms
Reflects the real-time communication

requirements between UAV and
terminal equipment

Task characteristics Task arrival rate 0.5 times/s/user

Generated by Poisson distribution, in
line with the requirements of

intelligent transportation
and IoT scenarios

Task computation requirements 500–1500 Megacycles
Including video analysis, image

processing and other
computation-intensive tasks

Task data size 10–50 MB Typical range of data uploaded from
IoT terminals.

Resource pricing
and allocation

Initial transaction price
for ECS resources 0.1 USD/GHz Refers to cloud and edge computing

resource market pricing
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The server, as the leader of the system, first sets the price of each task based on the
current task demand and resource maintenance costs. The server’s goal is to maximize its
utility function, i.e., to optimize its revenue through a rational pricing strategy. After the
server sets the prices, the drones, as followers, decide how to respond to those prices. Each
drone sets its service price for each task. The goal of the drones is to maximize their utility
function. The users, as consumers, have their demands affected by the prices of the drones’
services. In the proposed system, since the drones are supposed to provide computing
services to mobile users using resources obtained from the ECS, we assume that there
are enough resources available in the ECS for resource allocation. In the communication
model, we assume that the uplink and downlink channels between the ECS and the UAV
are symmetric. The available transmission capacity of the allocated resources calculated by
Shannon’s theorem is considered sufficient. Each UAV is responsible for collecting service
requests from users within its coverage area. Then, based on the amount of service demands
collected from the mobile users, the UAVs make a decision to request edge computing
resources from the ECS. In order to obtain the edge computing resources from the ECS, the
drones have to pay a certain amount of revenue to the ECS, which can make a profit by
allocating the edge computing resources to the drones by setting a reasonable transaction
price for the allocated edge computing resources. In the above process, the transaction
price of the edge computing resources is an important factor in determining the resource
trading behavior, which is controlled by the ECS.

3.2. Model Safety Analysis

In traditional centralized systems, the resource allocation process can be controlled
and interfered with by a single central node, which can lead to problems such as unfair
resource allocation and data tampering. In contrast, the decentralized nature of blockchain
allows every node in the system to participate in the data recording and verification process,
avoiding the risks of single point of failure and data tampering. Using distributed ledger
technology, blockchain stores a record of every transaction and resource allocation at every
participating node. Each node can verify the legitimacy of the transaction and work together
to maintain a tamper-proof ledger, increasing the transparency and trustworthiness of the
system. The process of resource allocation and transactions between drones and mobile
users involves a large amount of sensitive data, which must be protected from leakage and
unauthorized access. Blockchain uses cryptographic algorithms and consensus mechanisms
that can effectively secure data. Blockchain uses cryptographic algorithms (e.g., SHA-256)
to encrypt data and consensus mechanisms (e.g., PoW, PoS, etc.,) to ensure the authenticity
and reliability of data [33]. Only verified transactions are recorded on the blockchain,
ensuring data security. In the UAV-assisted MEC resource allocation system, the resource
allocation and transaction process must be performed efficiently and accurately. Traditional
manual operation is not only inefficient, but also prone to errors. Smart contracts, on the
other hand, can automatically execute transactions according to pre-set rules, eliminating
human intervention and improving efficiency and accuracy. A smart contract is a self-
executing code running on the blockchain that automatically executes transactions and
allocates resources based on pre-set rules. Between drones and servers and between
drones and users, resource allocation and transaction processes can be automated through
smart contracts.

3.3. Blockchain Resource Transaction Framework

There are a total of three roles in this system, namely the edge computing resource
allocator, the edge computing resource requester, and the final demander of edge computing
resources. As shown in Figure 2, the user is the final demander of edge computing resources
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and sends a resource request to the UAV, specifically including the service demand and
the price it is willing to pay [34]. As the demander of edge computing resources, the UAV
collects and summarizes the user’s demand and sends it to the ECS.Server (ECS). The ECS
is the edge computing resource allocator that receives and processes the UAV’s resource
requests, records the transaction information, executes the smart contract for resource
allocation, and maintains the transaction records in the blockchain. For the resource
allocation process and user request sending, the user sends the resource request to the
drone. For drone request aggregation, the drone collects requests from multiple users and
requests resources from the ECS. The ECS records transactions, recording and encrypting all
incoming resource requests and packaging them into blocks. The ECS creates and verifies
the blocks through the PoW consensus mechanism and adds them to the blockchain. The
ECS executes the resource allocation through the smart contract and receives rewards from
the blockchain system.
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Figure 2. Blockchain resource transaction framework.

Blockchain integration significantly enhances the security and transparency of the
UAV-MEC system through its tamperability, authentication, smart contracts, decentralized
architecture, and transaction transparency. Specifically, distributed ledger and crypto-
graphic hashing technologies ensure that transaction data cannot be tampered with, and
public–private key encryption and digital signatures enable authentication of UAVs, edge
servers, and users to prevent illegal access. Smart contracts automatically execute resource
allocation and transaction settlement, reducing human intervention and guaranteeing
the fairness and transparency of transactions. The decentralization mechanism improves
the system’s anti-attack capability, prevents DDoS attacks and single points of failure,
and enhances system robustness. In addition, the open ledger of the blockchain makes
all transaction records auditable and traceable, ensuring a transparent and verifiable re-
source allocation process. Together, these features enhance the security, reliability, and
transparency of the UAV-MEC system in complex environments.

The drone sends an edge computing resource request to the ECS, including its re-
quirements and the price of the service. The ECS records these requests as transaction
information, including the request time, requester identity, resource requirements, service
price, and so on [35]. When the transaction information reaches a certain number or time
interval, the ECS starts to create a new block and packs the collected transaction information
into the block. The transaction information is encrypted with a public key and a private
key to ensure data security and privacy. According to the set PoW consensus mechanism,
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ECS generates a computational puzzle as a mining task. ECS uses its computing resources
to perform hash operations and tries to solve the PoW puzzle to find an appropriate hash
value (i.e., the “proof of work” for the block). Once the ECS finds a valid hash value, it sends
it to other nodes in the blockchain network for verification. Other nodes verify the validity
of the hash. If a majority of nodes (e.g., more than 50%) confirm its validity, a consensus is
reached and the block is considered valid. The verified block is added to the blockchain
and becomes part of it [36–38]. All nodes update their local ledgers by adding the newly
generated block to ensure the consistency of the blockchain data. The ECS that successfully
mines is rewarded with the appropriate credit currency as an incentive to participate in
maintaining the blockchain and verifying transactions. As shown in pseudocode Algorithm
1, this is the process of trading star blocks between the server and the drone in this model.

Algorithm 1: Blockchain Resource Transaction Process

1: Initialize blockchain network:
2: Generate public/private keys for each ECS and UAV node
3: Set initial blockchain parameters (e.g., consensus mechanism, difficulty)
4: While (system is running):
5: For each user request:
6: User sends resource request to UAV
7: UAV collects user demands and forwards request to ECS
8: For each UAV request:
9: ECS records transaction (timestamp, requester, demand, price)
10: Encrypt transaction data with public/private keys
11: If (transaction pool size > = threshold or time interval reached):
12: Create new block
13: Add encrypted transactions to block
14: While (block not validated):
15: Generate PoW puzzle
16: Solve PoW puzzle by finding valid hash
17: Broadcast solution to other nodes
18: If (majority of nodes validate solution):
19: Add block to blockchain
20: Update local ledger
21: Reward ECS node with cryptocurrency
22: Broadcast new transactions to all nodes
23: Receive confirmation from nodes
24: Deploy and execute smart contracts for resource allocation
25: Optimize algorithms and system performance as needed
26: Expand system by adding more ECS nodes or enabling cross-chain

interoperability
27: End While

3.4. Utility Function Definition

Taking into account the changing payment capabilities and needs of users and drones,
the server controls the allocation of resources for each task by setting prices to find the
optimal balance between revenue and cost and maximize server utility. The utility function
of the server consists of two parts: total revenue and total resource maintenance cost.
Specifically, the utility function of the server is shown in Equation (1).



Appl. Sci. 2025, 15, 4048 11 of 28

Userver =
N

∑
i=1

pi · Di −
N

∑
i=1

C(Di) (1)

Among them, pi is the price set by the server for the ith task. Di is the demand for the
ith task. C(Di) is the resource maintenance cost of the ith task, C(Di) = γ · D2

i and γ is the
possibility that the resources traded between the drone and the ECS can be written into a
valid block.

Taking into account the user’s ability to pay and changes in demand, the UAV controls
resource allocation and revenue for each task by setting the price of the service. The linear
functional form of the energy cost rationally reflects the direct relationship between the
energy required to provide the service and the demand. The utility function of the UAV
consists of four parts: the total revenue that the UAV earns by providing the service, the
total cost that it must pay to purchase computing resources from the server, the cost of the
energy consumed, and the system reward obtained by completing a resource allocation.
Among them, the total cost to be paid for purchasing computing resources from the server
can directly affect its revenue, and the system reward can motivate the UAV to perform
a large number of resource exchanges to improve resource utilization. In particular, the
utility function of the UAV can be expressed by Equation (2).

UUAV =
N

∑
i=1

si · Di −
N

∑
i=1

pi · Di −
N

∑
i=1

E(Di) +
N

∑
i=1

R(Di) (2)

where si is the service price set by the UAV for the ith task, and E(Di) is the energy cost
of the ith task. E(Di) = β · D2

i , β are the elasticity coefficients. R(Di) = α · D2
i , α are the

impact factors.
The user’s utility function describes the benefits and expenditures that the user receives

in the process of using the services provided by the UAV, and consists of two parts: the
user’s valuation of each task in the process of using the UAV’s services, and the fee paid
to the UAV for each task. In this case, the user valuation can be determined based on
the quality of the service, the urgency of the need, and other factors, and the fee paid to
the drone reflects the user’s utility or satisfaction with the service. Users will consider
the cost of the service when choosing the service to ensure that the cost paid does not
exceed the utility gained, and find the best balance between the valuation and the cost paid
by optimizing the demand to maximize their total utility. Specifically, the user’s utility
function can be expressed in Equation (3).

UUser =
N

∑
i=1

(vi · Di − si · Di) (3)

In the resource allocation problem, we model the relationship between the server
(ECS) and the UAV as a leader–follower structure. The server acts as a leader; the server
has more computational resources and decision-making power, and is able to set the price
of resources and control the resource allocation strategy. The UAVs act as followers, and
the UAVs need to decide their resource requirements and service prices based on the prices
and strategies set by the server.

The server’s goal is to maximize its utility function, which can be expressed in Equation (4).

max
pi

UServer = max
pi

N

∑
i=1

(pi · Di − Ci) (4)

The goal of the UAV is to maximize its utility function, which can be expressed
in Equation (5).
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max
si ,Di

UUAV = max
si ,Di

N

∑
i=1

(si · Di − pi · Di − Ei + Ri) (5)

In the game between the UAV (unmanned aerial vehicle) and the user, we have applied
the auction algorithm to optimize the resource allocation between the two. The following
explains the auction process of the game between the UAV and the user.

1. User puts forward resource demand:
(1) Each user submits a resource request to the UAV with a bid according to their

needs and budget.
(2) Remember that user j bid for task i is bij.
2. The drone collects bids from all users:
(1) The drone collects all users’ bids for each task and organizes them into a bid matrix

B, where Bij = bij.
3. The drone conducts an auction:
(1) For each task i, the drone conducts an auction based on the user’s bids, and selects

the user j with the highest bid as the winning bidder for the task.
(2) The drone allocates the resources of task i to user j and collects the bid bij.
4. Resource allocation results:
(1) The drone announces the auction results, including the winning user for each task

and its bid.
(2) The winning user obtains the required resources and pays the corresponding bids.
The auction algorithm ensures that resources are allocated to the user who needs

them most and is willing to pay the highest price through a competitive mechanism, thus
improving the efficiency of resource utilization.

In the auction algorithm, the utility function of the UAV can be expressed in Equation (6).

UUAV
i =

M

∑
j=1

bij − Ci (6)

The user’s utility function can be expressed in Equation (7).

UUser
ij = Vij − bij (7)

where Vij is the value that user j obtains from task i. bij is user j’s bid for task i. Ci is the
cost of the UAV to provide resources for task i.

The goal of the UAV is to maximize its utility function, which can be expressed in
Equation (8).

max
bij

UUAV
i = max

bij

(
M

∑
j=1

bij − Ci

)
(8)

The user’s goal is to maximize his utility function, which can be expressed in Equation (9).

max
bij

UUser
ij = max

bij

(
Vij − bij

)
(9)

3.5. DSO Algorithm Two-Stage Equalisation Analysis

In a Stackelberg game, there is a leader (server) and followers (drones). Each has a
different utility function: the leader’s utility function depends on its own strategy and the
followers’ response strategies, while the followers’ utility function depends on the leader’s
strategy and their own strategy.

First, determine the follower’s optimal response strategy after observing the leader’s
strategy. This is achieved by maximizing the follower’s utility function. Differentiating
and setting the derivative to zero solves for the follower’s optimal response function,
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which indicates how the follower chooses the optimal strategy given the leader’s strategy.
After obtaining the follower’s optimal response, the leader chooses the optimal strategy
by maximizing its utility function. The leader’s utility function depends on its own
strategy and the follower’s optimal response. The leader’s optimal strategy is solved
by differentiating the leader’s utility function and setting the derivative to zero.

Finally, the leader’s optimal strategy is substituted into the follower’s response func-
tion to obtain the follower’s optimal strategy. At this point, the strategies of the leader and
the follower form an equilibrium, which is the Stackelberg equilibrium solution. In this
equilibrium, neither party can unilaterally change its strategy to increase its utility. So next,
we will first analyze the utility function of the drone.

The drone utility function can be expressed by Equation (10).

UFi (si, p, di) = si · di − p · di − E(di) + R(di) (10)

The robot will choose the demand di that maximizes its utility. The optimization of di

can be expressed by Equation (11).

∂UFi

∂di
= si − p − E′(di) + R′(di) = 0 (11)

Substituting the reward function R(Di) = α · D2
i and the energy cost function

E(Di) = β · D2
i gives Equation (12).

∂UFi

∂di
= si − p − 2βdi + 2αdi = 0 (12)

It can be found that the utility function of the drone is a convex function because of C.
Substituting A into the utility function of the server gives Equation (13).

UL(p, d) =
N

∑
i=1

p · si − p
2β − 2α

− γ

(
N

∑
i=1

si − p
2β − 2α

)2

(13)

Simplification yields Equation (14).

UL(p, d) =
p · ∑N

i=1 (si − p)
2β − 2α

− γ

(
∑N

i=1 (si − p)
2β − 2α

)2

(14)

We optimize for p. Let ∂UL
∂p = 0, and let A =

N
∑

i=1
si. Then, we can get Equation (15).

UL(p, d) =
p · (A − Np)

2β − 2α
− γ

(
A − Np
2β − 2α

)2
(15)

Let f (p) = p · (A − Np)− 0.5
(

A − Np)2 , γ = 0.5, we derive the Equation (16) for f (p).

f ′(p) =
∂

∂p

(
p · (A − Np)− 0.5

(
A − Np)2

)
(16)

Let f ′(p) = 0, solve for p∗ = A
N−1 = ∑N

i=1 si
N−1 . Substituting p∗ into the response function

of the UAV gives d∗i =
si−

∑N
i=1 si
N1

2β−2α .
In summary, we can obtain the Stackelberg equilibrium solution between the server

and the drone. The server first chooses its optimal price and then the drone chooses
the optimal demand based on the server’s price. This approach ensures an equilibrium



Appl. Sci. 2025, 15, 4048 14 of 28

resource allocation between the server and the drone, where the server maximizes its utility
by setting the optimal price and the drone maximizes its utility by choosing the optimal
demand in response to the server’s price.

To solve the Vickrey auction equilibrium solution, first set the valuation of the bidders
and assume that each bidder i has a true valuation of the item. Each bidder chooses its bid
price [39–43]. Then the optimal strategy is set and the utility functions of the bidders are
analyzed and it is found that the optimal strategy is to use the true valuation as the bidding
price. This strategy is optimal in the Vickrey auction because deviation from this strategy
leads to lower utility. This results in an equilibrium solution where all bidders bid at their
true valuations, and this combination of strategies is a Nash equilibrium, i.e., no bidder is
able to increase utility by changing strategies. The highest bidder then wins, but pays the
second highest bid. Next, we analyze the auction process for drones and users.

In the auction algorithm, the user utility function can be defined as Equation (17).

Ui =
M

∑
j=1

xi,j
(
Vi,j − pj

)
(17)

The utility function of the UAV can be defined as Equation (18).

Uj =
N

∑
i=1

xi,j pj − Cj (18)

Here N denotes the number of users, M is the number of drones, Bi,j is user i’s bid for
drone j, pj is the service price of drone j, determined by the second highest bid, xi,j indicates
the variable, xi,j = 1 if user i chooses drone j, otherwise xi,j = 0, Vi,j user i’s valuation of
drone j, and Cj is the cost of drone j’s service.

The user’s goal is to maximize their utility function, which can be expressed in
Equation (19).

max
xi,j

Ui =
M

∑
j=1

xi,j
(
Vi,j − pj

)
(19)

User i will choose the UAV that maximizes its utility, which can be represented
by Equation (20).

xi,j =

{
1∥∥ i f Vi,j − pj ≥ 0
0∥∥ otherwise

(20)

For each drone j, the price is determined by the second highest bid. The drone adjusts
its service strategy according to its service cost and the revenue it receives.

The objective of the drone is to maximize its utility function, which can be expressed
in Equation (21).

max
xi,j

Uj =
N

∑
i=1

xi,j pj − Cj (21)

Drone j selects the user with the highest bid and takes the second highest bid as the
price, which can be expressed in Equation (22).

pj = max
k ̸=i

bk,j (22)

In equilibrium, the combination of the user’s and drone’s strategies maximize both
drone utility and user utility. This means that under the current strategy, drones and users
have no incentive to unilaterally change their strategies. User i will choose the drone j that
maximizes its utility, i.e., the drone of choice. Drone j will select the user with the highest
bid based on the user’s bid and use the second highest bid as the service price [44–47]. This
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ensures that the drone maximizes its revenue. In equilibrium, all users and drones are
chosen such that their utility functions are maximized and no unilateral strategy change
can increase their utility.

3.6. DSO Double-Decker Game Rationality Analysis

The main difference between the DSO (two-stage optimization) algorithm and existing
resource allocation strategies lies in its innovative design of a hierarchical optimization
framework, a dynamic game combined with auction, real-time dynamic pricing, complex
environment adaptability, and blockchain integration. First, the DSO algorithm uses a
two-stage optimization framework that combines Stackelberg games and multi-attribute
auction mechanisms to hierarchically address the resource allocation problem among ECSs,
UAVs, and UEs. It takes into account resource pricing and bidding, improving the efficiency
and fairness of the system. Existing strategies, on the other hand, mostly use a single-stage
centralized approach, which is difficult to handle dynamic competition among multiple
entities. Second, the DSO algorithm uses a Stackelberg game model in the first stage
to achieve dynamic pricing of resources by ECS, and in the second stage uses a multi-
attribute auction mechanism to ensure that users bid for resources according to demand,
optimizing revenue and resource utilization. Existing methods usually use fixed pricing or
static optimization and cannot adaptively respond to changes in demand. In addition, the
DSO algorithm is more robust in complex dynamic environments and can adjust resource
allocation in real-time according to user needs and drone movement. Traditional methods
usually assume a static environment and are not adaptable enough. More importantly,
the DSO algorithm combines blockchain technology to use smart contracts to automate
and transparently trade resources, ensuring data immutability and secure authentication,
and avoiding the single point of failure and data tampering risks of centralized methods.
In summary, the DSO algorithm solves the deficiencies of existing resource allocation
strategies in terms of dynamics, incentives, adaptability, and security through multi-level
dynamic games and blockchain integration, significantly improving the efficiency, fairness,
robustness, and transparency of resource allocation in the UAV-MEC system.

The proposed two-tier game-based resource allocation approach offers significant im-
provements over existing security frameworks for drone-assisted mobile edge computing
(MEC) in several ways. Existing security frameworks typically focus on static resource allo-
cation or a single security mechanism, which often fails to effectively address dynamically
changing environments and complex resource requirements. In these frameworks, resource
allocation decisions are often inflexible and vulnerable to malicious node attacks or system
overload. In contrast, the optimization algorithm based on the two-layer game proposed
in this study optimizes the resource allocation between servers and UAVs through the
Stackelberg game theory, and further optimizes the resource allocation between UAVs and
users through the auction algorithm, which forms a multilevel resource scheduling system
that can better cope with different levels of demands. This method not only improves the
efficiency of resource allocation, but also can deal with the interests of multiple parties
more fairly and avoid the possible bias of a single decision-making mechanism. The pro-
posed optimization method considers the resource scheduling problem in dynamic and
heterogeneous environments, and can dynamically adjust the resource allocation strategy
according to the real-time network state and user demand, with stronger adaptability
and robustness. This feature enables the method to better meet the changing demands in
practical deployment, especially in rapidly changing application scenarios such as urban air
transportation and disaster emergency response. Therefore, the proposed method not only
enhances safety while improving system performance, but also provides a more flexible
and efficient solution for future UAV-assisted MEC systems.
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The combination of a Stackelberg game and an auction mechanism effectively im-
proves the fairness and efficiency of resource pricing through hierarchical decision making,
dynamic pricing, and multi-attribute bidding. In this framework, the Stackelberg game
first dynamically adjusts resource pricing through the leader–follower model. The edge
computing server (ECS) acts as the leader and sets the resource price based on the system’s
supply and demand to ensure that the price can adapt to changing market conditions,
while the unmanned aerial vehicle (UAV) acts as the follower and decides the resource
application based on these prices and its own needs. This dynamic pricing mechanism
ensures efficient resource allocation and avoids waste and scarcity. Then, a multi-attribute
auction mechanism is used to allocate resources between UAVs and user equipment (UE).
By considering multiple factors such as price, compute demand, latency, and task pri-
ority, fairness is ensured. This prevents low-demand users from being squeezed out of
resources by high-demand users, while also preventing resources from being concentrated
among a small number of users, thus ensuring fairness and differentiation in resource
allocation. This combination mechanism can adjust prices in real-time as market demand
changes, thereby balancing supply and demand and avoiding the problems of overpricing
or wasting low-priced resources. At the same time, the auction mechanism guides users
to bid reasonably, reduces false demand, improves resource utilization, and optimizes the
overall revenue of the system through incentives. Ultimately, the combination of the Stack-
elberg game and the auction mechanism not only improves the efficiency and fairness of
resource allocation, but also ensures that the algorithm can converge quickly in a dynamic
environment, improving the flexibility and responsiveness of the system.

To evaluate the feasibility of the proposed two-stage optimization (DSO) algorithm in
actual deployment, we conducted a detailed analysis of the computational complexity of
the algorithm. The DSO algorithm includes Stackelberg game solving, auction mechanism
execution, and blockchain consensus process. For the Stackelberg game, since each drone
needs to bid for resources and make pricing decisions with the edge servers it covers,
the complexity is O

(
U2 × E

)
(where U denotes the number of drones and E denotes the

number of edge servers). In the auction mechanism phase, each mobile user bids for
computing resources through drones, with a complexity of O(U × M)(where M is the
number of mobile users). The blockchain consensus adopts the practical Byzantine fault
tolerance (PBFT) mechanism, and the complexity of message exchange between nodes is
O
(
n2) (where n is the number of nodes participating in the consensus). Therefore, the

total complexity of the DSO algorithm is O
(

U2 × E + U × M
)

, it has good computational
efficiency in a medium-scale UAV-assisted MEC network, and meets the needs of practical
applications. In order to reduce system complexity and enhance the applicability of the
algorithm in the actual UAV-assisted MEC environment, we propose various simplification
and heuristic optimization methods. First, we use approximate solution methods (such
as particle swarm optimization, genetic algorithms, etc.) to replace the exact solution of
the original Stackelberg game, which significantly reduces the calculation time. Second, a
partitioned auction mechanism is used to divide UAVs and users according to geographical
regions, and local auctions are executed in parallel to allocate resources, avoiding the
computational bottleneck of large-scale centralized auctions. In addition, we introduce a
hierarchical blockchain architecture, where local subchains are deployed within regions to
complete the preliminary verification of resource transactions, reducing the delay overhead
caused by full network consensus. Finally, based on the urgency of tasks, we propose a
priority task scheduling strategy that prioritizes the processing of high-priority tasks when
resources are limited, ensuring that the system can still provide high-quality computing
services for critical tasks under high loads.
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4. Analysis of Resource Allocation Experiments
4.1. Simulation Design

In the UAV resource allocation system, there is a problem of resource allocation
and utility optimization between the server (edge computing server, ECS) and the UAV
(unmanned aerial vehicle). Specifically, the server provides edge computing resources, and
the UAV requests these resources to complete its respective tasks. The power gap between
the server and the UAV is large, so the Stackelberg game model is suitable for resource
allocation optimization. In this model, the server, as the leader, first sets the price of the
task, and then the UAV, as the follower, makes a resource request decision based on the
price set by the server.

In addition, the resource allocation between the drone and the user also needs to be
optimized. Since the gap in strength between the drone and the user is relatively small,
an auction algorithm is suitable for optimization. In this model, the drone acts as the
bidder, and the user acts as the auctioneer, with the final allocation of resources determined
through a bidding mechanism. Table 2 shows all the parameters used in the experiment.

Table 2. Model parameters.

Parameter Name Symbol Value

Number of Drones NUAV 3
Number of Tasks NTasks 100

Maximum Number of Iterations TMAX 100
Price Per Task (Server Decision) pi Random Number
Price of Service (Drone Decision) si Random Number

Resource Maintenance Cost Function C(Di) 0.5 · D2
i

Energy Cost Function E(Di) 0.2 · D2
i

Reward Function R(Di) 0.1 · D2
i

This simulation is designed to verify the performance of the algorithm in different
network environments by simulating a blockchain-based resource trading system based on
the DSO algorithm, focusing on key factors such as resource allocation efficiency, fairness,
system stability, and security. The simulation model includes three main participants:
resource providers (servers), intermediaries (drones), and consumers (users). Among them,
the server and drone conduct the initial allocation of resources through the Stackelberg
game model, and users bid for the required resources through an auction mechanism.
Blockchain technology is used to ensure the transparency and immutability of all transac-
tion records, as well as to provide security for resource allocation. The simulation process
not only examines the efficiency of resource allocation, but also focuses on the impact of
factors such as network bandwidth and latency on system stability, as well as the impact of
the transaction confirmation time of the blockchain platform on the timeliness of overall
resource allocation.

The simulation results will be evaluated using a number of indicators, including
resource utilization, system fairness, transaction confirmation time, user satisfaction, etc.,
to comprehensively analyze the advantages and disadvantages of the DSO algorithm. In
addition, the simulation will also evaluate the stability of the algorithm under changes in
the network environment (such as network delays and bandwidth fluctuations), to verify
whether the algorithm is highly adaptable. These simulation results can provide a basis
for system optimization, such as optimizing game strategies, improving the fairness of
the auction mechanism, or improving the blockchain consensus mechanism to reduce
transaction delays, thereby improving the overall performance and application feasibility
of the system.
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4.2. Convergence Analysis

First, as shown in Figure 3, in the system with the participation of only one drone,
in the Stackelberg game phase, the demand for the drone decreases with the number of
iterations, and converges at a demand of 7 after almost 60 iterations. While in the auction
algorithm phase, the demand of the UAV first rises and then tends to equilibrate and
converges at the seventh iteration. It can be concluded from the results of this experiment
that both phases of the game lead to an equilibrium solution.
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Next, in order to better verify the convergence of the two-stage algorithm, we increase
the number of UAVs and analyze the two stages in separate experiments. We analyze
the process of the Stackelberg game separately, as shown in Figure 4, and we increase the
number of drones—there are three drones involved in resource allocation. As the game
progresses, each drone’s demand decreases and then converges to the equilibrium as the
number of iterations increases, so the drones all have the highest demand at the beginning
and then gradually decrease to a stable value, and almost all of the drones iterate more
than 70 times before they start to converge. Because the drones initially received many
resource requests from users, the demand for drones was relatively high, but as many
users were satisfied, the demand for drones gradually decreased and eventually converged
to equilibrium.

By analyzing the convergence of the Stackelberg game above, we can observe that
the first stage can already converge, next, Let’s analyze separately the change in UAV
demand with the number of iterations during the auction algorithm. As shown in Figure 5,
due to the introduction of the auction mechanism, at the beginning, each user has intro-
duced resource requests and bid against each other, which makes the demand for UAVs
significantly increase, and the demand for UAVs gradually tends to balance as most users
obtain resources.

In the aforementioned experiments, we have verified the convergence of the DSO
two-stage optimization algorithm through three sets of independent tests, proving that
the algorithm is able to converge stably to the optimal solution within a limited num-
ber of iterations, ensuring the effectiveness of resource allocation and the reliability of
computation. To further assess the advantages and applicability of the DSO algorithm
in practical applications, the next work will systematically analyze the performance of
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the DSO algorithm in comparison with other mainstream resource allocation algorithms
by focusing on three key dimensions, namely user demand, convergence speed, and the
rate of change in the utility function. This multi-dimensional evaluation will not only
reveal the performance and limitations of the DSO algorithm in different scenarios, but
also verify its stability and efficiency in dynamic, multi-user environments, providing a
more comprehensive theoretical basis and practical support for resource management in
UAV-assisted MEC systems.
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First, in terms of user demand, we will analyze the performance of the DSO algorithm
when facing different numbers, complexities, and dynamically changing user tasks, and
evaluate its adaptability and scalability in high demand density and complex environments.
Secondly, convergence speed is a core indicator of algorithm efficiency, which affects the
real-time response and computational cost of the system. We will verify whether the
DSO algorithm can reach a stable solution at a faster speed and improve the efficiency
of resource allocation by comparing the number of iterations and convergence time. In
addition, the utility function change rate reflects the performance improvement speed
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and final utility value of the algorithm during the iteration process, which directly affects
the system revenue and user satisfaction. We will track the change in utility value of the
DSO algorithm over time, compare its speed and effectiveness in achieving the optimal
solution for resource allocation, and ensure that the algorithm maximizes the overall system
revenue while satisfying individual interests. These analyses will provide a comprehensive
demonstration of the effectiveness and benefits of the DSO algorithm in a real-world UAV-
assisted MEC environment, laying the groundwork for the future design of more efficient,
fair, and scalable resource management systems.

4.3. DSO Algorithm Comparison Experiment

In the next section, we verify the superiority of the DSO algorithm by designing
comparative experiments. The experiments are conducted through three aspects: user
requirements, convergence speed, and rate of change in the utility function.

We compare the DSO algorithm with other algorithms by designing experiments,
as shown in Figure 6, we compare the DSO algorithm with three algorithms, namely
DRP, EAA, and SSP, where the algorithm, DRP, dynamically adjusts the price of resources
according to the change in resource supply and demand in order to optimize the allocation.
It is usually used in cloud computing or distributed computing environments. In the EAA
algorithm, resources are evenly distributed to all participants without considering specific
demand or utility functions. In the SSO algorithm, resources are allocated directly between
servers and UAVs without considering user demand or secondary optimization. As can be
seen in Figure 6, the DSO algorithm reaches its maximum value at 27 iterations and levels
off later. The final experimental result is the DSO ≥ SSO ≥ DRP ≥ EAA.
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As shown in Figure 7, the DSO algorithm shows significant advantages in convergence
speed, which not only can quickly reach a stable solution, but also always outperforms
other compared algorithms in the whole iteration process. Specifically, the DSO algorithm
completes convergence in about 30 iterations, which is much faster than the number of
iterations required by other algorithms, reflecting the high efficiency of the algorithm in
complex resource allocation scenarios. In addition, from the convergence trend after each
iteration, it can be observed that the DSO algorithm shows faster utility improvement in
the initial stage and rapidly approaches the optimal solution with less computational cost,
which is suitable for UAV-assisted MEC environments with high requirements for real-time
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and computational efficiency. This improvement in convergence speed is mainly due to
the synergistic optimization of the Stackelberg game and auction mechanism in the DSO
algorithm, which accelerate the resource allocation process between the edge server and
the UAV and the UAV and the user, respectively, and thus effectively reduce the number of
iterations and improve the overall efficiency.
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Figure 7. Convergence speed comparison.

Next, we will further analyze the average change in the utility function over time to
verify the performance advantages of the DSO algorithm in terms of resource utilization
and system efficiency. The comparison will comprehensively reflect the utility growth rate
and final utility value of the DSO algorithm in different time scales, and further evaluate its
adaptability and stability in real UAV-assisted MEC environments.

As shown in Figure 8, in terms of the average change in the utility function over time,
the utility values of all the algorithms show a gradual upward trend with the increase
in the number of iterations, indicating that all the algorithms are able to enhance the
system benefits in the process of continuously optimizing the resource allocation. However,
the DSO algorithm consistently maintains a higher average utility value throughout the
iteration process, and its utility enhancement speed and final utility level are significantly
better than those of the other compared algorithms. This advantage suggests that the
DSO algorithm is able to allocate resources among edge servers, UAVs, and users more
efficiently, ensuring that the benefits of all parties are maximized while improving the
overall system benefits.
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4.4. Blockchain Experiment

Next, we verified the security role played by the blockchain in the system from
multiple aspects through a design comparison experiment. Table 3 lists all the parameters
used in the blockchain experiment. In these parameter settings, we simulate high user
demand and more complex drone networks as much as possible.

Table 3. Blockchain experiment parameters.

Simulation Parameters Symbol Value Description

Number of tasks num_tasks 300 Total number of tasks generated
during the experiment

Number of drones num_drones 30 Number of drones
allocated resources

Server computing
resource capacity server_capacity 500 Maximum computing

resources of the server
Range of task

computing requirements task_size [5, 20] CPU cycles Range of task computing
resource requirements

Range of drone computing
resource capacity drone_capacity [50, 100] Range of drone computing

resource capacity
Number of simulated attacks num_attacks 100 Number of malicious attacks

Proportion of blockchain
computing overhead blockchain_overhead 0.1 (10%) Additional computing overhead

when using blockchain

Range of task data volume task_data [10, 50] MB Range of task data
transfer requirements

Figure 9 clearly shows that the introduction of blockchain has a significant impact
on the attack defense capability of the MEC system. The experimental results show that
without the use of blockchain, the number of successful attacks remains at a high level,
with an average of about 30% successful attacks per experiment, reflecting the vulnerability
of the system to malicious behavior. After the introduction of blockchain, the number of
successful attacks decreased significantly to about 5%, indicating that the decentralized and
tamper-resistant nature of blockchain effectively enhances the security of the system and
reduces the success rate of malicious attacks. Although blockchain introduces additional
computational overhead and slightly increases the resource burden on the server, this cost
is acceptable in terms of improving system security. The results of multiple comparative
experiments are consistent, further verifying the stability and effectiveness of blockchain in
enhancing the system’s ability to resist attacks. This shows that the use of blockchain in
MEC systems not only significantly improves data security and tamper resistance, but also
helps to enhance the overall defensive performance of the system.
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The experimental results shown in Figure 10 indicate that the introduction of
blockchain technology significantly improves the security and stability of the system.
First, in terms of data integrity verification, after using blockchain, the number of verifi-
cation failures is greatly reduced. Without blockchain, the number of verification failures
is high, with an average of 20 verification failures per experiment. After the introduction
of blockchain, this number drops to about two. This shows that the immutability and
encryption technology of the blockchain significantly improves the credibility of the data,
effectively preventing data from being tampered with or damaged during transmission
and storage, thereby improving the security of the system. On the other hand, the success
rate of identity verification has also improved significantly. Without the blockchain, the
average number of successful identity verifications was 80, while after using the blockchain,
this number increased to 98. The decentralized identity authentication mechanism of the
blockchain reduces the risk of forgery and unauthorized access, thereby greatly improving
the reliability of identity verification.
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Figure 10. Impact of blockchain on resource information.

From the perspective of system resource utilization and task scheduling, although the
blockchain introduces additional computational overhead (approximately 10% overhead),
the experimental results, as shown in Figure 11, show that the overall performance of the
system remains good. Without the blockchain, the system’s server resource utilization is
high, with an average resource utilization rate of 92%. However, with the blockchain, the
resource utilization rate decreases slightly to 90%, but this does not significantly affect
the operating efficiency of the system. At the same time, task latency increased after the
introduction of the blockchain, but the increase was limited, with latency increasing from an
average of 1.5 times to 2 times when the blockchain was not used. This shows that although
the blockchain brings certain computational overheads and latency, its negative impact
on the system is relatively small, and its improved security, especially in terms of data
protection and identity authentication, more than makes up for these effects. Therefore, the
blockchain not only effectively enhances the security of the system, but also maintains high
resource utilization efficiency and task execution capabilities.



Appl. Sci. 2025, 15, 4048 24 of 28

Appl. Sci. 2025, 15, x FOR PEER REVIEW 25 of 30

Figure 10. Impact of blockchain on resource information.

From the perspective of system resource utilization and task scheduling, although 

the blockchain introduces additional computational overhead (approximately 10% over-

head), the experimental results, as shown in Figure 11, show that the overall performance 

of the system remains good. Without the blockchain, the system’s server resource utiliza-

tion is high, with an average resource utilization rate of 92%. However, with the block-

chain, the resource utilization rate decreases slightly to 90%, but this does not significantly 

affect the operating efficiency of the system. At the same time, task latency increased after 

the introduction of the blockchain, but the increase was limited, with latency increasing 

from an average of 1.5 times to 2 times when the blockchain was not used. This shows that 

although the blockchain brings certain computational overheads and latency, its negative 

impact on the system is relatively small, and its improved security, especially in terms of 

data protection and identity authentication, more than makes up for these effects. There-

fore, the blockchain not only effectively enhances the security of the system, but also main-

tains high resource utilization efficiency and task execution capabilities.

Figure 11. Impact of blockchain on resource utilization and task latency.

The above experiments systematically analyze the impact of blockchain technology 

on key aspects such as attack defense, data integrity and authentication, and resource uti-

lization and task latency, and comprehensively evaluate the role of blockchain in improv-

ing system security and overall performance. First, in terms of attack defense, the distrib-

uted architecture of the blockchain significantly enhances the system’s resistance to mali-

cious attacks, especially against DDoS attacks and data tampering. Experimental results 

show that when blockchain is not used, the system is successfully invaded an average of 

15 times in 50 simulated attacks, with a success rate of 30%, while after the introduction 

of blockchain, the number of successful attacks significantly reduced to 2.5 times, and the 

success rate of attacks is reduced to 5%, effectively improving the system’s defense capa-

bilities and reducing the risk of data breaches and service disruptions. In terms of data 

integrity and identity verification, blockchain ensures data integrity and the authenticity 

of user identity by leveraging its tamper-resistant data and decentralized verification 

mechanism. Experiments have shown that the blockchain-based identity verification so-

lution reduces the risk of identity forgery and data tampering by 60%, and there has been 

Figure 11. Impact of blockchain on resource utilization and task latency.

The above experiments systematically analyze the impact of blockchain technology on
key aspects such as attack defense, data integrity and authentication, and resource utiliza-
tion and task latency, and comprehensively evaluate the role of blockchain in improving
system security and overall performance. First, in terms of attack defense, the distributed
architecture of the blockchain significantly enhances the system’s resistance to malicious at-
tacks, especially against DDoS attacks and data tampering. Experimental results show that
when blockchain is not used, the system is successfully invaded an average of 15 times in
50 simulated attacks, with a success rate of 30%, while after the introduction of blockchain,
the number of successful attacks significantly reduced to 2.5 times, and the success rate
of attacks is reduced to 5%, effectively improving the system’s defense capabilities and
reducing the risk of data breaches and service disruptions. In terms of data integrity and
identity verification, blockchain ensures data integrity and the authenticity of user identity
by leveraging its tamper-resistant data and decentralized verification mechanism. Experi-
ments have shown that the blockchain-based identity verification solution reduces the risk
of identity forgery and data tampering by 60%, and there has been no data inconsistency
during multiple verification processes, which proves its high reliability in sensitive data
protection and access control.

In terms of resource utilization and task latency, although blockchain introduces
additional computing and communication overheads (about 10%), the overall system
performance remains at a high level, and there is no significant impact on task execution
efficiency and resource consumption. The experimental results show that when blockchain
is not used, the average resource utilization of the system is 92%, while after blockchain
is introduced, the resource utilization rate decreases slightly to 90% due to the additional
computing consumption, but it is still at a high level, indicating that blockchain has a limited
impact on the system’s computing resources. In addition, task latency increased after the
introduction of blockchain, from an average of 1.5 times when blockchain was not used to
2 times, an increase of about 3%. However, the overall latency fluctuation range remained
stable within a reasonable range, and did not significantly affect task scheduling efficiency.
It is worth noting that although blockchain technology has brought about a slight increase
in computing and time overheads, its improvement in data security and authentication
reliability has more than compensated for the negative impact of these overheads on system
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performance. To sum up, while significantly enhancing system security and improving
data protection and authentication accuracy, blockchain technology can still maintain high
resource utilization efficiency and controllable task execution latency, demonstrating its
broad application prospects in high-security, distributed computing environments.

5. Conclusions
In this paper, a two-stage optimization algorithm (DSO algorithm) based on the com-

bination of a Stackelberg game and an auction mechanism is proposed for the problem
of resource allocation among servers, drones, and users, and blockchain technology is
introduced to enhance the security and transparency of the resource transaction process.
The algorithm first optimizes the resource pricing and allocation between the server and
the UAV through the Stackelberg game, and then further optimizes the resource transac-
tion between the UAV and the user through the auction mechanism, which realizes the
collaborative optimization between multiple levels and multiple subjects.

In order to verify the superiority of the DSO algorithm, we designed and carried out
a series of comparative experiments from the key indexes such as user utility function,
utility function optimization effect and algorithm convergence speed. The experimental
results show that the DSO algorithm significantly outperforms the traditional resource
allocation algorithm in several performance metrics. Specifically, the experimental data
on the change in utility function over time show that the DSO algorithm is able to achieve
higher utility values with fewer iterations and maintain the stability of the results in a
dynamic environment. Meanwhile, the comparison results of convergence speed show
that the DSO algorithm converges significantly faster than other baseline algorithms, and
exhibits significant advantages in resource allocation efficiency and computational com-
plexity. This indicates that the DSO algorithm not only allocates resources more efficiently,
but also realizes the global optimal solution more quickly in complex environments, thus
effectively improving the response speed and service quality of the system.

In future research on UAV-assisted MEC security frameworks, possible directions of
work include achieving adaptive resource allocation through machine learning to improve
the system’s dynamic adaptive capability; using blockchain technology to solve scalability
issues, optimizing the consensus mechanism and combining with second-layer solutions
to improve throughput; enhancing privacy protection and security, such as combining
differential privacy and quantum cryptography algorithms; optimizing network slicing
and load balancing to improve resource scheduling efficiency; and research on multi-UAV
collaboration and group intelligence to improve computational task scheduling and air–
ground collaboration to ensure efficient system operation and anti-attack capability. These
directions will provide the UAV-assisted MEC framework with enhanced performance,
security, and scalability, and promote its extensive development in practical applications.

Despite the significant theoretical advantages of the proposed UAV-assisted MEC secu-
rity framework, its practical implementation faces many challenges. First, the combination
of machine learning and blockchain requires a large amount of computational resources
and efficient algorithm design, which may lead to an increase in system complexity and
computational burden; second, the enhancement of privacy protection and security may
affect the system’s responsiveness and energy efficiency, especially in large-scale UAV
collaboration environments; furthermore, the dynamic optimization of network slicing and
load balancing requires highly accurate real-time monitoring and scheduling, which in
a multi-user, dynamic environments may be difficult to achieve. Nevertheless, with the
development of 5G and future 6G networks and the advancement of intelligent algorithms,
the proposed approach has great potential to provide solutions for efficient and secure
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edge computing in real-world applications such as drone swarm collaboration, smart cities,
disaster relief, and telemedicine.
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