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Abstract: Recently, the lack of expansion joint gaps on highway bridges in Korea has been increasing.
In particular, with the increase in the number of days during the summer heatwave, the narrowing
of the expansion joint gap causes symptoms such as expansion joint damage and pavement blow-up,
which threaten traffic safety and structural safety. Therefore, in this study, we developed a machine
vision (M/V)-technique-based inspection system that can monitor the expansion joint gap through
image analysis while driving at high speed (100 km/h), replacing the current manual method that
uses an inspector to inspect the expansion joint gap. To fix the error factors of image analysis that
happened during the trial application, a machine learning method was used to improve the accuracy
of measuring the gap between the expansion joint device. As a result, the expansion gap identification
accuracy was improved by 27.5%, from 67.5% to 95.0%, and the use of the system reduces the survey
time by more than 95%, from an average of approximately 1 h/bridge (existing manual inspection
method) to approximately 3 min/bridge. We assume, in the future, maintenance practitioners can
contribute to preventive maintenance that prepares countermeasures before problems occur.

Keywords: bridge; expansion joint; joint gap; smart bridge maintenance equipment; sensor; struc-
tural health monitoring; line-scan camera; machine vision; machine learning

1. Introduction

The Korea Expressway Corporation is an institution that builds and maintains ex-
pressways in Korea, and the number of highway bridges in use reached about 9800 as of
2020. Recently, the number of narrow expansion joint gap occurrences has been increasing.
It increased the most in 2018, when the number of days of summer heat waves was the
greatest (see Figure 1, Table 1). If such a lack of expansion joint gap occurs, it may adversely
affect the structural behavior of the bridge and can be a major threat to traffic safety [1].
Considering the characteristics of the climate of Korea, which has four distinct seasons,
we can see that the importance of maintenance and the role of the bridge expansion joint
responding to temperature changes between the cold and hot seasons is growing very high.

The causes of narrow expansion joint gap occurrences vary. Representatively, there are
construction errors, inappropriate pre-setting, deformation of backfill, and alkaline silica
reaction; recently, abnormal high temperatures have also emerged as one of the causes.
The year 2018 had the highest number of heatwave days since 2013, and accordingly, the
number of cases of lacking bridge expansion joint gaps and pavement blow-up damage
rapidly increased. The Korea Expressway Corporation conducted a complete survey of
bridges under its management and found that narrow expansion joint gap occurred in
276 bridges (2.96% of the total of 9334 bridges). Table 2 presents the main causes of the
occurrence of narrow expansion joint gaps as analyzed through onsite investigations [2].
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occurrence of narrow expansion joint gaps as analyzed through onsite investigations [2]. 

Most importantly, after bridge expansion joint damages occur, a huge budget is re-
quired for maintenance, and restoration is virtually impossible unless the bridge is remod-
eled. Experience shows that the life-cycle costs of a bridge expansion joint, over the life of 
the bridge, are many times greater than the initial costs of supply and installation, espe-
cially when consequential impacts such as traffic disruption during replacement works 
are considered [3]. 

Therefore, to solve these problems, the overall design/materials/construction/mainte-
nance should be re-examined to supplement the relevant standards, but this has the prob-
lem of consuming a large amount of budget and time. Gaining a full understanding of the 
demands on the bridge’s expansion joints, and how well they are performing, can enable 
adjustments and maintenance measures to be tailored to maximize the length of the ser-
vice life with a minimum of maintenance effort [4–7].  
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Figure 1. Examples of major damage at road bridge expansion joint: (a) blow-up in road pavement, 
(b) lack of joint gap in expansion joint, (c) damage to wing wall of bridge abutment, and (d) damage 
by excessive bridge support movement. 

Table 1. Average annual temperature, average annual maximum temperature, and number of heatwave days (national). 
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Table 2. Analysis of causes of insufficient expansion joint gap. 

Figure 1. Examples of major damage at road bridge expansion joint: (a) blow-up in road pavement,
(b) lack of joint gap in expansion joint, (c) damage to wing wall of bridge abutment, and (d) damage
by excessive bridge support movement.

Table 1. Average annual temperature, average annual maximum temperature, and number of heatwave days (national).

Year 2011 2012 2013 2014 2015 2016 2017 2018
Recent

Average
(2011–2018)

Average
Year

(1981–2010)
Difference Ratio

Average
Temperature

(◦C)
24.0 24.7 25.4 23.6 23.7 24.8 24.5 25.4 24.5 23.6 +0.8 3.8%

Maximum
Temperature

(◦C)
36.7 38.7 39.2 37.9 38.7 39.6 39.7 41.0 38.9 37.5 +1.4 3.7%

Number of
Heatwave

Days (days)
14 15 18 6 10 22 14 32 14.2 9.8 +4.4 45%

Table 2. Analysis of causes of insufficient expansion joint gap.
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tise [10,11]. M/V is practically the only term used for these functions in industrial automa-
tion applications. It attempts to integrate existing technologies in new ways and apply 
them to solve real-world problems in a way that meets the requirements of industrial au-
tomation and similar application areas [10,12].  

The primary uses for M/V are imaging-based automatic inspection and sorting and 
robot guidance [13,14]. The imaging device (e.g., camera) can either be separate from the 
main image processing unit or combined with it, in which case the combination is gener-
ally called a smart camera or smart sensor [15,16]. While conventional (2D visible light) 
imaging is most commonly used, alternatives include multispectral imaging, hyperspec-
tral imaging, imaging various infrared bands, line scan imaging, 3D imaging of surfaces, 
and X-ray imaging [13]. We used the method of line scan imaging, which we think is most 
effective in technology that can automatically acquire images while driving at high 
speeds. [17–20]. 

One of the purposes of the research is to use a line-scan camera in M/V to record road 
surfaces as images with a resolution of 1.0 mm per pixel in a high-speed (100 km/h) envi-
ronment. Existing line-scanning cameras are used for the purpose of identifying counter-
feit bills and inspecting semiconductor wafers’ surfaces on belt conveyors, so they can be 
said to be the best technology for introducing to fast-moving vehicles on roads [21,22]. 
This is suitable for this study because it is free from the problem of lens distortion that 
may occur in an area-scan camera [23]. According to this study, we developed a survey 
system equipped with line-scan cameras, Global Positioning System (GPS), and a distance 
measurement instrument sensor (DMI) in the vehicle, and as a result, we could obtain a 
safe and accurate image without blocking the road [24–28]. 

Recently, deep-learning-based approaches [29] have been applied to many problems 
in various industrial and academic fields. Visual recognition tasks, which extract infor-
mation of interest from images, such as image classification [30], object detection [31], and 
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Most importantly, after bridge expansion joint damages occur, a huge budget is
required for maintenance, and restoration is virtually impossible unless the bridge is
remodeled. Experience shows that the life-cycle costs of a bridge expansion joint, over the
life of the bridge, are many times greater than the initial costs of supply and installation,
especially when consequential impacts such as traffic disruption during replacement works
are considered [3].

Therefore, to solve these problems, the overall design/materials/construction/maintenance
should be re-examined to supplement the relevant standards, but this has the problem
of consuming a large amount of budget and time. Gaining a full understanding of the
demands on the bridge’s expansion joints, and how well they are performing, can enable
adjustments and maintenance measures to be tailored to maximize the length of the service
life with a minimum of maintenance effort [4–7].

In this study, to detect problems and minimize the damage that may occur in the
bridge expansion joint at an early stage, an optimal inspection method was developed by
converting a vast number of bridge expansion joint gap maintenance inspection methods
from existing manual inspections to automated inspections. To this end, it was decided to
incorporate an M/V technique to switch from the existing manual inspection method of
the bridge expansion joint device to a precise high-speed inspection method.

M/V refers to the technology and methods used to provide imaging-based automatic
inspection and analysis for such applications as automatic inspection, process control, and
robot guidance, usually in industry. It refers to many technologies, software and hardware
products, integrated systems, actions, methods, and expertise.

Definitions of the term M/V vary, but all include the technology and methods used to
extract information from an image on an automated basis, as opposed to image processing,
where the output is another image. The information can be used for such applications as
automatic inspection, robot and process guidance in industry, security monitoring, and
vehicle guidance [8–10]. This field encompasses a large number of technologies, software
and hardware products, integrated systems, actions, methods, and expertise [10,11]. M/V
is practically the only term used for these functions in industrial automation applications.
It attempts to integrate existing technologies in new ways and apply them to solve real-
world problems in a way that meets the requirements of industrial automation and similar
application areas [10,12].

The primary uses for M/V are imaging-based automatic inspection and sorting and
robot guidance [13,14]. The imaging device (e.g., camera) can either be separate from the
main image processing unit or combined with it, in which case the combination is generally
called a smart camera or smart sensor [15,16]. While conventional (2D visible light) imaging
is most commonly used, alternatives include multispectral imaging, hyperspectral imaging,
imaging various infrared bands, line scan imaging, 3D imaging of surfaces, and X-ray
imaging [13]. We used the method of line scan imaging, which we think is most effective in
technology that can automatically acquire images while driving at high speeds. [17–20].

One of the purposes of the research is to use a line-scan camera in M/V to record
road surfaces as images with a resolution of 1.0 mm per pixel in a high-speed (100 km/h)
environment. Existing line-scanning cameras are used for the purpose of identifying
counterfeit bills and inspecting semiconductor wafers’ surfaces on belt conveyors, so they
can be said to be the best technology for introducing to fast-moving vehicles on roads [21,22].
This is suitable for this study because it is free from the problem of lens distortion that
may occur in an area-scan camera [23]. According to this study, we developed a survey
system equipped with line-scan cameras, Global Positioning System (GPS), and a distance
measurement instrument sensor (DMI) in the vehicle, and as a result, we could obtain a
safe and accurate image without blocking the road [24–28].

Recently, deep-learning-based approaches [29] have been applied to many problems in
various industrial and academic fields. Visual recognition tasks, which extract information
of interest from images, such as image classification [30], object detection [31], and semantic
segmentation [32], have been actively studied. In particular, CNN (convolutional neural
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networks) have shown successful results in many visual recognition applications. In this
study, models based on CNN and some deep learning techniques are applied to image
analysis problems to determine the distance between expansion joints. Two CNN models
are used to analyze the distance step by step. First, image classification categorizes images
semantically into sub-groups. An image-classification CNN extracts important image
features like texture cues and shape cues from each image, and a logistic regression [31]
distinguishes them between categories based on the extracted features. Successful studies
on image classification CNNs have been conducted focusing on the ImageNet benchmark
dataset [33], and some design patterns have been proposed to achieve technical goals such
as learning more complex patterns (ResNet) [34], light model weights (MobileNet) [35],
and efficient scalability (EfficientNet) [36]. These design patterns, called CNN architectures,
are applied to general image classification to reduce the need to design new models every
time. Second, semantic segmentation is the process of classifying each pixel in an image
belonging to a particular class. The recent success of CNN has also driven outstanding
progress in semantic segmentation [37–46]. Based on CNN architecture, the semantic
segmentation model extracts local contexts (a small area centered in a pixel to classify)
and global contexts (overall semantics of input image) from an image and reconstructs
contexts to create a class heatmap of the same size as the original image, which shows the
probability of which class each pixel is. Therefore, it can be thought of as a classification
problem for each pixel, considering local and global contexts.

Another purpose of the study is to develop software that measures gap width with
more than 90% accuracy in the road image of the survey so that many bridges can be
monitored quickly. Therefore, an algorithm was developed to measure the gap width after
first finding the expansion point in the road image using machine learning. As a result,
the identification accuracy was more than 95%, and the investigation time was reduced
by more than 95%, from an average of about 1 h/bridge (the inspector’s existing manual
inspection method) to about 3 min/bridge.

The main contribution of this study is to demonstrate the possibility of developing
smart maintenance techniques for road structures, in other words, the successful develop-
ment of a smart maintenance system that combines machine vision and machine learning
technology, for the following purposes: first, to ensure the traffic safety of vehicles on roads
that are already in use; and second, to obtain the condition of road structures at the level
the investigator wants with figures and accurate images.

The article is organized as follows:

• Section 2 introduces a system developed to survey the road surface while driving
at high speed (100 km/h) with a line-scan camera and an M/V imaging device. It
introduces operating equipment and explains the main functions and test results.

• Section 3 describes the adequacy review of pre-setting by surveying newly constructed
bridge construction joints with standard computer vision methods applied to the
initial system.

• Section 4 describes another detection mechanism that uses machine learning.
• Section 5 concludes the paper and proposes future work.

2. Development of Monitoring Technology for Bridge Expansion Joint Using
Line-Scan Cameras

Recently, the Korean government has been actively encouraging the introduction of
the latest structural safety inspection technologies through the revision of various laws
and regulations. For example, Annex 10 of the Enforcement Decree of the Special Act on
the Safety and Maintenance of Facilities was amended in March 2020 to newly establish
a provision for “appearance investigation and image analysis using new technology or
inspection robot, etc.”. In other words, new technology can be applied for structure
inspection. Further, the revision of Article 167 of the Occupational Safety and Health Act
emphasized the safety management of internal employees by strengthening the punishment
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standards for employers (a maximum fine of $100,000 USD) in case of workplace accidents
caused by negligence in worker safety management [1,2].

As a result, the structure management conditions of the Korea Expressway Corpo-
ration are becoming increasingly strict. The establishment of facility and performance
evaluation following the revision of the Special Act on Safety and Maintenance of Facilities
newly necessitated the performance evaluation of 2611 Type 3 facilities (bridges) and
4626 structures. As a result, structural inspectors performed 25,219 regular safety inspec-
tions, 2205 precise safety inspections, and 258 precise safety diagnoses in 2020, including
in-house and external services. A shortage of management personnel is arising owing to
this excessive workload (see Table 3).

Table 3. Number of structural inspections (2020).

Safety Management Sum Bridges Tunnels Box Culverts

Sum (EA) 27,682 15,636 2118 9928

Regular safety inspection 1 25,219 13,648 1643 9928

Precision safety inspection 2 2205 1783 422 -

Precision safety diagnosis 258 205 53 -
1 Regular safety inspection: an average of approximately 450 EA/yr/branches performed by the structural staff.
2 Precision safety inspection (2020): self-manpower performance (684EA), performing external services (1521EA).

Given that the stricter structure management conditions are imposing greater demands
on manpower, it is crucial to promote inspection methods and smart technologies that can
replace manpower.

The Korea Highway Corporation Road Traffic Research Institute analyzed past safety
inspection and technical advice data and found that 78.3% of expansion joint devices that
had to be replaced lacked a gap. Since 2016, we have been researching monitoring methods
to preemptively maintain a suitable gap between expansion joints [2].

For this purpose, by integrating high-speed line-scan cameras, which are widely
used in various fields such as semiconductor inspection and road pavement investigation,
image-processing technology to determine the length of expansion and contraction through
AI-based (i.e., machine learning) image sensing in the analysis process, and automatic
control technology, we developed the Nonstop bridge EXpansion joint gap measuring
Utility System (NEXUS) to measure the distance between expansion joints with 1.0 mm
resolution while driving at a high speed of 100 km/h [1] (see Figure 2).
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Existing methods manually measure the gap in highway bridge expansion joints
through traffic control and partial blockage. By contrast, the proposed method uses a high-
speed line-scan camera mounted on a vehicle driving at 100 km/h to acquire an image
across a 40 cm-wide car lane. This system uses the geographical information system data
of the bridge (above, longitude coordinate system) to perform automatic measurements
in conjunction with the mounted GPS while driving at high speed and thereby creates a
database of the expansion gaps based on accurate survey images without affecting the
traffic flow. In this study, a test survey was conducted on approximately 5000 bridges
along the highway, and the analysis results were used for big-data-based machine learning
for developing algorithms to accurately determine the length of the expansion joint gap
depending on its type and site conditions (see Figure 3) [45–62]. The NEXUS system and
the on-site test survey introduction is available on our YouTube channel [63].
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The use of the NEXUS for performing automatic surveys of the bridge expansion joint
device gap while driving at high speed reduces the survey time by more than 95%, from
an average of approximately 1 h/bridge (existing manual inspection method) to approxi-
mately 3 min/bridge. In addition, if the accumulated gap is monitored and preemptive
maintenance is performed before gap narrowing occurs, it can eliminate the risk factors in
the future temperature expansion behavior of the bridge and contribute to traffic safety
and cost reductions.

3. Initial Gap Measurement and Evaluation of New Bridge Expansion Joint Device

Previously, it was difficult to use data when necessary, as they were managed in the
form of reports and fields. By contrast, by using the NEXUS device, initial data can be
accumulated, and the adequacy of highway bridge expansion joints can be checked and
evaluated online at any time. To confirm this, we tested the initial data for the adequacy of
the pre-setting after 300 days, when the initial drying shrinkage and creep deformation
roughly converge; in this regard, it can be beneficial to use the initial gap database (D/B)
for the three routes completed at the end of 2016. As the pre-setting of the expansion joint
device is not consistent with the daily average temperature during winter and summer
at the time of construction, it is essential to adjust the gap in advance such that it has an
intermediate value at the reference temperature (average daily temperature of 15 ◦C).
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The route to be investigated has 302 expansion joint devices of three types, namely,
rail type, steel finger type, and mono cell type (see Table 4). We converted the expansion
gap and average temperature (obtained from the Korea Meteorological Administration)
at 15 ◦C during the investigation and evaluated the adequacy of the pre-setting. After
analyzing the initial values of the new bridges, we investigated some bridges that were not
properly preset, potentially due to lacking gaps during summer (35–40 ◦C) or excessive
gaps during winter (−15 ◦C) (see Figures 4 and 5).

For example, the design temperature range ∆T is from −5 ◦C to 35 ◦C in the pre-
stressed concrete girder type expansion bridge design movement calculation standard.
Therefore, the reference temperature for pre-setting can be seen as 15◦C, which is the
median temperature. In fact, the temperature at the time of construction of the new joint
is under various temperature environments, not 15 ◦C, so pre-setting is performed at the
time of installation to increase or decrease the spacing at the time of installation. The y-axis
“Percentage of the capacity of the new joint” is to ensure that pre-setting was performed
properly at the time of construction:

(1) After examining the joint gap and the average daily temperature on any day,
(2) The joint gap converted into the reference temperature of 15 ◦C is expressed as a

percentage of the capacity of the new joint.

This value means the following:

(a) If it is close to 50%, it means that it is installed in the middle of the absolute value of
the joint gap. (If it is an expansion and contraction joint with a capacity of 100 mm, it
represents 50 mm when the joint gap is 15 ◦C, which is the reference temperature.)

(b) If it is near 10%, it means that it is installed at a small value of the absolute value of
the joint gap. (In the case of an expansion joint with a capacity of 100 mm, it shows
10 mm when the joint gap is 15 ◦C, which is the reference temperature, so the joint
gap is insufficient in summer.)

(c) If it is near 90%, it means that it is installed at a large value of the absolute value of
the joint gap. (If it is a 100 mm stretchable joint, it is 90 mm when the joint gap is
15 ◦C, which is the reference temperature, so the gap is exceeded in winter.)

As such, if it is possible to investigate and analyze the expansion joint device gap
while driving, without blocking a separate route, from the beginning, and to convert it into
D/B in the bridge management system, by monitoring the changing trend, it is possible
to take preemptive measures in case of emergency (such as when the gap narrows in a
short time).

Table 4. Bridge expansion joint devices installation status.

Division Total Rail Type Steel Finger Type Mono Cell Type

Total
302 places 169 places 128 places 5 places

100% 56% 42% 2%

lane A
171 places 98 places 71 places 2 places

100% 57% 42% 1%

lane B
131 places 71 places 57 places 3 places

100% 54% 44% 2%
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Figure 5. False-detection case of expansion joint gap.

4. Advanced Identification of Expansion Gap Using Machine Learning

Expansion joints device has different details for each development and sales company,
and typical expansion joint devices constructed on road bridges in South Korea include
mono cell type, finger type, and rail type. Table 5 lists the types of expansion joint devices
installed on highway bridges in South Korea as of 2014.

Table 5. Expansion joint device installation status (2014).

Installation Sum Mono Cell
Type

Finger
Type

Rail
Type Others

EA 14,784 7793 1786 4228 977

Prop (%) 100 53 12 29 7

The analysis of the expansion joint gaps of 4821 bridges and 12,825 devices on the
highway mainline from 2017 to 2019 using NEXUS equipment revealed various types
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of expansion joint devices and gap identification errors depending on the condition of
the expansion joint device body installed in the field. False-detection errors include the
case of erroneously identifying another gap in the expansion joint body as a gap and
the case of detecting a specific part of the road surface (portholes, repair marks, cracks,
etc.). On average, the gap identification accuracy was 67.5%; that for the finger type with
a complex shape was the lowest at 51% (see Table 6, Figure 5). False detections were
attributed to limitations of the traditionally coded image analysis algorithm. Therefore, the
image identification method must be improved using machine learning, as it is superior to
traditional coding.

Table 6. Gap identification accuracy by type of expansion joint (2017–2019).

Discrimination
(%)

Average
(%)

Mono Cell
Type

Finger
Type

Rail
Type Others

Accuracy 67.5 71 51 87 61

Loss 32.5 29 49 13 39

We aimed to overcome the limitations of the traditional gap identification algorithm.
Machine learning can be used to learn previously investigated images as big data, and
to thereby identify the expansion joint device from an input image and more accurately
determine the gap value. The input image obtained using the NEXUS equipment was
recorded as multiple 10,000 × 1024 pixels images, depending on the irradiation distance.
The image analysis system consisted of cascaded AI vision modules, in which the work
process analyzed high-resolution input images for realizing effective calculations. The
AI process involves the following steps: original image input > expansion joint area
extraction AI network (classification) > expansion joint area image area (cropping) input >
gap extraction AI (segmentation) > gap measurement (algorithm) (see Figure 6).
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To measure the gap value, the position of the expansion joint device must be specified
in the image. Further, for achieving high measurement accuracy, the expansion joint device
needs to be recognized at the pixel level. This can be done using image segmentation
methods used in computer vision. Further, a deep learning model with extensive data
learning is used for problems with large changes in illuminance, angle, image shape, and
noise generation, such as road environments.

The AI machine learning model for expansion joint device discovery was implemented
to solve the classification problem using CNN as a feature extractor. The original image with
a size of 10,000 × 1024 pixels was cut into an image patch with a size of 1000 × 1024 pixels
to be inputted to the AI model with minimal distortion. Then, 19 image patches were
generated for each line-scan image, and classification was performed to find the image
patches in which the expansion joint device exists (see Figure 7).
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Figure 7. Image segmentation and classification to search for expansion joint device.

To find the point with the minimum gap distance, it is necessary to precisely segment
the gap region from the image patch where the expansion joint device appears. The AI ma-
chine learning model for gap region extraction used U-Net, a representative segmentation
model. The first AI model generated and learned training data by labeling pixels in the
corresponding area to extract metal parts with characteristic textures from the line-scan
images of the expansion joint device. The second AI model was trained to find the gap
region between the extracted joint devices (see Figure 8).
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After obtaining a binarized image with the gap region and the background, we
found the point with the minimum gap distance. The minimum gap distance in pixels
was converted to the final gap value in millimeters by multiplying the information in
millimeters per pixel.

4.1. AI-Based Image Analysis

Line-scan images obtained using NEXUS were converted into high-resolution digital
images with a length and width of 10,000 and 1024 pixels, respectively. The unit length
(mm) of the pixels can be calculated by considering the vehicle speed at the time of the
shooting. If the expansion joint device can be measured in pixels, the actual value of the gap
distance can be inferred within the error range. Therefore, recognizing the position of the
expansion joint device in the line-scan image using a program and accurately measuring
the size of the gap in pixels determine the measurement accuracy.

To perform highly accurate analyses, a large number of line-scan images were trained
using deep learning. To efficiently analyze high-resolution input images, cascade-type
analysis procedures were configured. The analysis involved the following steps: (1) ul-
trafast line-scan image input, (2) extraction of small image patches in a square matrix,
(3) recognition of expansion joint device among the image patches, (4) expansion gap
division, and (5) gap distance analysis and actual value calculation (see Figure 9).
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4.2. Expansion Joint Device Recognition

Line-scan images have a high resolution of more than 10,000,000 pixels and require
considerable memory and computational resources when being analyzed using a deep
neural network. Therefore, it is necessary to divide the image into small image patches
for realizing effective computations. Through the window sliding method, images were
extracted every 1000 pixels in the longitudinal direction to generate a total of 19 image
patches with a size of 1000 × 1024 (see Figure 10). Each image patch is again converted to
a size of 224 × 224 pixels and subjected to binary classification.
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Figure 10. Line-scan image segmentation to search for expansion joint devices.

Each image patch is again converted to a size of 224 × 224 pixels for binary classifica-
tion. By using a CNN, an effective neural network for image analysis, we labelled patches
with the expansion joint device as y = 1 and patches without the expansion joint device as
y = 0 and classified them by logistic regression. The logistic regression followed by CNN
infers the probability P that there is an expansion joint in the image patch. The error of
the model prediction for each image patch is calculated with binary cross entropy [64–69],
which compares each of the predictions to the actual class, which can be either 0 or 1. The
errors of each set of training data are summed up. In stochastic gradient methods [70–77],
the cost and sum of errors is used to update current model parameters to reduce the dis-
tance from the optimal point in the parameter space. The equation of binary cross entropy
is shown as follows:

L = −ylogP− (1− y)log(1− P) (1)
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Because class imbalance exists in a ratio of 1:9, a weight is assigned to each class.

Lweighted = −ε× ylogP− µ× (1− y)log(1− P) (2)

where ε = 9.0 , µ = 1.0.
The cost function J is calculated by averaging the errors for N training data and adding

the L2 regularization to reduce overfitting [78–85] of the model.

J =
1
N ∑N

j=1 Lj
weighted + λ|w|2 (3)

where λ = 10−4.
The gradient descent method updates the model parameters in the direction of reduc-

ing the cost function J as follows:

w ⇐ w − α · g (4)

where α = 10−4, g = ∂J
∂w .

We tested ResNet, MobileNet, and EfficientNet, all of which are well-known CNN
architectures [22–24]. Gradient vanishing is more likely to occur as the layers of the deep
learning model deepen, and ResNet solved this problem by performing residual learning
using skip connection. The structure obtained high accuracy compared to the scale of the
model. MobileNet proposed a depth-wise separable convolution that reconstructed the
existing convolution method to reduce the computational amount of the model. Compared
to the popular models at the time of proposal, the amount of computation was significantly
reduced, and the same accuracy was maintained. EfficientNet, which empirically reports a
methodology to increase model complexity to improve performance, updated the state of
the art for benchmark datasets.

We trained the three models to a binary classification of expansion joints and non-
expansion joints (see Figure 11). Through the test, the EfficientNet model showed the
highest performance, with recognition accuracy of 97.57% for the expansion joint device.
Further, it was better to start learning from randomized initial parameters than through
transfer learning for ImageNet. This is because the analysis image has different characteris-
tics from the general characteristics of ImageNet. We employed EfficientNet for expansion
joint detection, as it has the highest accuracy.
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4.3. Expansion Joint Gap Segmentation

Even if the image patch of the expansion joint is extracted from the line-scan image,
image segmentation is required within the detected image to accurately measure the
expansion gap. Image segmentation is a pixel-level classification that deduces the class
each pixel belongs to (i.e., expansion joint device or background). A masking image
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representing the pixel corresponding to the expansion joint device can be generated by the
image segmentation algorithm.

Figure 12 shows the image patch (left) and correct mask (right) of the expansion joint
device. The neural network structure receives image patches as an input and performs
binary classification of the individual pixels. The deep learning model receives image
patches as the input and learns to predict a masking that is close to the correct answer. In
this case, the class of a pixel should be determined by considering the global and local
characteristics of the image rather than individual pixel values.
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Figure 12. Image of flexible expansion joint and mask of correct answer: (a) original image,
(b) masked image.

This study uses a U-Net model, which was previously developed for sophisticated
analyses of organ lesions in the field of biomedical science [36]. U-Net is suitable for the
problem of precisely detecting the shape of the analysis target by simultaneously learning
the global and local information of the image. The structure of U-Net was modified to
develop EfficientNet, a neural network that extracts image information.

U-Net infers the probability that an arbitrary pixel is an expansion joint device and
learns the correct answer for each pixel from the correct answer masking. Therefore, the
prediction error for all pixels M of the image patch expressed as BCE is as follows:

Lpatch = ∑ Lpixel = ∑M
i=1(−yi log Pi − (1− yi) log(1− Pi)), i = 1, 2, 3, . . . , N (5)

The final cost function J is expressed by summing the mean error for N image patches
and the L2 regularization term:

J =
1
N ∑N

j=1

(
Lj

patch + λ|w|2
)

(6)

where λ = 10−4.
The gradient descent method updates model parameters in the direction of reducing

the cost function J as follows:
w ⇐ w − α · g (7)

where α = 10−4, g = ∂J
∂w .

We compared the performance between U-Net’s masking image and the correct
masking image in the test dataset. Table 7 shows the pixel-level classification performance
for the test set; the pixel precision of the expansion joint device was 96.61%, recall rate
was 94.38%, and f1-score was 95.49%. The f1-score of the expansion joint device pixel
detection was within 5%. In the post-processing process, by correcting the error of the
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predicted masking image of U-Net, the minimum gap point was detected, and the distance
was measured.

Table 7. Gap identification accuracy by type of expansion joint (2017–2019).

Accuracy by Type of Expansion Joint (%) Precision Recall f1-Score

Positive (pixels of expansion joints) 96.61 94.38 95.49

Negative (other pixels) 99.23 99.55 99.39

4.4. Gap Distance Analysis Algorithm

The texture of the pixels in the expansion gap area to be measured appears somewhat
irregular depending on the gap, foreign matter, and type of expansion joint device. Texture
irregularity is a factor that makes it difficult to distinguish pixels in the expansion gap area.

The metal surface constituting the expansion joint device has a consistent texture
compared to the gap region. This means that it is easier to extract the expansion joint
device than the gap area. Therefore, to analyze the gap distance, the expansion joint device
is extracted first, and the gap area is extracted again from the resulting image. Image
segmentation using U-Net was applied to both area extraction processes (see Figure 13).
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Because the U-Net output represents the probability that each pixel is a gap area, bina-
rization is performed by applying a threshold value of 0.5. When defining a binarization
function as a response, the formula to search the x-coordinate of the minimum gap is as
given below. Note that the same applies to rail-type expansion joint devices.

arg min
1≤x≤512

512

∑
y=1

response(x, y) (8)

The input and output of the U-Net model have the size of 512 × 512. By binarizing
the final output probability map, we search for the x-coordinate with the smallest number
of pixels with a value of 1. The number of pixels at the coordinates is the gap distance in
pixels, and the actual gap distance is obtained by multiplying the distance value per pixel.

(distance) = (# o f pixel) ∗
(

mm
pix

)
(9)

Figure 14 shows the pseudocode for obtaining the minimum gap distance from the
output probability map of U-Net.



Appl. Syst. Innov. 2021, 4, 94 15 of 20
Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 14. Pseudocode to obtain minimum gap distance from U-Net output. 

4.5. Gap Identification Verification 
Based on the abovementioned results of AI-based gap identification, we randomly 

selected 10,526 places among 12,825 expansion joint device big-data images obtained pre-
viously to determine the discrimination of the expansion joint device gap. After dividing 
and refining 10,526 line-scan images into 19 image patches, 289,495 sets of training data 
and 45,950 tests of the classification model were constructed. A total of 21,604 sets of train-
ing data and 4174 of test data of the segmentation model for measuring the expansion 
joint gap were refined. The results are presented below for each expansion joint device 
type. The result of the position where the minimum spacing was measured is indicated 
by a red line. For rail-type joints in which several gaps appear at once, the starting and 
end gaps of the part with the smallest actual gap value are indicated by red lines (see 
Figure 15). 

We used Python 3 and TensorFlow 2 to implement and train a deep learning model 
using CNN, and development frameworks such as TensorFlow and PyTorch support li-
braries for implementing popular CNN layers and to support learning using GPUs. 

We used a single NVIDIA Tesla V100 graphics card and Tensorflow to accelerate the 
training of the model. The EfficientNet B0 model for classification of expansion joints com-
pleted training in less than 30 epochs and took up to 4 h. A total of 259,495 training images 
and 30,000 validation images were used. Overall, 45,950 images for testing did not partic-
ipate in the training. The U-Net model for gap region extraction completed training in less 
than 20 epochs and took up to 4 h, and 19,304 training images and 2300 validation images 
were used, while 4174 images for testing did not participate in the training. 

In the environment for field application after training, one NVIDIA RTX 3070 
graphics card and Tensorflow were used. In one line-scan image (1024 × 10,000), it took 
an average of 0.6 s to find the expansion joint and measure the gap. 

After comparing the identification rate results from the existing traditional algo-
rithm, we found that the finger type, which had the lowest discrimination accuracy, im-
proved the most, by 41% to an accuracy of approximately 92%, and the overall average 
identification accuracy improved by 27.5% to 95%. Even though the identification accu-
racy was greatly improved, if a foreign substance existed inside the expansion gap, if a 
sealing agent was applied to the surface for preventing water leakage, if the body was 
damaged, and so on, these were included in the discriminant errors and manual correction 
would be required (see Table 8). 

Table 8. Accuracy of expansion gap identification using machine learning algorithm. 

Accuracy (%) Average 
Mono cell 

Type 
Finger 
Type 

Rail 
Type 

Others 

Conventional algorithm 67.5 71 51 87 61 
AI algorithm 

(machine learning) 
95 98 92 99 91 

Improvement rate ↑27.5 ↑27 ↑41 ↑12 ↑30 

Figure 14. Pseudocode to obtain minimum gap distance from U-Net output.

4.5. Gap Identification Verification

Based on the abovementioned results of AI-based gap identification, we randomly
selected 10,526 places among 12,825 expansion joint device big-data images obtained
previously to determine the discrimination of the expansion joint device gap. After dividing
and refining 10,526 line-scan images into 19 image patches, 289,495 sets of training data and
45,950 tests of the classification model were constructed. A total of 21,604 sets of training
data and 4174 of test data of the segmentation model for measuring the expansion joint gap
were refined. The results are presented below for each expansion joint device type. The
result of the position where the minimum spacing was measured is indicated by a red line.
For rail-type joints in which several gaps appear at once, the starting and end gaps of the
part with the smallest actual gap value are indicated by red lines (see Figure 15).

We used Python 3 and TensorFlow 2 to implement and train a deep learning model
using CNN, and development frameworks such as TensorFlow and PyTorch support
libraries for implementing popular CNN layers and to support learning using GPUs.

We used a single NVIDIA Tesla V100 graphics card and Tensorflow to accelerate the
training of the model. The EfficientNet B0 model for classification of expansion joints
completed training in less than 30 epochs and took up to 4 h. A total of 259,495 training
images and 30,000 validation images were used. Overall, 45,950 images for testing did not
participate in the training. The U-Net model for gap region extraction completed training
in less than 20 epochs and took up to 4 h, and 19,304 training images and 2300 validation
images were used, while 4174 images for testing did not participate in the training.

In the environment for field application after training, one NVIDIA RTX 3070 graphics
card and Tensorflow were used. In one line-scan image (1024 × 10,000), it took an average
of 0.6 s to find the expansion joint and measure the gap.

After comparing the identification rate results from the existing traditional algorithm,
we found that the finger type, which had the lowest discrimination accuracy, improved the
most, by 41% to an accuracy of approximately 92%, and the overall average identification
accuracy improved by 27.5% to 95%. Even though the identification accuracy was greatly
improved, if a foreign substance existed inside the expansion gap, if a sealing agent was
applied to the surface for preventing water leakage, if the body was damaged, and so on,
these were included in the discriminant errors and manual correction would be required
(see Table 8).

Table 8. Accuracy of expansion gap identification using machine learning algorithm.

Accuracy (%) Average Mono Cell
Type

Finger
Type

Rail
Type Others

Conventional algorithm 67.5 71 51 87 61

AI algorithm
(machine learning) 95 98 92 99 91

Improvement rate ↑27.5 ↑27 ↑41 ↑12 ↑30
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5. Conclusions

In this research, an automatic-image-recognition-based survey system was established
on road bridges and was successfully verified through field tests. In order to ensure
1.0 mm resolution performance per pixel in a high-speed (100 km/h) environment, M/V
technology using a line-scan camera was used, and accurate images could be obtained
almost in real time as a result of the test. Line-scan camera technology advances rapidly, so
using a better camera could further improve system performance.

Technological advances will promote the implementation of the M/V system and
lower maintenance costs. Therefore, one contribution of this research is providing a solution
that can apply the M/V system to road maintenance using line-scan cameras.

A survey system equipped with line-scan cameras, GPS, and DMI was designed to
perform automatic investigation when accessing the bridge while driving at high speeds.
The use of NEXUS for performing automatic surveys of the bridge expansion joint device
gap while driving at high speed reduces the survey time by more than 95%, from an
average of approximately 1 h/bridge (existing manual inspection method by an inspector)
to approximately 3 min/bridge. In addition, if the accumulated gap data is monitored and
preemptive maintenance is performed before gap narrowing (lack of joint gap) occurs, it
can eliminate the risk factors in the future temperature expansion behavior of the bridge
and contribute to traffic safety and cost reductions. This is the second contribution.

Measuring the bridge expansion joint gap through survey images has limitations in
traditional algorithmic methods. Images with various objects on the road surface and
shapes of various expansion joint devices are similar to big data. Therefore, by creating an
algorithm by artificial intelligence technology (machine learning), more accurate survey
values can be stably obtained. The machine learning model for searching for expansion
joint devices in survey images used Resnet as a feature extractor, and the representative
segmentation model for searching for the gap area used U-Net. These were used to solve
the classification problem. Testing with a random selection of 10,526 previously acquired
big data images indicated that the expansion gap identification accuracy was improved by
27.5%, from 67.5% to 95.0%. This is another contribution.

However, the main contribution of this study is to demonstrate the possibility of
developing smart maintenance techniques for road structures, in other words, the suc-
cessful development of a smart maintenance system that combines machine vision and
machine learning technology that serves the following purposes: first, to ensure the traffic
safety of vehicles on roads that are already in us; and second, to obtain the condition of
road structures at the level the investigator wants with figures and accurate images. This
requires satisfaction with vehicle traffic, customer safety, investigator convenience, and
traffic safety, so we believe that developing road maintenance technology should consider
much more complex problems than developing smart construction technology.

If this study intensifies in the future, we will be able to create a wider variety of smart
road maintenance systems based on this concept and our imagination.
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