
����������
�������

Citation: Song, J.; Kook, J. Visual

SLAM Based Spatial Recognition and

Visualization Method for Mobile AR

Systems. Appl. Syst. Innov. 2022, 5, 11.

https://doi.org/10.3390/asi5010011

Academic Editor: Ondrej Krejcar

Received: 7 December 2021

Accepted: 4 January 2022

Published: 5 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Visual SLAM Based Spatial Recognition and Visualization
Method for Mobile AR Systems
Jooeun Song 1 and Joongjin Kook 2,*

1 Department of Electronics Information System Engineering, Sangmyung University, 31 Sangmyungdae-gil,
Dongnam-gu, Cheonan-si 31066, Chungcheongnam-do, Korea; jueun5840@naver.com

2 Department of Information Security Engineering, Sangmyung University, 31 Sangmyungdae-gil,
Dongnam-gu, Cheonan-si 31066, Chungcheongnam-do, Korea

* Correspondence: kook@smu.ac.kr

Abstract: The simultaneous localization and mapping (SLAM) market is growing rapidly with
advances in Machine Learning, Drones, and Augmented Reality (AR) technologies. However, due
to the absence of an open source-based SLAM library for developing AR content, most SLAM
researchers are required to conduct their own research and development to customize SLAM. In this
paper, we propose an open source-based Mobile Markerless AR System by building our own pipeline
based on Visual SLAM. To implement the Mobile AR System of this paper, we use ORB-SLAM3 and
Unity Engine and experiment with running our system in a real environment and confirming it in the
Unity Engine’s Mobile Viewer. Through this experimentation, we can verify that the Unity Engine
and the SLAM System are tightly integrated and communicate smoothly. In addition, we expect to
accelerate the growth of SLAM technology through this research.

Keywords: mobile AR; markerless AR; SLAM; visual SLAM

1. Introduction

Simultaneous localization and mapping (SLAM) technology is gaining popularity in
Drones and Augmented Reality (AR) with advancement in 3D Graphics technology and
Machine Learning technology. As the demand for indoor applications increases, especially
where there are no existing maps, positioning technologies such as SLAM help technology
development in the robotics field. In addition, the use of SLAM in Visual SLAM algorithms
and AR has promoted the growth of the SLAM market [1]. Currently, open source solutions
for AR are not easily found in SLAM research fields. It burdens SLAM researchers as it
requires them to conduct their own research and development with a deep understanding
of similar systems when they build a SLAM-based AR system.

As shown in Figure 1, the SLAM system can be classified into direct SLAM and indirect
SLAM. Direct SLAM systems such as LSD-SLAM [2] are mainly used in the AR field while
Indirect SLAM systems such as ORB-SLAM [3] and Open-VSLAM [4] are being used in
the robot or autonomous driving field. However, as these SLAM libraries are open source
projects for general-purpose systems, it is somewhat difficult to implement AR contents on
commercial devices such as mobile devices or AR headsets. The SLAM-based AR systems
for commercial devices are provided in the form of platforms by companies such as Google,
Apple, Maxst, and Vuforia, making it difficult to customize.

In this paper, we design a markerless AR and data pipeline via ORB-SLAM3, which
can extract features in real time as it is the fastest among the existing open source SLAM
libraries and offers a compromise between the quality and the performance among the
modern SLAM systems, to implement a system that supports the development of AR
contents on mobile devices or AR headsets through markerless SLAM [5].

Appl. Syst. Innov. 2022, 5, 11. https://doi.org/10.3390/asi5010011 https://www.mdpi.com/journal/asi

https://doi.org/10.3390/asi5010011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/asi
https://www.mdpi.com
https://orcid.org/0000-0002-0033-388X
https://doi.org/10.3390/asi5010011
https://www.mdpi.com/journal/asi
https://www.mdpi.com/article/10.3390/asi5010011?type=check_update&version=1

Appl. Syst. Innov. 2022, 5, 11 2 of 9Appl. Syst. Innov. 2022, 5, x FOR PEER REVIEW 2 of 10

Figure 1. Direct SLAM and indirect (feature-based) SLAM.

In this paper, we design a markerless AR and data pipeline via ORB-SLAM3, which
can extract features in real time as it is the fastest among the existing open source SLAM
libraries and offers a compromise between the quality and the performance among the
modern SLAM systems, to implement a system that supports the development of AR con-
tents on mobile devices or AR headsets through markerless SLAM [5].

Chapter 2 of this paper describes the typical SLAM-based AR development tools and
the characteristics of ORB-SLAM3 used as the basis of the system proposed in this paper.
Chapter 3 describes the overall configuration of the mobile AR system designed based on
Visual SLAM and the functions of each component, and Chapter 4 shows the results of
the proposed SLAM system in a real mobile environment. Finally, Chapter 5 describes the
future development plans and expected effects for this study.

2. Related Works
Markerless AR using SLAM technology has greatly contributed to improving the us-

ability of AR contents, and in particular, various open source SLAM projects have made
it possible to use AR contents on various types of computing platforms.

2.1. Markerless AR
In the early days of AR, markers were used to connect the real world and the virtual

world, and German AR company Metaio has been leading the marker-based AR market
for years. Marker-based AR recognizes a marker from an image input through a camera
and displays an image or object matching the marker on an image output to a display
device. When detecting a marker with a simple pattern such as a QR code from the input
image of the camera, the position or direction of the marker is also calculated, and the
digital 3D content is visualized in the AR application to interact with the user. However,
marker-based AR clearly has technical limitations, such as requiring a promise for a
marker in advance and making tracking impossible when the camera leaves the marker.

In order to overcome the limitations of marker-based AR technology, SLAM technol-
ogy uses various sensors instead of markers to move in an arbitrary space and search for
information to estimate one’s location and create a map of the space has emerged [6].
Markerless AR recognizes objects by detecting feature points of objects or scenes without
prior knowledge of the environment, such as walls or intersections, and through this, 3D
content is placed in a specific location. The markerless AR technology has improved the
accuracy of image analysis due to the development of SLAM, a simultaneous positioning
and mapping technology, allowing various sensor data to detect surroundings and syn-
chronize the current position of the object in real time [7,8]. Representative SLAM-based
markerless AR development tools include Google’s ARCore, Apple’s ARKit, and Qual-
comm’s Vuforia. Google’s ARCore can be linked to OpenGL, Unity, and Unreal, and mo-
tion tracking, plane detection, and lighting estimation are possible. Apple’s ARKit is also
capable of motion tracking and plane detection, and with support for Unity and Unreal,
real-time video rendering is possible. Qualcomm’s Vuforia can recognize a single image
or multiple images and can recognize and track 3D objects.

Figure 1. Direct SLAM and indirect (feature-based) SLAM.

Section 2 of this paper describes the typical SLAM-based AR development tools and
the characteristics of ORB-SLAM3 used as the basis of the system proposed in this paper.
Section 3 describes the overall configuration of the mobile AR system designed based on
Visual SLAM and the functions of each component, and Section 4 shows the results of
the proposed SLAM system in a real mobile environment. Finally, Section 5 describes the
future development plans and expected effects for this study.

2. Related Works

Markerless AR using SLAM technology has greatly contributed to improving the
usability of AR contents, and in particular, various open source SLAM projects have made
it possible to use AR contents on various types of computing platforms.

2.1. Markerless AR

In the early days of AR, markers were used to connect the real world and the virtual
world, and German AR company Metaio has been leading the marker-based AR market
for years. Marker-based AR recognizes a marker from an image input through a camera
and displays an image or object matching the marker on an image output to a display
device. When detecting a marker with a simple pattern such as a QR code from the input
image of the camera, the position or direction of the marker is also calculated, and the
digital 3D content is visualized in the AR application to interact with the user. However,
marker-based AR clearly has technical limitations, such as requiring a promise for a marker
in advance and making tracking impossible when the camera leaves the marker.

In order to overcome the limitations of marker-based AR technology, SLAM tech-
nology uses various sensors instead of markers to move in an arbitrary space and search
for information to estimate one’s location and create a map of the space has emerged [6].
Markerless AR recognizes objects by detecting feature points of objects or scenes without
prior knowledge of the environment, such as walls or intersections, and through this, 3D
content is placed in a specific location. The markerless AR technology has improved the ac-
curacy of image analysis due to the development of SLAM, a simultaneous positioning and
mapping technology, allowing various sensor data to detect surroundings and synchronize
the current position of the object in real time [7,8]. Representative SLAM-based markerless
AR development tools include Google’s ARCore, Apple’s ARKit, and Qualcomm’s Vuforia.
Google’s ARCore can be linked to OpenGL, Unity, and Unreal, and motion tracking, plane
detection, and lighting estimation are possible. Apple’s ARKit is also capable of motion
tracking and plane detection, and with support for Unity and Unreal, real-time video
rendering is possible. Qualcomm’s Vuforia can recognize a single image or multiple images
and can recognize and track 3D objects.

2.2. ORB-SLAM3

Visual SLAM can be implemented using images acquired by either a camera or other
image sensor. It can be implemented at low cost using a relatively inexpensive camera and
support various cameras of Mono/Stereo/RGB-D method. Visual SLAM can be classified
into sparse type SLAM with a low map density and dense type SLAM with a high map

Appl. Syst. Innov. 2022, 5, 11 3 of 9

density. Additionally, Visual SLAM is ideal for sophisticated AR projects because maps can
be saved and later reloaded [9–11].

In this paper, the ORB-SLAM3 system proposed in 2020 was used, improving the
existing ORB-SLAM and ORB-SLAM2 among various visual SLAMs as shown in Figure 2.
It supports VIO (Visual Inertial Odometry) and multi-map [12,13].

Appl. Syst. Innov. 2022, 5, x FOR PEER REVIEW 3 of 10

2.2. ORB-SLAM3
Visual SLAM can be implemented using images acquired by either a camera or other

image sensor. It can be implemented at low cost using a relatively inexpensive camera
and support various cameras of Mono/Stereo/RGB-D method. Visual SLAM can be clas-
sified into sparse type SLAM with a low map density and dense type SLAM with a high
map density. Additionally, Visual SLAM is ideal for sophisticated AR projects because
maps can be saved and later reloaded [9–11].

In this paper, the ORB-SLAM3 system proposed in 2020 was used, improving the
existing ORB-SLAM and ORB-SLAM2 among various visual SLAMs as shown in Figure
2. It supports VIO (Visual Inertial Odometry) and multi-map [12,13].

Figure 2. Classification of the Visual SLAM Technologies.

ORB (Oriented FAST and Rotated BRIEF) feature is a representative real-time image
feature that improves the problem of the undirected FAST detector and greatly accelerates
the overall image feature extraction by using a very fast binary descriptor, BRIEF. ORB-
SLAM3 enables fast Edge extraction, and the main direction of the feature point is calcu-
lated by the ORB, and the rotation invariant property is added by the BRIEF descriptor.
In addition, a simple descriptor that well expresses the surrounding image area is gener-
ated at the location where the feature point is extracted, and most of the feature extraction
has excellent parallelism. Accordingly, it is suitable for the SLAM system that requires a
lot of real-time demand because it maintains the data characteristics and the scale invari-
ance and improves the speed.

Compared to ORB-SLAM2 proposed in 2017, ORB-SLAM3 as shown in Figure 3, the
most advanced library among current ORB-SLAMs, adds a model that uses IMU values
and a fisheye camera model to Mono/Stereo cameras. In addition, a multi-map manage-
ment function has been added, and by creating a new map when the tracker is lost, the
possibility of tracking failure is reduced, enabling continuous tracking, improving the
loop detection algorithm, and detecting previously visited locations with higher probabil-
ity.

Figure 2. Classification of the Visual SLAM Technologies.

ORB (Oriented FAST and Rotated BRIEF) feature is a representative real-time image
feature that improves the problem of the undirected FAST detector and greatly accelerates
the overall image feature extraction by using a very fast binary descriptor, BRIEF. ORB-
SLAM3 enables fast Edge extraction, and the main direction of the feature point is calculated
by the ORB, and the rotation invariant property is added by the BRIEF descriptor. In
addition, a simple descriptor that well expresses the surrounding image area is generated
at the location where the feature point is extracted, and most of the feature extraction has
excellent parallelism. Accordingly, it is suitable for the SLAM system that requires a lot of
real-time demand because it maintains the data characteristics and the scale invariance and
improves the speed.

Compared to ORB-SLAM2 proposed in 2017, ORB-SLAM3 as shown in Figure 3, the
most advanced library among current ORB-SLAMs, adds a model that uses IMU values and
a fisheye camera model to Mono/Stereo cameras. In addition, a multi-map management
function has been added, and by creating a new map when the tracker is lost, the possibility
of tracking failure is reduced, enabling continuous tracking, improving the loop detection
algorithm, and detecting previously visited locations with higher probability.

Appl. Syst. Innov. 2022, 5, 11 4 of 9Appl. Syst. Innov. 2022, 5, x FOR PEER REVIEW 4 of 10

Figure 3. ORB-SLAM3 System Structure.

3. Visual SLAM Based Mobile AR System
The mobile SLAM system proposed in this paper uses ORB-SLAM3, one of the open

source SLAMs, to data image-based spatial information, and uses Unity, which supports
cross-platform, as a means to visualize it. In order for them to be integrated into one on
Android to form a Mobile SLAM system, we need to provide some support.

3.1. Markerless AR System Design Using ORB-SLAM3
The overall structure of the mobile AR system based on Visual SLAM proposed in

this paper is shown in Figure 4, and it is divided into mobile devices and ORB-SLAM3
libraries.

Figure 3. ORB-SLAM3 System Structure.

3. Visual SLAM Based Mobile AR System

The mobile SLAM system proposed in this paper uses ORB-SLAM3, one of the open
source SLAMs, to data image-based spatial information, and uses Unity, which supports
cross-platform, as a means to visualize it. In order for them to be integrated into one on
Android to form a Mobile SLAM system, we need to provide some support.

3.1. Markerless AR System Design Using ORB-SLAM3

The overall structure of the mobile AR system based on Visual SLAM proposed in this
paper is shown in Figure 4, and it is divided into mobile devices and ORB-SLAM3 libraries.

Appl. Syst. Innov. 2022, 5, x FOR PEER REVIEW 5 of 10

Figure 4. Proposed Mobile AR System Structure.

The mobile device uses the built-in cameras of the Android device to collect image
data and uses the Android build module supported by the Unity Engine and the applica-
tion using the Android SDK and NDK to show the SLAM operation results. The open-
source ORB-SLAM3 library implemented in C++, was processed in the form of a plug-in
through Clang build of LLVM to use it in the C#-based Unity Engine, providing basic
SLAM functions such as mapping and localization.

3.2. Mobile Application with Unity
The existing ORB-SLAM3 uses Pangolin to visualize SLAM’s key frames, camera

poses, and point clouds, showing SLAM running with a pre-prepared data set. Pangolin
is a lightweight and fast 3D visualization library for managing OpenGL displays and ab-
stracting image input, which is widely used in computer vision as a means to eliminate
the platform-specific boilerplate and easily visualize data [14]. In this paper, to design a
SLAM system targeting the Android platform, the Unity Engine is used instead of Pango-
lin, and the API of the Unity Engine is used to control the camera and render the AR
contents. Unity Engine is an authoring tool that provides a development environment for
3D and 2D video games and an integrated development tool for the creation of the inter-
active contents such as 3D animation, architectural visualization, virtual reality, and AR.
It supports various platforms such as Windows, MacOS, iOS and Android. The Android
application acting as an AR viewer in this system, can be built and used targeting Android
by installing the Android build module, Android SDK and NDK tool supported by the
Unity Engine.

3.3. SLAM Design on Android
The overall work procedure in the mobile SLAM system is shown in Figure 5.

Figure 4. Proposed Mobile AR System Structure.

Appl. Syst. Innov. 2022, 5, 11 5 of 9

The mobile device uses the built-in cameras of the Android device to collect image data
and uses the Android build module supported by the Unity Engine and the application
using the Android SDK and NDK to show the SLAM operation results. The opensource
ORB-SLAM3 library implemented in C++, was processed in the form of a plug-in through
Clang build of LLVM to use it in the C#-based Unity Engine, providing basic SLAM
functions such as mapping and localization.

3.2. Mobile Application with Unity

The existing ORB-SLAM3 uses Pangolin to visualize SLAM’s key frames, camera
poses, and point clouds, showing SLAM running with a pre-prepared data set. Pangolin
is a lightweight and fast 3D visualization library for managing OpenGL displays and
abstracting image input, which is widely used in computer vision as a means to eliminate
the platform-specific boilerplate and easily visualize data [14]. In this paper, to design a
SLAM system targeting the Android platform, the Unity Engine is used instead of Pangolin,
and the API of the Unity Engine is used to control the camera and render the AR contents.
Unity Engine is an authoring tool that provides a development environment for 3D and 2D
video games and an integrated development tool for the creation of the interactive contents
such as 3D animation, architectural visualization, virtual reality, and AR. It supports various
platforms such as Windows, MacOS, iOS and Android. The Android application acting
as an AR viewer in this system, can be built and used targeting Android by installing the
Android build module, Android SDK and NDK tool supported by the Unity Engine.

3.3. SLAM Design on Android

The overall work procedure in the mobile SLAM system is shown in Figure 5.

Appl. Syst. Innov. 2022, 5, x FOR PEER REVIEW 6 of 10

Figure 5. System Workflow.

Continuous image data is collected using the camera of the mobile device. The cam-
era pose is approximately estimated by extracting the ORB feature for each image data
and by calculating the position of the feature point compared to the nearest key frame. To
create a map as similar as possible to the real environment by determining the correlation
with the real environment using the camera pose information, BA (Bundle Adjustment)
co-visibility graph, which indicates the relationship between key frames, was used, and a
regional map, which is the map data at the time the camera is looking at, is drawn. Loop
Closure Detection is performed on the local map to remove the accumulated drift; there
are too many map points in the global map obtained by adding all the local maps, so
localization is performed only with the camera pose, excluding the map points through
optimization. BA (Bundle Adjustment) uses a non-linear optimization library called g2o
to calculate the pose of the current frame as Motion-only BA, the pose of the recent key
frame as Local BA, and the overall optimization as Loop Closing’s pose graphing optimi-
zation and Full BA. All four optimizations are performed independently on different
threads. Motion-only BA optimizes only the current pose with the key points of the map
fixed, and Local BA optimizes the pose of the public visible key frame and the key points
visible in the corresponding pose when a new key frame occurs. Loop Closing performs
pose graph optimization in a way of optimizing only with the pose perspective, excluding
key points from the co-visibility graph, and then, the key frames and key points added
through Full BA are updated [12,13].

To make SLAM available in the Unity Engine where only dynamic libraries are avail-
able, the SLAM system is made into a library through Clang build of LLVM and processed
as a Unity plug-in. The complier-based LLVM helps to easily implement optimizations
regardless of the programming language at compile time, link time, and runtime [15].
Clang is a compiler frontend for C, C++, Objective-C, and Objective-C++ programming
languages that use LLVM as a backend [15]. It increases the convenience of development
by provides faster compilation speed and faster execution speed than GCC compiler, and
by providing more accurate error location and information. In order to use the function
that delivers the image along with the initialization function and setting values of the
SLAM system in the Unity Engine through the SLAM plugin created by Clang build, in
this paper, the Unity Engine’s [D11Import (“PluginName.d11”)] function is used, and the
required SLAM function is controlled by calling it. In this way, it is possible to implement
SLAM-based AR technology in the Unity Engine through the built-in SLAM plug-in.

Continuous image data collected from Android mobile devices is delivered to the
C++ SLAM library to provide pose data and point cloud data to the Unity Engine. Camera
pose data can represent camera movement in a 4 × 4 matrix, and point cloud data is 1 × 3
vector data representing the position in space. This makes sure that implementing visual-
ization of the current camera pose and surrounding environment are stored inside the
SLAM.

4. Experiments and Results

Figure 5. System Workflow.

Continuous image data is collected using the camera of the mobile device. The camera
pose is approximately estimated by extracting the ORB feature for each image data and
by calculating the position of the feature point compared to the nearest key frame. To
create a map as similar as possible to the real environment by determining the correlation
with the real environment using the camera pose information, BA (Bundle Adjustment)
co-visibility graph, which indicates the relationship between key frames, was used, and a
regional map, which is the map data at the time the camera is looking at, is drawn. Loop
Closure Detection is performed on the local map to remove the accumulated drift; there
are too many map points in the global map obtained by adding all the local maps, so
localization is performed only with the camera pose, excluding the map points through
optimization. BA (Bundle Adjustment) uses a non-linear optimization library called g2o to
calculate the pose of the current frame as Motion-only BA, the pose of the recent key frame
as Local BA, and the overall optimization as Loop Closing’s pose graphing optimization
and Full BA. All four optimizations are performed independently on different threads.
Motion-only BA optimizes only the current pose with the key points of the map fixed, and
Local BA optimizes the pose of the public visible key frame and the key points visible in
the corresponding pose when a new key frame occurs. Loop Closing performs pose graph

Appl. Syst. Innov. 2022, 5, 11 6 of 9

optimization in a way of optimizing only with the pose perspective, excluding key points
from the co-visibility graph, and then, the key frames and key points added through Full
BA are updated [12,13].

To make SLAM available in the Unity Engine where only dynamic libraries are avail-
able, the SLAM system is made into a library through Clang build of LLVM and processed
as a Unity plug-in. The complier-based LLVM helps to easily implement optimizations
regardless of the programming language at compile time, link time, and runtime [15]. Clang
is a compiler frontend for C, C++, Objective-C, and Objective-C++ programming languages
that use LLVM as a backend [15]. It increases the convenience of development by provides
faster compilation speed and faster execution speed than GCC compiler, and by providing
more accurate error location and information. In order to use the function that delivers
the image along with the initialization function and setting values of the SLAM system
in the Unity Engine through the SLAM plugin created by Clang build, in this paper, the
Unity Engine’s [D11Import (“PluginName.d11”)] function is used, and the required SLAM
function is controlled by calling it. In this way, it is possible to implement SLAM-based AR
technology in the Unity Engine through the built-in SLAM plug-in.

Continuous image data collected from Android mobile devices is delivered to the C++
SLAM library to provide pose data and point cloud data to the Unity Engine. Camera pose
data can represent camera movement in a 4 × 4 matrix, and point cloud data is 1 × 3 vector
data representing the position in space. This makes sure that implementing visualization
of the current camera pose and surrounding environment are stored inside the SLAM.

4. Experiments and Results

Table 1 shows the experiment environment and device specifications of this system.
Using the EuRoC MH03 dataset, the existing Pangolin viewer and the mobile viewer of the
Unity engine of this paper were compared. The EuRoC MH03 dataset is a visual inertial
data set collected from a Micro Aerial Vehicle (MAV), including stereo images, synchronized
IMU measurements, and accurate motion and structural measurements and it is recorded
as two pinhole cameras and an inertial sensor of Asctec Firefly hex-rotor drone [16]. The
existing Pangolin viewer was run in the Ubuntu environment, and the Android viewer of
the Unity engine of this paper was run in the Galaxy Note 20 Ultra 5G.

Table 1. Experiment Environment and Device Specifications.

System Type
Specification

OS CPU Memory

Desktop Computer Ubuntu 21.04 AMD Ryzen 5 3600X
8-Core Processor 3.79 GHz 16 GB

Mobile Device Android 10

Qualcomm Snapdragon 865+
ARM Cortex-A77 MP1 3.09 GHz
ARM Cortex-A77 MP3 2.42 GHz
ARM Cortex-A55 MP4 1.80 GHz

12 GB

Since the Pangolin viewer and the mobile viewer of the Unity engine used the same
EuRoC MH03 data set to visualize the SLAM system, the number of point clouds is the
same at about 32,000. The existing ORB-SLAM3 uses the Pangolin library to visualize the
SLAM system as shown in Figure 6a, and in this paper, the Unity engine is used to visualize
the SLAM system in the mobile environment. Compared with Figure 6a, Figure 6b shows
that the SLAM system can be visualized in the Android viewer the same as Figure 6a,
which is the existing viewer, although there is a difference in the size of the point cloud and
the shape of the entire map. If the point clouds of Figure 6a,b are represented by Meshlab
and RTABMap, the 3D visualization tools, they are expressed in 3D space as shown in
Figure 6c,d.

Appl. Syst. Innov. 2022, 5, 11 7 of 9

Appl. Syst. Innov. 2022, 5, x FOR PEER REVIEW 8 of 10

(a) (b)

(c) (d)

Figure 6. Visualization of SLAM; (a) Pangolin Viewer; (b) Mobile device; (c) 3D Visualization with
Meshlab, (d) 3D Visualization with RTABMap.

As shown in Table 2, the two viewers were specifically compared based on CPU us-
age, memory usage, battery consumption, resolution, and fps. When running the Pangolin
viewer, CPU usage was measured at 99% and memory usage was 23.1%, while when run-
ning the Android viewer of the Unity Engine, CPU and memory usage were measured to
be less, 28% and 8.3%, respectively. The battery consumption of the device was also low.
The resolution of each viewer was 1920 × 960 and 1280 × 720, and the fps was measured
as 30 fps and 25 fps, respectively.

Table 2. Comparison of Pangolin Viewer and Unity Engine’s Mobile Viewer.

Item Pangolin Viewer Mobile Device (Android)
CPU Usage 99% 28%

Memory Usage 23.1% 8.3%
Power Consumption High (149 W) Very low (1.3 W)

Resolution 1920 × 960 1280 × 720
Framerate 30 fps 25 fps

Through an experiment, it was confirmed that when the Android viewer of the Unity
Engine was used instead of the Pangolin viewer, CPU and memory usage was small, but
it took more time to visualize the SLAM system. In addition, it was confirmed that the
Unity Engine and the SLAM system are closely integrated to enable smooth communica-
tion, and a SLAM-based AR system that can track camera poses and receive Mapping and

Figure 6. Visualization of SLAM; (a) Pangolin Viewer; (b) Mobile device; (c) 3D Visualization with
Meshlab, (d) 3D Visualization with RTABMap.

As shown in Table 2, the two viewers were specifically compared based on CPU usage,
memory usage, battery consumption, resolution, and fps. When running the Pangolin
viewer, CPU usage was measured at 99% and memory usage was 23.1%, while when
running the Android viewer of the Unity Engine, CPU and memory usage were measured
to be less, 28% and 8.3%, respectively. The battery consumption of the device was also low.
The resolution of each viewer was 1920 × 960 and 1280 × 720, and the fps was measured
as 30 fps and 25 fps, respectively.

Table 2. Comparison of Pangolin Viewer and Unity Engine’s Mobile Viewer.

Item Pangolin Viewer Mobile Device (Android)

CPU Usage 99% 28%
Memory Usage 23.1% 8.3%

Power Consumption High (149 W) Very low (1.3 W)
Resolution 1920 × 960 1280 × 720
Framerate 30 fps 25 fps

Through an experiment, it was confirmed that when the Android viewer of the Unity
Engine was used instead of the Pangolin viewer, CPU and memory usage was small, but it
took more time to visualize the SLAM system. In addition, it was confirmed that the Unity
Engine and the SLAM system are closely integrated to enable smooth communication,
and a SLAM-based AR system that can track camera poses and receive Mapping and
Localization information was implemented. This shows that the foundation has been laid
to accelerate further SLAM research and development.

Appl. Syst. Innov. 2022, 5, 11 8 of 9

5. Conclusions

In this paper, we designed a SLAM-based AR system in a mobile environment with
good accessibility for the purpose of open source in order to reduce the burden of re-
searchers’ and to contribute to faster growth in the SLAM field. To this end, image data
was obtained using the camera on mobile devices, creating a d11 plug-in to use Tracking,
Local and Global Mapping, Loop Closure Detection, and Localization in the Unity engine,
and enabling SLAM function to be checked in the mobile applications.

In future works, we plan to expand to the area of recognizing objects through learning
of point cloud data and expressing 3D contents that match it and expand by adding content
related to the actual expression of AR content. In addition, we would like to build a
server based on this system to implement Collaborative SLAM among multiple clients to
increase efficiency by reducing development costs such as labor costs and development
time, and to improve the performance of SLAM in a mobile environment by implementing
computational functions such as Mapping and Optimization on servers and by showing
them in a mobile application. In addition, it is expected that more accurate localization will
be possible in real time by obtaining IMU data from the mobile camera and by drawing a
precise map.

Author Contributions: Conceptualization, J.S. and J.K.; methodology, J.S. and J.K.; software, J.S.;
validation, J.S. and J.K.; formal analysis, J.S.; investigation, J.S.; resources, J.S.; data curation, J.S. and
J.K.; writing—original draft preparation, J.S. and J.K.; writing—review and editing, J.K.; visualization,
J.S.; supervision, J.K.; project administration, J.K.; funding acquisition, J.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by a 2021 research Grant from Sangmyung University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. PR Newswire. Simultaneous Localization and Mapping Market Worth $465 Million by 2023-Exclusive Report by MarketsandMar-

kets(TM). 2018. Available online: https://search.proquest.com/docview/2149675668 (accessed on 20 December 2021).
2. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. TRO 2015, 31,

1147–1163. [CrossRef]
3. Sumikura, S.; Shibuya, M.; Sakurada, K. OpenVSLAM: A versatile visual slam framework. In Proceedings of the 27th ACM

International Conference on Multimedia, New York, NY, USA, 21–25 October 2019; pp. 2292–2295.
4. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM; Computer Vision—ECCV 2014; Springer

International Publishing: Cham, Switzerland, 2014; pp. 834–849.
5. SLAM for Unity. Available online: https://github.com/songjueun/SLAM-For-Unity.git (accessed on 27 December 2021).
6. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of

Simultaneous Localization and Mapping: Toward the Robust-Perception Age. TRO 2016, 32, 1309–1332. [CrossRef]
7. Chong, T.J.; Tang, X.J.; Leng, C.H.; Yogeswaran, M.; Ng, O.E.; Chong, Y.Z. Sensor Technologies and Simultaneous Localization

and Mapping (SLAM). Procedia Comput. Sci. 2015, 76, 174–179. [CrossRef]
8. Chen, C.; Chen, W.; Peng, J.; Cheng, B.; Pan, T.; Kuo, H.; Hu, M. A Real-Time Markerless Augmented Reality Framework Based

on SLAM Technique. In Proceedings of the 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks
& 2017 11th International Conference on Frontier of Computer Science and Technology & 2017 Third International Symposium of
Creative Computing (ISPAN-FCST-ISCC), Exeter, UK, 21–23 June 2017; IEEE: New York, NY, USA, 2017; pp. 127–132.

9. Merzlyakov, A.; Macenski, S. A Comparison of Modern General-Purpose Visual SLAM Approaches. 2021. Available online:
https://arxiv.org/abs/2107.07589 (accessed on 20 December 2021).

10. Di, K.; Wan, W.; Zhao, H.; Liu, Z.; Wang, R.; Zhang, F. Progress and Applications of Visual SLAM. Acta Geod. Cartogr. Sin. 2018,
47, 770–779. [CrossRef]

11. Gao, X.; Zhang, T. Introduction to Visual SLAM: From Theory to Practice; Springer: Singapore, 2021.
12. Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,

Visual-Inertial, and Multimap SLAM. TRO 2021, 37, 1–17. [CrossRef]

https://search.proquest.com/docview/2149675668
http://doi.org/10.1109/TRO.2015.2463671
https://github.com/songjueun/SLAM-For-Unity.git
http://doi.org/10.1109/TRO.2016.2624754
http://doi.org/10.1016/j.procs.2015.12.336
https://arxiv.org/abs/2107.07589
http://doi.org/10.11947/j.AGCS.2018.20170652
http://doi.org/10.1109/TRO.2021.3075644

Appl. Syst. Innov. 2022, 5, 11 9 of 9

13. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. TRO 2017,
33, 1255–1262. [CrossRef]

14. Pangolin. What is Pangolin; Retrieved 3 October 2021. Available online: https://github.com/uoip/pangolin (accessed on
24 January 2018).

15. Hsu, M. LLVM Techniques, Tips, and Best Practices Clang and Middle-End Libraries; Packt Publishing, Limited: Birmingham, UK, 2021.
16. Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC micro aerial vehicle

datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [CrossRef]

http://doi.org/10.1109/TRO.2017.2705103
https://github.com/uoip/pangolin
http://doi.org/10.1177/0278364915620033

	Introduction
	Related Works
	Markerless AR
	ORB-SLAM3

	Visual SLAM Based Mobile AR System
	Markerless AR System Design Using ORB-SLAM3
	Mobile Application with Unity
	SLAM Design on Android

	Experiments and Results
	Conclusions
	References

