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Abstract: As a result of the advancement in the fourth industrial revolution and communication
technology, the use of digital twins (DT) and federated learning (FL) in the industrial Internet of
Things (IIoT), the Internet of Vehicles (IoV), and the Internet of Drones (IoD) is increasing. However,
the deployment of DT and FL for IoV is challenging. In this survey, we focus on DT and FL for IIoT,
IoV, and IoD. Initially, we analyzed the existing surveys. In this paper, we present the applications of
DT and FL in IIoT, IoV, and IoD. We also present the open research issues and future directions.

Keywords: digital twins; Internet of Vehicles; federated learning; Internet of Drones; Industry 4.0;
cyber–physical system; next generation networks; industrial Internet of Things

1. Introduction

The fourth industrial revolution revolutionized the Internet of Things (IoT). This age
of the industrial revolution is also called the connected age [1]. The industrial revolution
started in 1780 with the introduction of the mechanization age. In 1870, the second revo-
lution, named the electrification age, was introduced. As a result of the advancement in
technology, Industry 3.0, also known as the automated age, was adopted in 1970. However,
with the introduction of IoT, Industry 4.0, also called the connected age, was fully utilized.
Because of increased interconnection and smart automation, Industry 4.0 envisions a fast
change in technology, industries, and social patterns and processes [2]. Industry 4.0, in
essence, is the trend toward automation and data sharing in manufacturing technologies
and processes such as cognitive computing [3], cyber–physical systems (CPSs) [4], the
industrial Internet of Things (IIoT) [5], cloud computing [6], indoor factories [7], IoT, and
artificial intelligence (AI). Figure 1 shows the evolution of the industrial revolution.
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Industry 4.0 uses technologies such as DT and FL. DT is the digital processing and
evaluation of an industry, smart city, or network. Intelligent manufacturing is composed
of six layers; the zero layer is called the manufactory area; the first layer is known as the
manufactory building; the second layer is infrastructure; the third layer is operations the
fourth layer is the smart manufactory; and the fifth layer is DT [8]. All these layers are
shown in Figure 2.
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1.1. Simulations

Across industries, simulations are used to test goods, systems, processes, and concepts.
Simulations are generally digital models created with computer-aided design software
tools and are frequently utilized during the design phase. These models can be constructed
in 2D or 3D to depict different aspects of a process or product, but they can also be created
with mathematical principles rather than computer-based representations. To analyze
results, the simulation introduces and tests many factors in the digital world or interface.

1.2. Digital Twins (DT)

A virtual representation that is constructed to accurately mirror an existing physical
thing is referred to as a DT. The physical thing is outfitted with sensors that generate
data regarding many elements of the device’s performance, such as on a wind turbine.
This information is subsequently sent to a processing system and applied to the digital
model. This DT may then be used to run simulations, analyze current performance, and
create prospective enhancements that can be transferred back to the real asset. A DT for
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non-physical processes and systems may also be developed, replicating the underlying
process or system, and allowing simulations to be undertaken using real-time data.

DT data is often obtained via Internet of Things (IoT)-connected devices, enabling the
gathering of high-level information that can subsequently be merged into the virtual model.

A DT is essentially a virtual environment in which ideas may be explored with little
constraints. With an IoT platform, the model transforms into an integrated, closed-loop
twin that can be utilized to inform and drive company strategy.

1.3. Differences between Simulations and DT

Although both simulations and DT employ digital models to imitate items and pro-
cesses, they have some fundamental distinctions. The most noticeable is that a DT generates
a virtual environment capable of studying several simulations, supported by real-time
data and a two-way communication flow between the twin and the sensors that gather
this data. This improves the accuracy of predictive analytical models, allowing for better
management and monitoring of products, regulations, and processes. A comparison of
simulations and DT is presented in Table 1.

Table 1. Comparison of simulations and DT.

Simulations DT

Data elements and interactions Static Active
Simulation basis Potential parameters input for testing Real-world feedback from a specific product/process

Scope Narrow—primarily design Wide—cross-business

1.4. Federated Learning (FL)

FL is defined as collaborative ML without centralized training data. In FL, the shared
prediction model learns collaboratively and keeps all training data on the local devices,
without storing all the information on a single server. FL provides several advantages, such
as smarter models, low latency, less power consumption, and privacy preservation. FL is a
new technology that enables phones to learn from other devices while keeping data private
and secure. It works as follows. First, the phone downloads a generic ML model. Then,
the phone personalizes and improves its model, and computes a summary of the changes.
Thousands of summaries are anonymously combined when phones are plugged in at night.
This provides a global improvement to the model, enabling it to work better for all users.
Thus, users benefit from having a smarter phone, and their data remain in users’ hands [8].
Figure 3 demonstrates FL.
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aggregated (B) to form a consensus change (C) to the shared model, after which the procedure is
repeated.



Appl. Syst. Innov. 2022, 5, 56 4 of 16

1.5. IIoT

The industrial Internet of Things (IIoT), Internet of Vehicles (IoV), and Internet of
Drones (IoD) are three important technologies of next generation networks (NGNs). IIoT is
referred to as the industry of the future. IIoT refers to interconnected instruments, devices,
and sensors networked with industrial applications on computers, such as for production
and energy management. This connectivity enables data gathering, sharing, and analysis,
possibly promoting productivity and efficiency increases and other economic benefits [9].
The IIoT is a development of a distributed control system (DCS) [10] that enables more
automation by refining and optimizing process controls utilizing cloud computing.

1.6. IoV

IoV is a network of vehicles and allows the utilization of data generated by linked
automobiles and Vehicular Ad Hoc Networks (VANETs). IoV is a decentralized network of
vehicles outfitted with sensors, software, and technologies linking and exchanging data
over the Internet following agreed-upon standards [11,12]. IoV emerged from Vehicular Ad
Hoc Networks [13] (“VANET,” a type of mobile ad hoc network used for communication
between automobiles and roadside equipment), and is predicted to grow into an “Internet
of autonomous vehicles” in the future. The IoV is predicted to be one of the facilitators of
autonomous, connected, shared, and electric (ACES) Future Mobility [14]. Figure 4 shows
an illustration of the IoV.
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1.7. Internet of Drones (IoD)

The IoD is defined as an infrastructure that aims to offer control and access to drones
and users over the Internet. Drones are quickly becoming commonplace commodities,
allowing each user to fly many missions in regulated airspace. The IoD is a layered network
control architecture developed primarily to coordinate the access of unmanned aerial
vehicles (UAVs) to regulated airspace and deliver navigation services between nodes [15].
The IoD offers general services for various drone applications, including package delivery,
traffic monitoring, and search and rescue [16–18]. Figure 5 illustrates the IoD.
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1.8. Dawn of DT and FL

DT is the visual representation of an object in the digital world of the metaverse. It
is updated from real-time data and uses simulation, ML, and reasoning to help decision
making. The concept of the DT was introduced in 2002 for product lifecycle management.
Since the introduction of this concept, it has been applied to diverse fields. During the
past decade, the use of DT has increased significantly. Figure 6 shows the yearly trend of
DT articles.
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A FL platform is a data science system developed for dispersed and, hence, non-
centralized data. FL approaches enable enterprises to utilize their data together to coopera-
tively train ML models without explicitly sharing or centralizing their data. FL was first
introduced and used by Google in 2016. Subsequently, it has been widely used in different
fields of research. Figure 7 shows the yearly trend of FL articles on Google Scholar.
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1.9. Article Selection Criteria

We searched for articles for the survey in Google Scholar, Institute of Electrical and
Electronics Engineers (IEEE) Xplore, ScienceDirect, and PubMed. Then we applied certain
criteria to select articles to include in the survey. Figure 8 shows the flow chart of the
selection criteria.
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Figure 8. Flowchart of the article selection criteria.

The use of DT and FL is increasing in the IIoT, IoV, and IoD. In this survey, we analyzed
several applications of DTs and FL to the IIoT, IoV and IoD. The survey is organized as
follows: Section two presents the discussion about the existing surveys on DT and FL.
Section three presents the application of DT and FL to the IIoT, IoV, IoD. In section Four,
the open research issues and future directions are explained. Section Five concludes the
survey. The organization of the survey is shown in Figure 9.
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2. Related Work

DT and FL are used for several purposes. In the literature, there are a plethora of
surveys discussing the application of DT and FL for healthcare, smart cities, next-generation
networks, etc. In [19], the authors presented a comprehensive survey of DT’s definition,
use cases, applications, and challenges. This survey lacked information about FL. Another
study [20] surveyed the applications, advantages, and challenges of using DT in networks.
However, FL was not included in the scope of the survey.

Lim et al. reviewed the use of DT for the innovative purpose of businesses, the ad-
vancement of businesses using DT, and the challenges of using DT in businesses. However,
the survey lacked a discussion about DT and FL for Industry 4.0 [21].

Minerva et al. reviewed the DT application in IoT. The survey presented detailed
information on DT use cases, issues, and challenges in IoT. However, the survey lacked
analysis of the use of DT and FL in IoV and IoD [22].

Gámez Díaz et al. explained the use of DT in the ecosystem. The survey analyzed
the deployment of DT in sports. The survey only focused on the DT deployment in the
ecosystem [23].

Löcklin et al. reviewed the DT in autonomous industrial systems (AISs). The authors
explained the effectiveness of using DT for the verification and validation of AISs. The
survey encompassed IIoT but did not discuss FL. Moreover, the article did not explicitly
discuss IoV and IoD [24].

Liu et al. surveyed the implementation of DT in IoT. They presented a comprehensive
analysis of the techniques for the deployment of DT and the challenges faced during the
implementation of DT in IoT. The survey did not address DT and FL for IoV and IoD [25].

Similarly, the surveys [26–28] presented the use of DT in the automotive industry, prog-
nostics, and healthcare management (PMH), and Industry 4.0 as cyber–physical systems
(CPSs), respectively. However, these surveys lacked a discussion of FL for IoV and IoD.

Zeb et al. reviewed the industrial DT at the nexus of the NGN and computational
intelligence. The authors analyzed the use of DT in CPSs and NGNs. The authors also
discussed the age of information (AoI). However, there is no information about IoV and
IoD in this review [29].
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Billah et al. surveyed the implementation of FL for blockchain-enabled IoV. They
analyzed the importance of FL and the challenges faced during its deployment. However,
the survey did not include DT [30].

Arora et al. explained the use of DT for IoD. The authors focused on the techniques
and challenges of using DT in IoD. However, this survey did not address the use of DT and
FL for IIoT and IoV [31].

Zhang et al. discussed the definition, technologies, security, privacy, and challenges
of FL. The survey lacked information about IIoT, IoV, and IoD [32]. Similarly, the authors
of [33] focused on FL for enabling technologies. The authors of [34–37] focused on data pri-
vacy and security using FL. Nguyen et al. discussed FL in IoT [38]. Lim et al. demonstrated
the applications and challenges of FL in mobile edge networks [39].

Liu et al. surveyed the evolution of FL from distributed machine learning (ML) [40].
Imteaj et al. focused on FL for resource-constrained IoT devices [41]. Pham et al. surveyed
the techniques and challenges in integrating FL and IIoT [42]. Kantaros et al. reviewed the
implementation of DT for 3D printing. Moreover, they also presented the limitations [43].
Similarly, Singh et al. examined the development of DT. They provided insights into the
origin and future of DT [44]. Costantini et al. demonstrated the implementation of IoT
twins in Industry 4.0 [45]. All these surveys lacked discussion about DT, IoV, and IoD.
Table 2 presents a comprehensive summary of the related surveys.

Table 2. Summary of the existing literature works on DT and FL.

Ref. Theme IIoT IoV IoD Limitations

[19] Basic concepts of DT No No No Only considered DT
[20] DT for networks No No No Only focused on DT for networks

[21] DT for the business innovation perspectives Yes No No Only limited to the DT for innovative
businesses

[22] DT for IoT Yes No No Did not address FL, IoV, or IoD

[23] DT for sports and ecosystem No No No Only addressed the DT for sports and
outdoor activities

[24] DT for industrial autonomous systems Yes No No Limited to the use of DT for the validation
of industrial autonomous systems

[25] Implementation of DT in IoT Yes No No Addressed FL, IoV, and IoD

[26] DT in automotive industry Yes No No Only focused on the application of DT in
the automotive industry

[27] DT for the prognostics and health management Yes No No Included FL, IoV, and IoD

[28] DT for Industry 4.0 and CPS Yes No No Scope of survey did not include FL, IoV,
or IoD

[29] DT for NGNs and CPS Yes No No
The survey did not explicitly consider FL.
Similarly, IoV and IoD were not included

in scope

[30] FL for the blockchain enabled IoV No Yes No Only considered the FL for the IoV based
on the blockchain

[31] DT for the deployment of IoD No No Yes Focused on the ML algorithms and DT
for IoD

[32] Basic concepts and challenges of FL No No No Only limited to the definitions,
applications, and challenges of FL

[33] FL for enabling technologies Yes No No Focused on the emerging technologies,
applications, and protocols of FL

[34] FL applications, privacy, security, and
challenges No No No Addressed DT, IIoT, IoV, and IoD

[35] Security and privacy of FL No No No Surveyed several security and privacy
techniques for using FL

[36] Data privacy and protection using FL Yes No No Comprehensive analysis of the FL to
protect data

[37] FL in preserving data Yes No No Use and challenges of FL for data
preservation and privacy
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Table 2. Cont.

Ref. Theme IIoT IoV IoD Limitations

[38] FL for IoT Yes No No Only focused on the applications of FL
for IoT

[39] FL in mobile edge networks No No No Limited to application and challenges of FL
for mobile edge networks

[40] From distributed ML to FL No No No Evolution of FL from the distributed ML

[41] FL for limited resources IoT devices Yes No No Comprehensive analysis of FL for the
resource- constrained IoT device

[42] Integration FL and IIoT Yes No No Discussed the fusion of FL and IIoT and
challenges faced during fusion

[43] DT for 3D printing No No No Reviewed the DT implementations and
limitations for 3D printing

[44] DT origin and future No No No Presented a comprehensive review of the
origin and future of DT

[45] IoT Twins Yes No No Demonstrated the IoT twin’s
implementation in Industry 4.0

This survey Application of DT and FL in IIoT, IoV and IoD Yes Yes Yes Focused on DT and FL at the same time for
IIoT, IoV, and IoD

By analyzing Table 2, it is evident that no survey has simultaneously discussed the
use of DT and FL for IIoT, IoV, and IoD. Thus, a survey is needed that discusses DT and FL
for the IIoT, IoV, and IoD.

3. Use of DT and FL

This section explains the use of DT and FL for the IIoT, IoV, and IoD in the following
subsections. The application of DT and FL has been proven to be efficient in increasing the
performance of the IIoT, IoV, and IoD.

3.1. IIoT

DT is widely used in IIoT systems. Malakuti et al. elaborated on the definition of
DT and the role of DT in IIoT systems. The authors also analyzed the decisions made by
software architects regarding the architecture [46]. Similarly, the authors of [47] focused
on the interoperability of DT for IIoT systems. The results showed that DT simulation of
the development of the 3GPP for ultra-reliable low latency (URLLC) reduces the delay and
increases reliability [48].

In [49], the authors proposed a DT model for basalt fiber production. They illustrated
the smart digitization of the fiber industry using IIoT. Thomas et al. developed an artificial
intelligence (AI) and extended reality (XR)-based DT for the management of complex
systems. They also presented the advantages of using AI and XR for DT’s improved
training and performance [50].

FL is also widely used for several purposes in IIoT networks. Zhang et al. demon-
strated the data management by using a deep reinforcement learning (DRL)-based FL
algorithm. The algorithm achieved 97% accuracy for the data management of the IIoT
network [51]. Rahman et al. highlighted the importance of using FL to ensure the fairness
and trustworthiness of the IIoT network [52].

Ferrag et al. presented a realistic dataset for cyber security. The dataset can be used for
training FL models [53]. Jia et al. presented a blockchain-enabled FL scheme for protecting
the data using differential privacy and homomorphic encryption [54].

Lakhan et al. presented deadline, latency, and energy-efficient strategies and a BEFC
scheme to ensure blockchain hashing and validation [55]. Makkar et al. proposed SecureI-
IoT, an FL approach to avoid data breaches [56]. Similarly, the researchers demonstrated an
FL and blockchain-enabled defensive transmission model and achieved 98% accuracy [57].

Vy et al. demonstrated federated transfer learning (FTL) for low computing power IIoT
gadgets and achieved an accuracy of more than 70% for the KDD99 dataset [58]. In [59,60],
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the authors highlighted the use of FL for intrusion detection in context-aware IIoT networks
and software-defined network (SDN)-enabled IIoT, respectively.

The researchers presented an FL-based cyber-threat hunting model for IIoT networks
based on blockchain technology [61]. Chen et al. proposed a communication effective
federated edge learning (FEL) algorithm for new radios in unlicensed spectrum (NRU)-
based IIoT networks [62].

K et al. proposed a novel algorithm based on FTL for the authentication and privacy
preservation of the IIoT network [63]. Table 3 presents the summary of the use of DT and
FL in IIoT.

Table 3. Summary of the use of DT and FL in IIoT.

Ref. Year Objective FL DT Achievements

[46] 2018 Architectural aspects No Yes Elaborate the role of DT in IIoT systems

[47] 2020 Interoperability No Yes A flexible solution for the interoperability of
the DTs in IIoT

[48] 2020 Wireless technology and protocols No Yes Development of 3GPP for URLLC in
minimizing delay and enhance reliability

[49] 2021 Fiber production No Yes A DT for the digitization of fiber industry
using IIoT

[50] 2020 Complex systems management No Yes AI and XR-enabled DT development for the
management of complex systems

[51] 2021 Data management Yes No FL algorithm with DRL for data
management achieving 97% accuracy

[52] 2021 TrustFed Yes No Blockchain-enabled TrustFed framework to
ensure fairness and trustworthiness

[53] 2022 Cyber security dataset Yes No
Provides a realistic dataset for the cyber

security of IoT and IIoT. Dataset can be used
for the training of FL models

[54] 2021 Data protection Yes No
Blockchain enabled FL scheme for the

protection of the data using differential
privacy and homomorphic encryption

[55] 2022 Multi-objective modeling and
blockchain enabled system Yes No

Deadline, latency, and energy-efficient
strategies, and a BEFC scheme to ensure

blockchain hashing and validation

[56] 2022 Data breach protection Yes No FL-based framework (SecureIIoT) to protect
IIoT networks from data breach

[57] 2021 Defensive transmission model Yes No
FL and blockchain-enabled model for
defensive transmission, and achieved

98% accuracy

[58] 2021 FTL for low computing power
IIoT devices Yes No

FTL for low computing power IIoT gadgets
and achieved accuracy of more than 70% for

the KDD99 dataset

[59] 2021 Intrusion detection Yes No FL-based intrusion detection system for IIoT
networks with improved efficiency

[60] 2021 Intrusion detection Yes No FL-based intrusion detection in SDN-enabled
IIoT networks

[61] 2022 Cyber threat hunting Yes No
FL-based cyber-threat hunting model for IIoT

networks based on the blockchain
technology

[62] 2021 Communication-effective FEL in
NRU Yes No Communication-effective FEL algorithm

NRU-based IIoT networks

[63] 2021 Authentication and privacy
preservation Yes No

Novel algorithm based on FTL for the
authentication and privacy preservation of

the IIoT network

3.2. IoV

DT and FL are also widely used in IoV for resource allocation, resource sharing, traffic
prediction, etc. Hu et al. proposed a DT model to predict traffic data in an IoV network and
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improve accuracy and response time [64]. Similarly, the authors investigated DT for the
dynamic resource allocation in an aerial-assisted IoV network [65].

Zhang et al. presented a DT model to evaluate and validate the charging recommen-
dation design [66]. Tan et al. designed DT for remote resource sharing in IoV and applied a
consortium blockchain to track and secure resource sharing [67]. Wang et al. proposed a DT
model for efficient and quick resource sharing in an unmanned aerial vehicle (UAV)-based
IoV network [68].

Several articles used FL in the IoV. Lu et al. presented an asynchronous FL approach to
implement secure and effective data sharing in IoV networks [69]. Similarly, the researchers
proposed a FL-based model for the improved TCP performance of the IoV network over
WiFi [70].

Chai et al. proposed a blockchain-enabled FL algorithm for improved knowledge
sharing in IoV networks [71]. Moreover, the authors proposed a novel FL model for efficient
license plate recognition in 5G-enabled IoV [72].

Zhou et al. proposed a dual-layer FL and heterogeneous model aggregation for
the efficient communication and privacy preservation of 6G-enabled IoV [73]. Kong et al.
demonstrated FL-based cooperative positioning in the IoV network for autonomous driving
and collision avoidance [74]. Wang et al. used FL for efficient resource management in the
IoV network [75]. Table 4 shows a summary of the use of DT and FL in IoV networks.

Table 4. Summary of the use of DT and FL in IoV.

Ref. Year Objective FL DT Achievements

[64] 2021 Traffic data predication No Yes
DT to predict the traffic data of the IoV and

achieved quick response and
improved accuracy

[65] 2021 Resource allocation No Yes DT for the dynamic resource allocation in the
aerial-assisted IoV

[66] 2019 Time series behavior modeling No Yes DT model for the evaluation and validation
of charging recommendation design

[67] 2021 Resource sharing No Yes
DT for the remote resource sharing in IoV

and applied consortium blockchain to track
and secure resource sharing

[68] 2021 Resource allocation No Yes
DT for the resource allocation in air

assisted-IoV and achieved improved
energy efficiency

[69] 2020 Data sharing Yes No Asynchronous FL-based approach for
efficient and secure data sharing

[70] 2020 TCP performance improvement Yes No FL-based model for the improved TCP
performance over WiFi in an IoV network

[71] 2020 Knowledge sharing Yes No
Improved knowledge sharing in the
IoV-based blockchain-empowered

FL algorithm

[72] 2021 License plate recognition Yes No Improved license plate recognition system
based on FL for the 5G-enabled IoV

[73] 2021 Accurate learning and privacy
preservation Yes No

Dual-layer FL and heterogeneous model
aggregation for the efficient communication
and privacy preservation of 6G-enabled IoV

[74] 2021 Cooperative positioning Yes No
FL-based cooperative positioning in an IoV

network for autonomous driving and
collision avoidance

[75] 2021 Joint resource management Yes No Efficient resource management based on the
FL in an IoV network

3.3. IoD

The IoD is a network of drones. The use of FL, which is also known as collaborative
learning, has proven to be very effective in the deployment of IoD. ML is used to supply
numerous services in fog-affected IoDs, where vast amounts of training data are gathered
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by drones and evaluated in the nodes experiencing fog. Aggregating all data in these
nodes may result in massive network traffic and data privacy leaks from drones. FL is
therefore suggested to protect drone data privacy by performing local training in drones
and communicating training model parameters to the fog-bound nodes without upload-
ing raw drone data. However, ground eavesdroppers can still access private drones by
eavesdropping and analyzing uploaded parameters during the FL training process. Yao
et al. examined the power regulation of all drones to optimize the FL system security rate
while considering drone battery capacities and quality of service (QoS) requirements (i.e.,
FL training time) [76].

Smart entities, such as smart automobiles having the ability to detect and act, are com-
mon in the modern day. During their operational period, these entities can collect a large
amount of data, which can then be used to improve the well-being of inhabitants. How-
ever, these data are extremely sensitive, prompting concerns about privacy. Furthermore,
network constraints, bandwidth use, and other factors may exacerbate the situation. FL,
IoD, and dew computing (DC) are transformative technologies that may be used to address
the aforementioned issues. Using IoD, a FL-based computing paradigm was implemented
over DC to analyze road-related data in order to improve the efficiency of applications,
such as for identifying parking places [77].

Similarly, Islam et al. used FL and IoD to create a blockchain-based data accumulation
scheme. This scheme enhanced the security of IoD against cyber threats [78]. Zhang et al.
investigated a robust semi-supervised learning-based FL scheme in IoD for automatic
image recognition. The approach improved the privacy of the image data in the IoD [79].
Table 5 presents the summary of the use of FL in IoD.

Table 5. Summary of the use of FL in IoD.

Ref. Publication Year Objective FL DT Achievements

[76] 2021 Power control Yes No Improved security, better QoS
[77] 2021 Roadside computing Yes No Improved efficiency

[78] 2022 Blockchain integrated
data accumulation Yes No Higher security against cyber threats,

improved privacy
[79] 2022 Automatic image recognition Yes No Better image recognition, enhanced privacy

4. Open Research Issues and Future Directions

The use of DT and FL results in several open research issues, such as those relating to
security, reliability, efficiency, privacy, and adaptability.

Data security is very important in the present era, and IIoT, IoV, and IoD produce
massive amounts of data. These data are vulnerable to cyber threats, and the security of
these data is very important. FL helps address this issue, but there is still a need to develop
more robust techniques to resist cyber threats.

Similarly, the reliability of DT and FL is also an open research issue that needs to be
addressed. DT and FL are considered more reliable; however, there is a need for schemes
to address the reliability of DT and FL in the IIoT, IoV, and IoD.

DT provides a virtual model of the networks, and the efficiency of the network can be
analyzed using DT. However, the real-time deployment of the same DT model can face the
problem of efficiency. This opens a new pathway for researchers to develop models that
address the efficiency of DT-based networks and real-time networks. Moreover, the IoD
also lacks the use of DT.

Deployment of the DT network in the real world may face the problem of environmen-
tal adaptations. The same DT, which is more robust in the virtual world, may face a decline
in performance when implemented in the real world.

DT and FL can be used for the resource allocation in the reconfigurable intelligence
surface (RIS) based wireless network. Jamil et al. demonstrated the resource allocation in
RIS based wireless network [80]. However, they have not used DT and FL which can be



Appl. Syst. Innov. 2022, 5, 56 13 of 16

used to solve this problem more efficiently. Similarly, FL and DT can be used for the green
communication. The techniques and challenges of the green communication are mentioned
in [81].

There are several other challenges related to DT and FL, such as protocols and integra-
tion of DT and FL in networks. These issues provide future researchers with additional
research directions.

5. Conclusions

DT and FL are emerging technologies that are widely used in the IIoT, IoV, and IoD. DT
provides a virtual simulation of the networks, whereas FL involves collaborative learning
and enhances the privacy and security of the network. In this survey, we discussed DT
and FL, and the difference between DT and simulations. We presented the increasing trend
in the DT and FL research. We analyzed the use of DT and FL in the IIoT, IoV, and IoD.
We summarized several state-of the art studies using DT and FL for the IIoT, IoV, and IoD.
We also showed that the deployment of DT and FL may present several open research
challenges, such as those relating to security, privacy, efficiency, and adaptability. These
open research issues provide insights for future researchers to address these problems.
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