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Abstract: Aging, degradation, or damage to internal insulation materials often contribute to trans-
former failures. Furthermore, combustible gases can be produced when these insulation materials
experience thermal or electrical stresses. This paper presents an artificial neural network for pat-
tern recognition (PRN) to classify the operating conditions of power transformers (normal, thermal
faults, and electrical faults) depending on the combustible gases present in them. Two network
configurations were presented, one with five and the other with ten neurons in the hidden layer. The
main advantage of applying this model through artificial neural networks is its ability to capture the
nonlinear characteristics of the samples under study, thus avoiding the need for iterative procedures.
The effectiveness and applicability of the proposed methodology were evaluated on 815 real data
samples. Based on the results, the PRN performed well in both training and validation (for samples
that were not part of the training), with a mean squared error (MSE) close to expected (0.001). The
network was able to classify the samples with a 98% accuracy rate of the 815 samples presented and
with 100% accuracy in validation, showing that the methodology developed is capable of acting as a
tool for diagnosing the operability of power transformers.

Keywords: artificial intelligence; classification; power transformers; dissolved gas analysis (DGA)

1. Introduction

The socioeconomic development of a country directly influences the in demand for
energy, resulting in the expansion of the infrastructure that supports it. This is reflected in
the implementation of new substations, transmission, and distribution lines, and improve-
ments to existing electrical networks, in which transformers play a crucial role. Oil power
transformers represent assets with high added value, essential for the efficient operation of
electrical energy transmission and distribution infrastructure [1].

In the event of faults in these transformers, negative socioeconomic impacts occur, such
as fines, legal proceedings, interruption in production, safety concerns, and environmental
damage, among others. These impacts affect both energy suppliers and consumers [2].

These elements have significantly impacted research and the development of method-
ologies with predictive and preventive maintenance approaches, aiming to mitigate the
causes and consequences of unscheduled service stops. Therefore, understanding the
health condition of the transformer and identifying possible initial failures has become
an area of intense interest for both researchers and companies in the electrical sector, as
evidenced by [3]. The main objective of this focus is to reinforce security and continuity in
energy supply.
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Faults in transformers can originate from several sources, and, consequently, there are
several assays and tests available for their detection. Among the possible causes, thermal
and electrical stresses triggered by certain events, which result in the degradation of the
insulating system, composed of oil and paper, can be diagnosed in the early stages [3–5].

The dissolved gas analysis (DGA) can be measured using either the more popular
method of extracting periodic samples and analyzing them in a laboratory or on-site using
portable analytical equipment or continuous gas monitoring equipment installed in the
transformer (high value added). Since significant gas concentration growth over a short
period of time is a strong indicator of internal evolution failure, in this last example, the
time interval between the periodic analyses varies according to the evolution of the gas
concentrations detected between the previous and the new measurements. Under normal
circumstances, this is usually reviewed once or twice a year; if failure is suspected, this
period is decreased to months, weeks, or days, according to the degree of severity [6,7].

In this context, several approaches and algorithms have been developed with the
support of computational intelligence, seeking to provide an accurate and effective diagno-
sis of the condition of oil transformers [3–5]. However, the immediate adoption of these
techniques by energy utilities is not yet common. This is due to the deep-rooted traditional
use of standardized analytical methods, such as gas ratios, key gas, and relative percentage
graphs (triangle, pentagon), among others, which are widely used in the evaluation of
transformers. These procedures have encouraged companies to invest in tools aimed at
optimizing the performance of power transformers (PT). Artificial neural networks (ANN)
stand out as one of these tools.

Convolutional neural network (CNN) based approach is presented for classifying six
types of discharge faults in power transformers in reference [8]. The results obtained in the
experiments demonstrate that the proposed method significantly outperforms conventional
algorithms, such as linear and nonlinear support vector machines. In reference [9], the po-
tential of employing deep neural networks to uncover concealed patterns within vibration
time series for early-stage prediction of transformer under-excitation, over-excitation, and
interturn fault progression is explored.

The developed network designed for excitation voltage prediction demonstrates
outstanding performance, achieving a relative absolute error of 0.56%. However, predicting
interturn faults poses a more intricate challenge, with the constructed RNN for this task
exhibiting a relative absolute error of 17.58%.

Artificial neural network (ANN) is employed to improve the precision of the Rogers
ratio method in reference [10]. However, it is important to acknowledge that the intricacy
of an ANN requires substantial storage and computational resources. To tackle this chal-
lenge, an optimization approach is utilized with the aim of maximizing accuracy while
minimizing the architectural complexity of the ANN. Consequently, post-optimization, the
implemented ANN demonstrated a notable level of accuracy, reaching up to 90.7%.

A novel intelligent system utilizing dissolved gas analysis (DGA) with a dual purpose:
to address the limitations of conventional methods and to enhance transformer diagnosis
efficiency through the application of artificial intelligence techniques. The obtained area
under the ROC curve and sensitivity average percentages of 98.78–95.19% (p-value < 0.001),
respectively, underscore the impressive performance of the proposed system, offering a
fresh perspective on DGA analysis is presented in is presented in [11].

In reference [12], a multimodal mutual neural network is introduced for assessing the
health of power transformers. The experimental findings demonstrate that the proposed
approach achieves a high level of classification accuracy and provides precise health
assessments for power transformers. Topics related to the application of artificial neural
networks (ANNs) in the analysis of the operating conditions of power transformers and
electrical energy systems have currently received attention [13–15]. In recent years, a series
of studies and research have been published in this field, demonstrating the growing
interest and relevance of these approaches [16–19].
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In this context, this study presents an innovative approach using a pattern recognition
artificial neural network (PRN), aiming to diagnose the operating conditions of power trans-
formers (normal operation, thermal faults, and electrical faults) based on combustible gases
(H2 (hydrogen), CH4 (methane), C2H2 (acetylene), C2H4 (ethylene), and C2H6 (ethane))
present inside over time of use. The difference between this methodology and existing
approaches in the literature lies in its remarkable accuracy, achieving a 98% accuracy rate
in classification, with model validation reaching 100% accuracy and with a training time of
just 2 s for the network with 5 neurons in the hidden layer and with 10 neurons, just 10 s
of processing.

In contrast to conventional approaches that are limited to identifying a certain class of
transformer failure, this research proposes a framework that allows for systematic testing
with different configurations to optimize the performance of artificial neural networks. To
put it simply, the method that was developed starts the training program over and again
while adjusting the settings until the ideal weights are found and noted. Because the most
effective parameters are stored, accuracy and efficiency are maximized throughout every
training period. Selecting the best artificial neural networks (ANN) model architecture pro-
vides a more reliable methodology for practical applications, including pattern recognition
skills that efficiently capture nonlinear interactions between input variables.

2. Dissolved Gas Analysis (DGA) Dataset

Three groupings of constituent gases are generated during the breakdown of trans-
former oil: H2, CH4, C2H2, C2H4, C2H6, and carbon oxides (CO and CO2). The type and
concentration of gas created because of the breakdown of insulating oil give clues about the
potential transformer incipient fault type, as the creation of these fault gases is dependent
on temperature [5,6].

Table 1 lists the gases that can originate because of insulation failure and potential
transformer early failure [6].

In thermal faults below 300 ◦C, ethane points to overheating of the paper or mineral oil,
while methane suggests degradation of the insulating materials. At higher temperatures,
between 300 ◦C and 700 ◦C, methane and ethylene indicate more serious faults, such as
carbonization of the paper. Above 700 ◦C, the predominance of ethylene signals extreme
conditions that can cause severe damage to the insulating system.

Electrical faults, on the other hand, are characterized by the presence of hydrogen
in low-energy discharges and acetylene in high-energy arcs, indicating more intense and
destructive electrical events. Regular analysis of dissolved gases is crucial for the early
detection of these faults, allowing quick and effective interventions to prevent further
damage and guarantee the continued safe operation of power transformers.

Table 1. Gas importance by faults in power transformers (adapted of [6]).

Cause of Gas Generation Main Gas Type Medium Gas
Type Minor Gas Type

Partial discharge—Corona H2 - -

Stray gassing—T < 200 ◦C H2 CH4 CH4, C2H6

Thermal fault—T < 300 ◦C C2H6 CH4 C2H4, C2H6

Overheating of paper 1 or mineral oil C2H6 CH4 H2, C2H4

Carbonization of paper 1 CH4 C2H4, C2H6 H2, C2H4

Thermal fault—300 ◦C < T < 700 ◦C CH4, C2H4 H2, C2H6 H2,

Thermal fault—T > 700 ◦C C2H4 H2, CH4 -

Discharge low energy or sparking H2 C2H2, C2H4 C2H2, C2H6

Discharge high energy (arcing) H2, C2H2 C2H4, C2H4 CH4
1 Paper overheating, carbonization or aging can produce CO and CO2.
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Reference [20] is the standard for analyzing gases generated and dissolved in transformer-
insulating oil. It covers everything from recommended practices for monitoring, analysis,
diagnosis, and maintenance to the theory of gas creation and how it relates to faults. A
totally dissolved combustible gas study examines the evolution rates of the gases (by kind
and total value) and connects them to criteria for maintenance and monitoring during the
transformer’s operational life. Under typical working conditions, the following are the
limit values for gas concentrations specified in the standard [20], expressed in µL/L (or
ppm): H2 = 100, CH4 = 120, C2H2 = 1, C2H4 = 50, and C2H6 = 65.

The dataset is composed of 815 samples used for training and validation phases
obtained from reference [19–25]. The data is distributed as 691 normal operation samples,
52 thermal fault samples, and 72 electrical fault samples for five types of combustible gases
(H2, CH4, C2H2, C2H4, and C2H6). The CO and CO2 data were not used due to the absence
of such data in some of the sources and because they were related to paper degradation [20].

The histograms of the 691 normal concentration samples for a particular type of gas
are shown in Figure 1. The concentration limit for each gas at the transformer’s typical
operating condition is shown by the dotted red vertical line. A condition that requires care
may be indicated by values that exceed this limit.
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In general, analysis of gases dissolved in insulating oil shows that power transformers
function normally. Most of the hydrogen (H2) and methane (CH4) concentrations are
below the 100 ppm and 120 ppm standards, respectively; therefore, they do not indicate
impending electrical failures. Because the concentration of acetylene (C2H2) is less than
the threshold limit of 1 ppm, there are no potentially harmful electrical arcs present. It is
evident that certain samples of ethylene (C2H4) and ethane (C2H6) surpassed 50 ppm and
65 ppm in that order. However, the limits shown are references for evaluation, but the final
decision on the condition of the transformer must consider the wider context, including
age, loading, and rated power of the equipment. The analysis should be complemented
with an expert assessment that considers all these factors.

Figures 2 and 3 display the histograms for the 52 thermal fault samples and the
72 electrical fault samples, respectively.

Except for a few acetylene samples of electrical failures, all the gas concentration
samples are shown to be above the standard limits.

The characteristics and nonlinear evolution of the samples are categorized as being
in normal condition, electrical fault, and thermal fault, which are frequently different. It
should be noted that a variety of factors could influence how early transformer insulation
system problems manifest, including age, construction details, cooling methods, nominal
power and voltage, and other factors.
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3. Materials and Methods

The artificial neural network (ANN) used in this study, as shown in Figure 4, was
the pattern recognition artificial neural network (PRN) composed of 5 neurons in the
input layer (represented by the production of the combustible gases H2 (hydrogen), CH4
(methane), C2H2 (acetylene), C2H4 (ethylene) and C2H6 (ethane)), 5 or 10 neurons in the
hidden layer (a comparison) and 3 neurons in the output layer, represented by 1—the
transformer normal operating condition, 2—thermal faults, and 3—electrical faults.

After an extensive series of tests, it was concluded that it would be essential to allocate
10 neurons in the hidden layer instead of 5. This decision was motivated by the striking
similarity between the samples, mainly the samples that produced the fault outputs,
2—thermal and 3—electrical, resulting from the common characteristics they presented,
which justified the need to increase the number of neurons in the hidden layer. From
10 neurons on in the hidden layer, training started to get worse.

Pattern recognition artificial neural networks (PRNs) are feedforward networks de-
signed to classify inputs into predefined target classes. In pattern recognition networks, the
target data typically comprises vectors containing all zeros except for a 1 in the element
corresponding to the class it represents [26]. In pattern recognition problems, it is desired
that a neural network classifies inputs into a set of target categories. For example, classify
the operating condition of a power transformer as normal, thermal faults, or electrical faults
based on combustible gases concentrated inside them. There are two classification methods
in pattern recognition: supervised and unsupervised. To apply supervised pattern recog-
nition, a large set of labeled data is required. If these are not available, an unsupervised
approach can be applied. This work presents a supervised approach.



Appl. Syst. Innov. 2024, 7, 41 7 of 17

The scaled conjugate gradient backpropagation (SCG) is a training function for neural
networks that iteratively updates weight and bias values. It utilizes the scaled conjugate
gradient method, which is applicable to any network, provided its weight, net input, and
transfer functions possess derivative functions. Backpropagation is employed to compute
the derivatives of performance concerning the weight and bias variables [26]. SCG was the
training function used in this work.
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Figure 4. ANN used in this work (classified by pattern recognition network —PRN). Weights (w):
Weights are real values assigned to each input/feature to indicate the importance of that specific
characteristic in classifying the final output. Bias (b): Bias is used to move the activation function
to the left or right. The bias determines when the activation function is called and so effects the
network’s overall behavior.

The PRN network employed the hyperbolic tangent function as activation in the
hidden layer, defined by Equation (1). On the other hand, for the output layer, the softmax
function was adopted, represented by Equation (2).

f (u) =
(1 − e−tu)

(1 + e−tu)
(1)

where t is an arbitrary constant, corresponding to the slope of the curve.

f (u) =
eu

∑ eu (2)

The softmax function accepts a vector u containing K real numbers as input and
transforms it into a probability distribution comprising K probabilities. These probabilities
are proportional to the exponentials of the input numbers, ensuring normalization. In
other words, before applying the softmax, some components of the vector may be negative
or greater than one and may not sum to 1. However, after applying the softmax, each
component will be in the range (0, 1), and the components will sum to 1 so that they can
be interpreted as probabilities. Additionally, higher input components will correspond to
higher probabilities [21].
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The mean square error (MSE) vector of the neural networks is calculated using (3):

MSE =
1
p

n

∑
i=1

(Yob − Ydes)
2 (3)

where Yob and Ydes are the obtained and desired outputs of the artificial neural network
(PRN), compared during the network training, and p is the number of samples.

Neural networks employing the backpropagation algorithm, such as SCG, along with
various other types of artificial neural networks, are often perceived as ‘black boxes.’ This
is because it is largely unclear why these networks produce specific outcomes, as they lack
explicit justifications for their predictions. Recognizing this limitation, numerous studies
have focused on extracting knowledge from artificial neural networks and developing
explanatory techniques to provide insights into the network’s behavior in particular situa-
tions [15,27]. Hence, it should be observed that each time the network undergoes retraining,
a distinct value will be obtained [13,27]. Figure 5 presents the flowchart of the PRN network
used to classify the operating conditions of a power transformer.
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During training using the backpropagation algorithm (SCG), the network follows
a two-step process. Initially, a pattern is introduced to the network’s input layer. The
resulting activity propagates through the network, layer by layer, until the output layer
generates a response. In the second step, this output is compared to the desired output
for that specific pattern. If they do not match, the error is computed. This error is then
propagated backward from the output layer to the input layer, and the connection weights
of the internal layer units are adjusted accordingly. This process underscores the potential
of the PRN application, which can function both as a classification and prediction tool.
Based on this, a procedure was developed to initialize the training program multiple
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times, using different configurations, both for the number of hidden layers and the number
of neurons (varying in increments of 1), as well as for the proportions of training and
validation samples (varying in increments of 5%), as presented in the flowchart in Figure 6.
After repeating the process n times, the best result obtained was stored, corresponding
to the most effective configuration (optimal number of hidden layers and neurons) that
resulted in the highest accuracy percentage in the validation phase. In the study in question,
the most successful configuration consisted of one hidden layer with 10 neurons, with 20%
of the samples reserved for validation.
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Figure 6. Flowchart of starting the training program several times (n) to choose the best configuration.

In the present situation, the most effective configuration for artificial neural network
(ANN) after n = 132 training was the following: nh = 1 intermediate layer composed of
nn = 10 neurons, with a = 90% of the samples intended for training and b = 10% for the
validation phase. The second-best result found was with 5 neurons in the hidden layer.

4. Test Results and Discussion

Of the 815 samples randomly, 90% were used for training (733 samples) and 10% for
validation (82 samples). The samples allocated for validation (82) are those that were not
part of the initial training process. In other words, after the training, these samples (input
data—gases) were introduced to the network to simulate which of the outputs (1, 2, or 3)
the network classified. Two configurations were used for the hidden layer, one with 5 and
the other with 10 neurons.

Figure 7 shows the training and validation performances of the artificial neural net-
works (PRN) used in this study. Figure 7a shows the MSE for each iteration of the PRN with
five neurons in the hidden layer; the value achieved for the MSE was 0.0456 for training
and 0.0595 for validation. Figure 7b shows the histogram of the error (obtained output Yob
relative to the desired output Ydes), with 20 intervals for the 2445 data in the training and
validation related to Figure 7a. The errors were around zero for most of the data. Better
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results were found for the PRN with 10 neurons in the hidden layer, MSE at 0.0179 for
training and 0.0057 for validation, which is close to what was expected (0.001), as shown in
Figure 7c, with higher data accumulation and with errors around zero for the histogram, as
shown in Figure 7d. Table 1 proves these results. The training and validation parameters
were iterations, time, performance, and correlation. For the PRN with five neurons in
the hidden layer, the values achieved were 10 s, with 113 iterations (10 validation checks
achieved with 103 iterations), a correlation between the desired and obtained outputs of
0.8769 and 0.7599 to training and validation, respectively. Similar results are presented
for the PRN with 10 neurons in the hidden layer, which are better results but with greater
training time and number of iterations.
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Figure 7. PRN performance: (a) training and validation performance (MSE) for PRN with 5 neurons
in hidden layer, (b) error histogram (Ydes − Yob) for PRN with 5 neurons in hidden layer and 20
intervals for the 815 output samples, (c) training and validation performance (MSE) for PRN with 10
neurons in hidden layer, (d) error histogram (Ydes − Yob) for PRN with 10 neurons in hidden layer
and 20 intervals for the 815 output samples.

Figure 8a displays the results with five neurons in the hidden layer, comprising a
comparison between the outputs obtained by the ANN (Yob) and the desired outputs
(Ydes) derived from experiments during the training phase (90%, 733 samples). A notable
resemblance between the Yob and Ydes outputs is observed, indicating effective network
training, as illustrated in Figure 7 and described in Table 2. Consequently, the ANN is
now capable of estimating data (such as composition) for samples that were not part of the
training process. An automated model has been developed to estimate these parameters
based on new sets of input data (combustible gases H2 (hydrogen), CH4 (methane), C2H2
(acetylene), C2H4 (ethylene) and C2H6 (ethane)). Figure 8b presents the results of the
network validation phase for 82 samples (10%) of the input data that were not part of the
training, with the desired and obtained output values. Again, there is a similarity between
the outputs, proving the effectiveness of the model created via ANN. The MSE between
outputs for this phase was 0.0595, similar to the specified value.
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Table 2. Values specified and achieved in training and validation of PRN with 5 and 10 neurons in
the hidden layer compared to Ydes output.

PRN (5, 5, 3) Specified Values Achieved Values

Iterations 1000 113
Time (s) 20 2

Performance (MSE) training 0.001 0.0456
Correlation (R2) 1.0 0.8769

Performance (MSE) validation 0.001 0.0595
Correlation (R2) validation 1.0 0.7599

Validation checks 10 10 *

PRN (5, 10, 3) Specified Values Achieved Values

Iterations 1000 861
Time (s) 20 10

Performance (MSE) training 0.001 0.0179
Correlation (R2) 1.0 0.9252

Performance (MSE) validation 0.001 0.0057
Correlation (R2) validation 1.0 0.9718

Validation checks 10 10 *
* Achieved criterion.

Figure 8c represents the results for 100% of the samples (815 in total), encompassing
both the training and validation phases simultaneously. There were a total of 18 errors,
with 15 errors during training and only 3 errors during validation, demonstrating the
effectiveness of the model.

As a result, the following confusion matrix, Figure 9, was obtained. On the confusion
matrix plot, the rows correspond to the predicted class (Yob—obtained via ANN), and the
columns correspond to the true class (Ydes—Target). The cells along the diagonal represent
instances that are accurately classified, while those of the diagonal denote misclassified
observations. Each cell displays both the count and the percentage of observations relative
to the total.

The rightmost column provides the percentages of all predicted examples for each
class that are correctly and incorrectly classified. These metrics are commonly known as
precision (or positive predictive value) and false discovery rate, respectively [20].

Similarly, the bottom row displays the percentages of all examples belonging to each
class that are correctly and incorrectly classified. These metrics are often referred to as recall
(or true positive rate) and false negative rate, respectively. Finally, the cell in the bottom
right corner of the plot indicates the overall accuracy [26].

In Figure 9, the first three diagonal cells show the number and percentage of correct
classifications after the training (Figure 9a) and validation (Figure 9b) of the network,
respectively. For example, in Figure 9a, 616 samples are correctly classified as class 1
(normal operation). This corresponds to 84% of all 733 samples. Similarly, 46 cases are
correctly classified as class 2 (thermal faults). This corresponds to 6.3% of all samples.
Finally, 56 samples were classified as class 3 (electrical faults), corresponding to 7.6% of
all samples.

Overall, 97.9% of the predictions are correct, and 2.1% are wrong for training. Similar
results are presented for validation in Figure 9b: it is observed that 96.3% of the predictions
are correct and 3.7% are wrong. In both phases, the network achieved an accuracy of 97.8%,
hitting 797 samples and an error rate of just 2.2%, as shown in Figure 9c.
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2—thermal faults, 3—electrical faults) obtained by PRN with 5 neurons in the hidden layer, (a) train-
ing phase with 90% of samples (733), (b) validation phase with 10% of samples (82), (c) 100% of
samples (815).

Figure 10 presents results for the PRN network with 10 neurons in the hidden layer.
Better outcomes were achieved for both training and validation, as shown in Figure 10a,b.
During network training, there were a total of 16 errors, resulting in an accuracy rate of
97.8%, as illustrated in the confusion matrix presented in Figure 11a. During the model
validation, the ANN (PRN) classified with 100% accuracy the samples that were not
included in the training. Of the 82 classified samples, all were correctly assigned to their
corresponding outputs (75 samples for normal operation—class 1, 4 samples for thermal
failure—class 2, and 3 samples for electrical failure—class 3), as illustrated in Figure 10b
and in the confusion matrix presented in Figure 11b.

The results regarding the training and validation of the PRN network applied to 100%
of the samples are shown in Figure 10c, as well as in the confusion matrix presented in
Figure 11c. It is observed that, when using 10 neurons in the hidden layer, the network
recorded only 14 errors, occurring exclusively in the training phase, resulting in a success
rate of 97.8%. Overall, the accuracy rate achieved was 98%, slightly surpassing the 97.8%
achieved with five neurons in the hidden layer.

Both configurations proved to be effective as automatic models for classifying the
operating conditions of power transformers based on the gases present inside them.

Tables 3–5 present the weights of the connections between the input and hidden layers,
from the hidden layer to the output, and the respective bias weights of the hidden and
output layers for the network with 10 neurons in the hidden layer.

Table 3. Weights of the connections between the neurons of the input layer and the hidden
layer (WRm).

Neurons Hidden Layer

N
eu

ro
ns

in
pu

tl
ay

er m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

R1 0.0322 −0.3067 0.5928 1.3855 −0.4574 −1.2926 −0.9642 0.6219 5.0458 1.1364

R2 −1.2657 0.5935 0.3621 −0.3653 0.1491 1.3524 0.4590 0.9758 1.1697 −0.8334

R3 1.4485 −0.4754 3.0243 −1.4813 −1.6088 −0.6485 1.2424 1.9435 0.7289 −1.2262

R4 0.2304 1.2848 0.1588 0.7570 −1.5067 3.0534 1.4099 0.3570 1.6211 −0.2550

R5 1.0501 −1.5996 −1.4915 0.8923 0.2894 −0.2318 −0.0893 −0.5393 −0.6183 1.2611
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Figure 11. Confusion matrix for classifying the three classes (1—normal operating condition,
2—thermal faults, 3—electrical faults) obtained by PRN with 10 neurons in the hidden layer, (a) train-
ing phase with 90% of samples (733), (b) validation phase with 10% of samples (82), (c) 100% of
samples (815).

Table 4. Weights of the connections between the neurons of the hidden layer and the output
layer (Wmi).

Neurons Output Layer

N
eu

ro
ns

hi
dd

en
la

ye
r

i1 i2 I3

m1 −0.1062 0.8985 0.1317

m2 −0.1235 −0.3878 −0.8237

m3 −2.2868 0.5225 2.9425

m4 0.2307 1.4119 −0.8567

m5 −0.3885 0.2586 −0.9823

m6 −2.1606 2.8833 −1.0345

m7 −0.7728 0.0791 0.2054

m8 −0.5972 −0.3729 −0.3257

m9 −8.1766 3.4204 3.5715

m10 −0.5427 0.4388 −1.2068

Table 5. Bias of the neurons of each layer (hidden and output).

Neurons Hidden Layer (mx1) Neurons Output Layer (ix1)

1 −2.2544

1 −0.6331
2 1.8252

3 2.4682

4 −0.2260

5 0.3246

2 0.9741
6 1.8809

7 −0.6293

8 1.0534

9 7.8957
3 0.7542

10 2.1513
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5. Conclusions

This study presented a methodology via PRN artificial neural networks to obtain the
operating conditions of power transformers (normal, thermal faults, or electrical faults)
as a function of the combustible gases (H2 (hydrogen), CH4 (methane), C2H2 (acetylene),
C2H4 (ethylene), and C2H6 (ethane)) presented therein.

In the two configurations presented (5 and 10 neurons in the hidden layer), the network
had good training, a little better when using 10 neurons, with 10 s of processing and MSE
at 0.0175. In the validation phase (data that was not part of the training), the MSE was
0.0057, and a correlation between the obtained output and the desired output was 0.9718,
showing the effectiveness of the model.

In the best results, the network was able to classify the samples for both training and
validation with low error. The network presented only 14 errors out of 815 samples, all in
the training phase. In the validation phase, the network presented 100% accuracy. In total,
for 815 samples in both phases (training and validation), the hit rate was 98%.

As a result, the methodology presented via ANN (PRN) proved to be efficient in
classifying the operating conditions of power transformers (normal—class 1, thermal
faults—class 2, and electrical faults—class 3) depending on the combustible gases created
inside of the same (H2, CH4, C2H2, C2H4, and C2H6).

Energy utilities can improve their annual predictive and preventive maintenance
planning process by implementing this proposed method. In Brazil, dissolved gas analysis
(DGA) tests are often carried out annually or every six months. However, depending on
the severity of the DGA results, the interval between these tests can be reduced, which can
promote a change in maintenance planning, preventing further damage to the equipment
and ensuring continuity of service.
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Nomenclature

ANN Artificial neural network
PRN Pattern recognition artificial neural network
H2 Hydrogen
CH4 Methane
C2H2 Acetylene
C2H4 Ethylene
C2H6 Ethane
SCG Scaled conjugate gradient
DGA Dissolved gas analysis
PT Power transformers
Yob Obtained outputs
Ydes Desired outputs
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