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Abstract: The procurement of goods is considered a critical part in supply chain management, and it
often has several unprecedented barriers leading to failure of the project. Uncertainties in availability,
cost and demand-supply matching combined with stringent government norms andprocurement
policies of various organizations need a thorough study in the present-day environment to develop
sustainable and lean supplychain management. In this paper, use of a fuzzy logic system to estimate
the tender finalization period of engineering items that involve public procurement is discussed. The
tender finalization period is normally based on key parameters, such as criticality of the requirement
of an item for the project, the number of variants available in a supply, competition amongst bidders,
frequency of buying the item and the tender value. The methodology to arrive at the membership
functions of the key parameters and the logic used to arrive at the tender finalization period estimation
are well discussed in this paper. The proposed fuzzy logic approach was applied to an industrial
case and the results show good agreement between expert opinion and the fuzzy logic system output.
This paper will definitely help procurement managers in any organization to plan their activities in
an effective manner.

Keywords: fuzzy logic; machine learning; decision-making; supplychain management; boiler components

1. Introduction

Artificial Intelligence can play a significant role in optimizing and enhancing various
aspects of public procurement policy. The use of artificial intelligence can automate routine
and repetitive tasks, such as document verification, data entry and basic contract analysis [1].
This leads to faster processing times and reduces the risk of errors. Artificial intelligence
software can assist vendors and procurement officers in navigating the procurement process,
answering common queries and providing guidance on documentation requirements.
Artificial intelligence algorithms can analyze historical procurement data to predict future
trends, demand patterns and potential risks. This assists in making informed decisions
regarding procurement strategies and supplier selection [2]. In a similar manner, artificial
intelligence algorithms can assess and identify potential risks associated with suppliers,
contracts and market conditions, helping procurement officers to mitigate risks effectively.

The use of artificial intelligence in public procurement can help to evaluate and score
suppliers based on various factors, including performance history, financial stability and
compliance. This ensures that procurement decisions are based on objective and data-
driven assessments. These techniques can continuously monitor and analyze the market
to identify new and innovative suppliers, promoting competition and diversity in the
supplier pool. Yet another advantage of using artificial intelligence algorithms in public
procurement is that it can analyze market trends and historical data to predict future price
fluctuations, helping organizations make cost-effective procurement decisions [3]. Also,
artificial intelligence techniques can monitor expenses in real-time, ensuring compliance
with budget constraints and identifying potential cost-saving opportunities. By integrating
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artificial intelligence with block-chain, public organizations can enhance transparency in
the procurement process by providing an immutable and transparent record of transactions.
This helps in reducing fraud and ensuring compliance with regulations. Artificial intelli-
gence techniques can automatically check procurement documents for compliance with
legal and regulatory requirements [4], reducing the risk of errors and ensuring adherence to
policies, and it can enhance cybersecurity measures by identifying and preventing potential
cyber threats, ensuring the security of sensitive procurement data.

Implementing artificial intelligence in public procurement policies requires careful
consideration of ethical, legal and privacy implications. Additionally, providing adequate
training to procurement professionals and stakeholders is essential for the successful in-
tegration and utilization of artificial intelligence algorithm technologies [5]. The main
theme of this paper is about the implementation of artificial intelligence in public procure-
ment and providing deep insight to public procurement officers to design such systems
for sustainable development. This paper centers on the procurement process of supply
chain management undertaken by a reputed steam generator manufacturing company
through a public tendering system. The public tendering process serves as a cornerstone
of transparency, fairness and accountability in public procurement across the globe. It
represents a systematic and regulated approach that public entities, such as government
agencies and public organizations, use to procure goods, services or construction projects
from external suppliers. This process ensures that taxpayers’ funds are allocated efficiently
and responsibly, upholding the principles of competition, integrity and value for money.
The significance of the public tendering process lies not only in its fiscal responsibility but
also in its role in promoting economic development, fostering innovation and providing
equal opportunities to a wide range of businesses, from small enterprises to large corpora-
tions. Whether it is a major infrastructure project, the acquisition of essential services or
the purchase of everyday items, the public tendering process is a structured method for
soliciting, evaluating and awarding contracts to qualified suppliers.

The public procurement process encompasses various stages, including the release of
internal orders, technical specification, approval procedures, supplier selection through
competitive bidding, offer evaluation, contract establishment and item supply. Despite the
presence of control and monitoring systems, enterprise resource planning software [6,7],
e-tendering and online reverse auctions, these processes often remain time-consuming.
Projects may face delays or financial repercussions due to the criticality of certain items.
While companies implement internal audits, policies and departmental procedures to
manage internal issues, external challenges and unforeseen factors continue to hinder the
development of procurement norms for these items. Enhancing this aspect can propel
companies toward total quality management (TQM), lean principles, six sigma, and cost
of quality (COQ), fostering long-term success and customer satisfaction. For public pro-
curement, barriers exist within organizations, such as resource and capacity constraints
etc., and externally in interactions with supply chain stakeholders [8,9]. Existing supply
chain management literature discusses the minimization of procurement costs using opti-
mization techniques [5] and employs analytic hierarchy processes and data envelopment
analysis as decision-making tools for public procurement tenders [10]. Decision support
systems like the Finnish resource projection model MELA have been employed for land use
policy impact assessments [11]. Numerous articles delve into areas like public procurement
tendering, competitive bidding, decision-making models for supply chain management,
purchasing models and schedule prioritization techniques using heuristic methods [12–18].
Nevertheless, a comprehensive review of the literature highlights the underexplored realm
of establishing procurement norms based on empirical data.

In this increasingly complex and data-driven world, decision-making processes have
become more intricate than ever before. Traditional decision-making methods, often reliant
on rigid binary logic, can struggle to capture the subtleties and uncertainties inherent
in many real-world scenarios. This is where machine learning [19–22] and fuzzy logic
systems [23] emerge as a powerful tool, offering a flexible and intuitive approach to
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decision-making that mimics human cognitive processes. Considering the potential for
improvement, especially in the context of public procurement, this paper endeavors to
employ artificial intelligence techniques, such as machine learning and fuzzy logic systems,
to derive optimal procurement norms. Public entities and companies that are bound by
various regulatory guidelines, procedures and policies in compliance with state and federal
bodies stand to benefit from this proposed approach.

Fuzzy logic systems have gained prominence in control and decision-making processes
for multi-criteria problems in supplychain management [24,25]. Fuzzy logic, enables us to
handle vagueness and ambiguity effectively based on imprecise and uncertain information,
as it is based on the concept of “degrees of truth”, allowing for a more nuanced evaluation
of input variables and the generation of more refined, context-aware decisions, which
will be more useful in the present area of study. This paper will uncover how these
systems harness the power of linguistic variables, membership functions and fuzzy rules
to navigate complex decision spaces, offering solutions for industrial automation and
beyond. Fuzzy logic systems generate outputs based on the degrees of truth associated
with their inputs, accommodating vague and imprecise information. Fuzzy logic employs
linguistic variables like “low”, “medium”, “high”, “fast”, “slow”, “hot”, “warm”, “normal”
and “cold” to represent input data. The system comprises three core components: (i) a
fuzzifier controller that converts crisp values into linguistic variables, (ii) a knowledge-
based system [26–28], and (iii) a defuzzifier controller that transforms fuzzy values into
crisp physical signals for controlling system operations. Fuzzy logic systems offer flexibility,
allowing for rule modifications and the acceptance of imprecise, distorted or erroneous
input information [29]. They find applications in various domains, including electrically
driven wheeled mobile robots [30], load forecasting [31], control of domestic appliances,
HVAC systems and supply chains [32].

This literature review reveals that while AI and fuzzy logic systems have been exten-
sively studied and applied in various aspects of supply chain management and public
procurement, specific application of these technologies to establish procurement norms
based on empirical data remains underexplored. Existing studies focus on optimization
techniques, decision support systems and cost minimization but seldom provide compre-
hensive methods for determining procurement norms that can adapt to the dynamic nature
of public procurement. The primary research gap identified is the lack of a systematic
approach to establish procurement norms using machine learning and fuzzy logic systems.
This gap highlights the need for integrating empirical data with advanced AI techniques to
create adaptable and efficient procurement policies.

This paper proposes a novel approach that integrates machine learning and fuzzy
logic systems to establish optimal procurement norms. By identifying and focusing on the
most critical input variables, this study aims to provide a data-driven decision-making
framework that can adapt to the complexities and uncertainties inherent in public procure-
ment processes. The proposed system not only addresses the existing research gap but also
offers practical solutions that can enhance transparency, efficiency and cost-effectiveness in
public procurement.

This work addresses a significant gap in the existing literature by providing a compre-
hensive framework for establishing procurement norms using AI techniques. The proposed
approach has the potential to revolutionize public procurement processes, making them
more efficient, transparent and responsive to changing market conditions. By offering
practical insights and a robust methodology, this paper can serve as a valuable resource for
researchers and practitioners in the field of supply chain management and public procure-
ment. This paper proposes a machine learning and fuzzy-based decision-making system
to provide optimal solutions for establishing procurement norms, ultimately optimizing
resource utilization. The subsequent section elaborates on the procurement process, defines
objectives and identifies problems. Section 3 details the development of the fuzzy-based
system, while the results and discussion are presented in Section 4.
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2. Materials and Methods

Publicly traded companies, adhering to government regulations and policies, typically
establish dedicated procurement departments. In this study, we focus on the procurement
of essential bought out items (BOI) necessary for steam generator systems in a reputable
public corporation. The role of the BOI procurement department is pivotal within the
realm of supply chain management as it necessitates seamless coordination with various
project units, such as design, finance, commercial, project management and project moni-
toring. This coordination is vital for executing procurement processes through supplier
contracts [17,33,34]. It is worth noting that any enhancement or deficiency in the procure-
ment process may only become evident at the conclusion of lengthy contracts, which often
span months or even years, making immediate system changes unfeasible.

Within this study, we specifically consider items like thermal insulation and control
components of steam generation systems. The major focus of this paper is on a critical
milestone in the procurement process: the journey from purchase request initiation to con-
tract finalization. The purchase request entails technical specifications, required quantities
and other pertinent details for soliciting supplier proposals. Upon receiving a purchase
request, purchase executives process it, transforming it into an actionable contract with
legal validity and subsequently issue it to the supplier. Table 1 classifies these items and
provides their average durations from purchase request initiation to contract finalization.
The dataset used in this study was sourced from the procurement department of a steam
generator manufacturer in India, specifically from tender processes conducted between
2019 and 2021. The datacomprises detailed records of procurement activities, including
item requisitions, vendor submissions, evaluation criteria, tender outcomes and timelines
for each procurement stage. The application of fuzzy logic for evaluation entails a three-step
procedure. Initially, crisp inputs must undergo fuzzification. Subsequently, an inference
mechanism applies fuzzy rules for evaluation and, finally, the results are defuzzified to
yield crisp output values.

Table 1. Purchase request to contract finalization duration in days.

Item Classification 2019–2020 2020–2021 Average Days

Elevator Control System 180 165 172.5
Corrug. cladding Thermal Insulation 200 132 166

Transducers Control System 130 160 145
Plain cladding Thermal Insulation 90 180 135

Inst. Cable Control System 156 112 134
Ceramic fiber Thermal Insulation 120 100 110

Actuators Control System 98 120 109
Castables Thermal Insulation 140 72 106

Teflon hoses Control System 120 86 103
Pourables Thermal Insulation 96 102 99
Switches Control System 109 75 92

Junction boxes Control System 97 75 86
Control boxes Control System 56 116 86

EM valve Control System 120 46 83
Control cables Control System 86 80 83

Rock fiber Thermal Insulation 75 84 79.5
Fittings Control System 61 89 75

Metal Mesh Thermal Insulation 80 68 74
Pneu. tubes Control System 51 95 73

To determine the optimal procurement norm for the purchase request to contract
finalization milestone, the machine learning technique recursive feature elimination (RFE)
was used to identify key inputs, as it provides a clear ranking of features based on their
importance, making it straightforward to identify the most significant variables. RFE helps
improve model performance by eliminating redundant and irrelevant features, leading to
better generalization of unseen data as well [35–37]. While numerous factors play a role,
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such as skillset, efficient coordination, item criticality, number of item variants, procure-
ment frequency, associated risks, supplier identification, competition among suppliers,
estimated procurement value, approval processes, customer endorsement, quality assess-
ments, commercial agreements, tender durations and more, the machine learning algorithm
ranked the top five most influential variables that impact procurement duration. These key
input variables are (1) the criticality of the item’s requirement for the project. Criticality
is identified as an event that has occurred and is impacting the project. Critical issues
require immediate attention and real-time action and may be the result of risks identified
at the start of the project or may come from an invisible area not initially considered. The
organization has attached a criticality factor on a scale of 1 to 30, where “30” indicates the
item is most critical for the project. (2) The number of variants available within a supply.
For example, procurement of castables will normally be required in two variants: one is
grade-A and the other is grade-C (3) Competition, as indicated by the number of suppliers
submitting offers for a particular tender. (4) The frequency of item procurement within a
fiscal year. (5) The tender estimate value in terms of 0.1 million rupees.

The flow chart of the feature selection technique in machine learning used in this work
is depicted in Figure 1. The algorithm is designed to gather the dataset containing the
twenty-three input variables under consideration and perform necessary preprocessing,
such as data cleaning and handling missing values. The RFE technique that iteratively
removes the least important features based on the model’s performance is used to select
the top five most critical variables that will be further used by the fuzzy-based system.

Table 2 provides data on these input variables for the items under investigation, along
with the duration of the milestone activity (output variable). Membership functions have
been established for these inputs, representing criticality, item variants, market compe-
tition, procurement frequency, tender value and the output, which signifies scheduled
procurement norms for a particular item or item group.

Table 2. Input and output variables in procurement.

Item Criticality Variants Competition Buying Frequency Value Average Weeks

Rock fiber 30 12 10 11 >100 6 to 8
Ceramic fiber 4 1 6 4 54 14 to 16

Castables 15 2 6 4 82 14 to 16
Pourables 13 1 6 4 26 12 to 14

Metal Mesh 11 8 5 2 10 6 to 8
Corrug. cladding 18 3 5 2 >100 18 to 20

Plain cladding 10 4 5 1 >100 18 to 20
EM valve 9 2 2 2 12 10 to 12

Transducers 3 7 5 2 40 18 to 20
Actuators 2 4 6 2 >100 14 to 16

Control cables 6 3 15 5 65 10 to 12
Inst. Cable 1 2 15 1 18 18 to 20
Jun. Boxes 9 1 5 4 4 10 to 12
Switches 9 1 2 2 8 10 to 12
Elevator 2 2 5 2 >100 18 to 20
Fittings 4 50 6 2 10 8 to 10

Control boxes 2 1 5 1 2 10 to 12
Teflon hoses 3 4 6 2 1.5 14 to 16
Pneu. tubes 1 6 6 1 7 14 to 16

The fuzzy rule base governing this process is outlined in Table 3. Triangular member-
ship functions have been employed in this proposed approach due to their versatility and
reliability. To illustrate the construction of a triangular membership function for “MEDIUM”
under the input variable of buying frequency, consider the following parameters: the base
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values of the MEDIUM triangle are 2.5 and 11, with a peak value of 6.5. This triangular
function can be expressed as follows (Equation (1)):

f (x) =


0, x ≤ 2.5

x−2.5
4 , 2.5 ≤ x ≤ 6.5

11−x
5.5 , 6.5 ≤ x ≤ 11
0, 11 ≤ x

 (1)

where x= MEDIUM, in this case. The other triangles of the variables are so computed to
form the input and output membership functions presented in Figure 2. The data range of
the key variables are presented in Table 4.
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In this proposed work, the key input variables identified, namely, project criticality,
variants, competition, buying frequency and tender estimate value, are converted into
fuzzy sets with corresponding membership functions. For example, the variable “buying
frequency per annum” is categorized into fuzzy sets like low, medium and high. A set of
fuzzy rules is defined to describe the relationshipbetween input variables and the output
(average procurement period). For instance, if project criticality is HIGH, the variants
in the tender are MULTIPLE, the number of vendors competing in the tender is LOW,
the buying frequency per annum is HIGH and the tender estimated value is HIGH, then
the procurement duration is LONG. The fuzzy inference engine evaluates these rules
using the fuzzified inputs to generate fuzzy outputs. This involves applying the fuzzy
logic operations to determine the degree to which each rule is satisfied. Then, the results
of all rules are combined to form a fuzzy set representing the output variable (average
procurement period). The aggregated fuzzy output is then defuzzified using the centroid
method. This involves computing the center of gravity of the fuzzy set to obtain a single
crisp value representing the average procurement period.

y∗ =
∫

y·µB(y)dy∫
µB(y)dy

(2)

where

y* is the defuzzified (crisp) output value;
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y is a variable representing points in the domain of the output fuzzy set;
µB(y) is the membership function of the aggregated fuzzy output set.

Table 3. Logic table used in the system.

Criticality Variants Competition Buying
Frequency Value Norms

HIGH MULTIPLE HIGH HIGH HIGH NORMAL
LOW MULTIPLE HIGH HIGH HIGH NORMAL
HIGH LESS HIGH HIGH HIGH NORMAL
LOW LESS HIGH HIGH HIGH NORMAL
HIGH MULTIPLE LOW HIGH HIGH LONG
LOW MULTIPLE LOW HIGH HIGH LONG
HIGH LESS LOW HIGH HIGH LONG
LOW LESS LOW HIGH HIGH LONG
HIGH MULTIPLE HIGH MED HIGH SHORT
LOW MULTIPLE HIGH MED HIGH NORMAL
HIGH LESS HIGH MED HIGH SHORT
LOW LESS HIGH MED HIGH NORMAL
HIGH MULTIPLE LOW MED HIGH LONG
LOW MULTIPLE LOW MED HIGH LONG
HIGH LESS LOW MED HIGH NORMAL
LOW LESS LOW MED HIGH LONG
HIGH MULTIPLE HIGH LOW HIGH SHORT
LOW MULTIPLE HIGH LOW HIGH LONG
HIGH LESS HIGH LOW HIGH SHORT
LOW LESS HIGH LOW HIGH NORMAL
HIGH MULTIPLE LOW LOW HIGH LONG
LOW MULTIPLE LOW LOW HIGH LONG
HIGH LESS LOW LOW HIGH LONG
LOW LESS LOW LOW HIGH LONG
HIGH MULTIPLE HIGH HIGH LOW NORMAL
LOW MULTIPLE HIGH HIGH LOW NORMAL
HIGH LESS HIGH HIGH LOW SHORT
LOW LESS HIGH HIGH LOW SHORT
HIGH MULTIPLE LOW HIGH LOW SHORT
LOW MULTIPLE LOW HIGH LOW NORMAL
HIGH LESS LOW HIGH LOW NORMAL
LOW LESS LOW HIGH LOW NORMAL
HIGH MULTIPLE HIGH MED LOW SHORT
LOW MULTIPLE HIGH MED LOW SHORT
HIGH LESS HIGH MED LOW SHORT
LOW LESS HIGH MED LOW SHORT
HIGH MULTIPLE LOW MED LOW LONG
LOW MULTIPLE LOW MED LOW LONG
HIGH LESS LOW MED LOW LONG
LOW LESS LOW MED LOW NORMAL
HIGH MULTIPLE HIGH LOW LOW NORMAL
LOW MULTIPLE HIGH LOW LOW NORMAL
HIGH LESS HIGH LOW LOW SHORT
LOW LESS HIGH LOW LOW LONG
HIGH MULTIPLE LOW LOW LOW SHORT
LOW MULTIPLE LOW LOW LOW SHORT
HIGH LESS LOW LOW LOW LONG
LOW LESS LOW LOW LOW NORMAL
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Table 4. Data range of the key variables.

Variable Type Variable Name Fuzzy Set DataRange

Input Criticality LOW (1–20)
Input Criticality HIGH (15–30)
Input Variants LESS (1–10)
Input Variants MULTIPLE (5–30)
Input Competition LOW (1–7)
Input Competition HIGH (5–15)
Input Buying frequency LOW (1–5)
Input Buying frequency MEDIUM (2.5–6.5–11)
Input Buying frequency HIGH (7.5–12)
Input Tender value LOW (1–40)
Input Tender value HIGH (40–100)

Output Finalization period SHORT (1–60)
Output Finalization period NORMAL (50–75–120)
Output Finalization period LONG (100–180)

By using the centroid method for defuzzification, the proposal ensures that the average
procurement period is accurately and reliably determined based on the most influential factors.
This method provides a good balance between simplicity, efficiency and accuracy, making it an
ideal choice for the fuzzy-based system proposed to optimize procurement processes.

3. Results and Discussion

The proposed system begins by effectively processing input parameters, transforming
them into fuzzy sets. These fuzzy sets serve as the basis for subsequent computations that
determine the output fuzzy set, aligning with the system’s design. The input parameters
under consideration include buying frequency, competition, criticality, tender value and
variants. Each of these parameters plays a crucial role in shaping the procurement landscape
and is graphically depicted in Figure 3, which provides visual representations of the input
variables in relation to procurement norms. The variable “buying frequency” (Figure 3a)
exhibits non-linear behavior with an intriguing quasi-linear relationship observed within
the range of 1 to 6 for the tendered items. This suggests that there exists a critical threshold
for buying frequency, beyond which the procurement period experiences a significant
change. The variable “competition” (Figure 3b) illustrates a reduction in the procurement
period when a substantial number of vendors participate in the tender process. This
reduction is attributed to an intensified rate of competition, which, in turn, diminishes the
justification required for item procurement.

In Figure 3c, the impact of inter-departmental follow-ups on the procurement process
is evident. As the criticality level surpasses 15, a noticeable declining trend in the procure-
ment period is observed. This underscores the importance of effective communication
and coordination between departments to expedite procurement activities. Conversely,
Figure 3d reveals that as the tender value exceeds 5 million rupees, the procurement period
tends to increase. This counterintuitive relationship may be attributed to the complexity
and scrutiny associated with high-value tenders, resulting in a longer procurement du-
ration. The fifth input variable, the number of variants tendered, demonstrates a limited
impact on the procurement period, with slight fluctuations occurring within the range of 6
to 12, as depicted in Figure 3e. This suggests that the number of variants, within a certain
range, does not significantly alter the procurement timeline.
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The findings from the proposed fuzzy logic-based procurement system offer several practi-
cal implications for organizations, particularly those involved in complex procurement processes,
like enhanced decision-making, identification of critical thresholds, improved coordination and
communication, including optimization of procurement processes.

Accurate Procurement Duration Predictions: The system’s ability to predict procurement
durations with high accuracy, which allows procurement managers to make more informed
decisions. Knowing the estimated time from purchase request to contract finalization helps
in planning and scheduling procurement activities effectively.

Strategic Resource Allocation: By understanding the factors that most significantly
influence procurement durations, organizations can allocate resources more strategically.
For instance, they can prioritize resources for highcriticality items or those with high tender
values, ensuring that these procurements are managed more efficiently.

Threshold for Buying Frequency: The quasi-linear relationship identified for buying
frequency (with a critical threshold observed between 1 and 6) indicates that beyond this
range, significant changes in procurement duration can occur. Organizations can use this
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insight to optimize their procurement cycles, avoiding frequent small orders that could
prolong the procurement period.

Impact of Competition: The finding that increased competition reduces procurement
duration suggests that encouraging more suppliers to participate in tenders can expedite
the process. Organizations might consider strategies to broaden their supplier base and
foster competitive bidding environments.

Inter-Departmental Follow-Ups: Streamlining inter-departmental follow-ups and ensur-
ing prompt responses can reduce delays, particularly for highcriticality items.

Complexity of High-Value Tenders: The observation that procurement periods increase
with higher tender values (above 5 million rupees) underscores the need for meticulous
planning and additional scrutiny for high-value procurements. Organizations can prepare
for these complexities by allocating more time and resources to manage these tenders.

Handling Variants: The limited impact of the number of variants on procurement
duration within a certain range (6 to 12) suggests that organizations can manage multiple
variants without significant delays. This insight helps in planning bulk procurements where
multiple variants are involved, ensuring that procurement timelines remain unaffected.

Resource Optimization: The ability to predict procurement durations accurately enables
organizations to optimize their human, material and financial resources. This leads to more
efficient operations, reduced wastage, and better financial management, particularly for
critical projects requiring timely procurement.

To provide a comprehensive view of the relationships between various input combina-
tions and their corresponding output, surface plots are presented in Figures 4–13. These
plots offer a three-dimensional representation, allowing for a nuanced understanding of
how different combinations of input parameters influence the procurement period. The
surface plots highlight the intricate and often non-linear nature of these relationships,
emphasizing the need for a sophisticated modeling approach like fuzzy logic to capture the
nuances of the procurement process. Figure 4 shows the relationshipbetween the number
of variants available in the scope of supply and the tender value. The plot helps to identify
how different combinations of these two variables affect the procurement period, indicating
that a higher number of variants might complicate the procurement process, especially
when coupled with higher tender values. Figure 5 demonstrates how the frequency of
procurement for a specific item interacts with the level of competition (number of suppli-
ers). Understanding this relationship is crucial for optimizing procurement timelines, as
frequent purchasing coupled with high competition may lead to quicker decision-making.
The relationshipbetween the frequency of procurement and the criticality of the item is
illustrated in Figure 6. This plot highlights how often critical items are procured and the
impact of their criticality on the procurement process. High criticality and high buying
frequency indicate a need for streamlined procedures. Figure 7 shows the interaction-
between buying frequency per annum and the tendered value. The visualization helps
in understanding how frequent purchases of high-value items require different handling
compared to lower-value items. The surface plot between competition and criticality shown
in Figure 8 helps us to understand how the availability of suppliers (competition) affects
the procurement of highly critical items. This relationship is key to identifying potential
bottlenecks where high criticality might reduce supplier options, complicating the procure-
ment process. Figure 9 shows the interactionbetween competition among suppliers and
the tender value. This relationship apprises the strategies used to manage procurement
in situations where high-value tenders are involved, especially when a lower number of
suppliers are participating in the tender. Figure 10 illustrates how the criticality of an item
affects tender value. It provides insight into how critical items might lead to higher tender
values due to their importance in the project, which could, in turn, influence the procure-
ment duration. Figure 11 depicts the relationshipbetween the number of available variants
and how often the item is procured. It helps us to understand if items with more variants
are procured more or less frequently and how this dynamic affects the overall procurement
timeline. The plot between variants and competition shown in Figure 12 provides insight
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into how the availability of multiple variants influences the level of supplier competition.
This is particularly useful for understanding procurement scenarios where a higher number
of variants might either increase or decrease supplier competition. The surface plot shown
in Figure 13 illustrates the relationshipbetween the number of variants and the criticality
of the item. It is essential for understanding how multiple variants of a critical item are
managed within the procurement process and whether this complexity adds to the procure-
ment time. These visualizations also guide procurement professionals in understanding
the key drivers of procurement time and in making more informed decisions.
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The model’s performance was rigorously assessed using datafrom 12 items, and the
results are tabulated in Table 5. The RMSE of the fuzzy logic-based output is approximately
2.37, indicating a low average error between the actual and predicted values. Techniques
such as data cleaning, normalization and handling of missing values were effectively
applied, ensuring the input data was well-prepared for modeling for more precise predic-
tions. The R2 score is approximately 0.993, indicating that the model explains 99.3% of the
variance in the procurement period, demonstrating a high level of accuracy.

Table 5. Tested sample cases and results.

Criticality
Factor

Variants (No) Competition
(No)

Buying
Frequency

per Annum

Tender
Value

(Rs. Lakhs)

Purchase Request to Contract
Finalization Duration

(Actual Days) (Predicted Days)

2 2 15 12 10 41 40.1
5 5 5 4 50 142 143

25 1 10 8 >100 56 58.1
30 2 12 6 75 40 40.4
10 5 5 5 5 85 81.5
10 30 15 6 >100 80 80.8
10 30 15 12 >100 80 80.8
30 30 15 12 >100 78 80.8
30 30 15 6 >100 36 39.7
30 30 15 8 >100 56 55.7
30 10 15 8 >100 66 69.3
10 10 15 8 >100 78 81.9

These metrics validate the effectiveness of the fuzzy logic-based system in predicting
the procurement period. The system demonstrated its capability to predict the duration
required from purchase request to contract finalization with a high degree of accuracy. This
underscores the efficacy of the fuzzy logic-based approach in capturing the complex and
non-linear relationships inherent in procurement dynamics.

Thus, the proposed fuzzy logic-based procurement system proves to be a robust frame-
work for modeling and predicting the duration required from purchase request to contract
finalization. Visual representations of key input variables, along with surface plots, offer
valuable insights into the complex relationships governing the procurement process. The
findings highlight non-linear and quasi-linear behaviors within specific parameter ranges,
shedding light on critical thresholds and influencing factors. The system’s performance
assessment using real-world data further validates its effectiveness in capturing the intrica-
cies of procurement management. As organizations continue to seek innovative solutions
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for efficient procurement, the integration of fuzzy logic systems emerges as a promising
avenue for addressing the inherent uncertainties and complexities in this domain.

This fuzzy-based prediction system offers organizations the means to optimize their
human, material and financial resources, contributing to more efficient operations and
decision-making.

4. Conclusions

In this paper, we explore the application of artificial intelligence to enhance supply
chain management by determining an optimal procurement norm for estimating the dura-
tion from purchase request to contract finalization of a boiler component. The integration
of RFE allowed us to systematically select the most influential features, enhancing the
accuracy and efficiency of the model. Fuzzy logic, on the other hand, enabled the handling
of uncertainty and non-linear relationships within the data, providing a more robust and
adaptable solution. The implementation of such AI-driven systems could represent a
significant step forward in the evolution of supply chain management, offering substantial
benefits in terms of cost savings, time efficiency and strategic decision-making.

Our investigation revealed a quasi-linear relationship between the buying frequency
of tendered items within the range of 1 to 6. Moreover, when a significant number of
vendors participate in a tender, it leads to a reduction in the procurement period. Notably,
inter-departmental collaboration was found to expedite the procurement process, resulting
in a decreasing trend in the procurement period when the criticality level exceeded 15.
Conversely, as the tender value exceeded 5 million rupees, the procurement period tended
to increase.

To provide a comprehensive view of the relationships between these variables, we
present a surface plot that captures the overall variations within the selected framework.
The results obtained from our developed system were evaluated against real-time cases,
demonstrating a high degree of agreement. This fuzzy decision-making tool holds promise
for various supply chain functions across industries, offering opportunities for improve-
ment in their operational activities. Future research could explore the application of this
model to other components or industries, as well as integrate additional variables, such
as market dynamics or geopolitical factors, to further refine the accuracy and utility of
the tool.
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