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Abstract: Wearable sensors for human activity recognition (HAR) have gained significant
attention across multiple domains, such as personal health monitoring and intelligent home
systems. Despite notable advancements in deep learning for HAR, understanding the
decision-making process of complex models remains challenging. This study introduces
an advanced deep residual network integrated with a squeeze-and-excitation (SE) mech-
anism to improve recognition accuracy and model interpretability. The proposed model,
ConvResBiGRU-SE, was tested using the UCI-HAR and WISDM datasets. It achieved
remarkable accuracies of 99.18% and 98.78%, respectively, surpassing existing state-of-
the-art methods. The SE mechanism enhanced the model’s ability to focus on essential
features, while gradient-weighted class activation mapping (Grad-CAM) increased inter-
pretability by highlighting essential sensory data influencing predictions. Additionally,
ablation experiments validated the contribution of each component to the model’s overall
performance. This research advances HAR technology by offering a more transparent
and efficient recognition system. The enhanced transparency and predictive accuracy may
increase user trust and facilitate smoother integration into real-world applications.

Keywords: human activity recognition (HAR); explainable AI (XAI); wearable sensors;
squeeze-and-excitation mechanism; deep residual network

1. Introduction
Human activity recognition (HAR) has become an essential domain in the age of

ubiquitous computing and intelligent appliances. The capacity to autonomously identify
and categorize individuals’ behaviors employing data from wearable sensors has significant
ramifications across several sectors, including medical services, intelligent residences,
fitness monitoring, and individualized solutions [1–3]. With the increasing popularity
of electronic devices, including advanced sensors, the possibility for more accurate and
contextually aware HAR systems also rises.

Machine learning techniques have transformed HAR, providing robust instruments for
deriving significant trends from sensor data. Traditional machine learning techniques, such
as support vector machines and random forests, are often employed because they are easy to
use and interpret [4]. In recent years, deep learning methodologies, including convolutional
neural networks (CNNs) and long short-term memory (LSTM) networks, have attained
the highest possible efficiency by autonomously acquiring hierarchical representations
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of features [5]. These models effectively incorporate temporal and spatial correlations in
sensor data, enhancing accuracy across different tasks.

The increasing complexity of deep learning architectures introduces significant chal-
lenges, particularly in interpretability and explainability. While these models often achieve
high accuracy, their internal decision-making processes remain primarily opaque, leading
to the well-known black-box problem [6]. This lack of transparency may erode user trust,
hinder regulatory adherence, and impede the successful deployment of HAR systems in
critical applications. Recent improvements in attention mechanisms, such as squeeze-and-
excitation (SE) networks [7], have shown promise in improving model efficacy by allowing
focus on the most important elements [8], yet their application in HAR, particularly with
explainability approaches, requires further investigation.

This study tackles these challenges by proposing an efficient deep residual neural
network model incorporating the SE mechanism. Our approach utilizes data from wearable
smart device sensors to improve movement tracking accuracy and provide us with a way
to comprehend how the model makes decisions. The main contributions and novelties of
this study are as follows:

1. This study introduces an efficient deep residual neural network model, ConvResBiGRU-
SE (Convolutional Residual Bidirectional Gated Recurrent Unit with SE), a novel
integration of CNNs, residual connections, bidirectional gated recurrent units (GRUs),
and SE mechanisms specifically optimized for HAR tasks.

2. This research develops an explainable framework for our HAR model, allowing a
transparent interpretation of the model’s predictions. Unlike many deep learning HAR
systems that function as black boxes, our approach incorporates gradient-weighted
class activation mapping (Grad-CAM) visualizations specifically adapted for time-
series sensor data. This addresses a critical gap in the literature by making complex
deep-learning models for HAR more transparent and interpretable.

3. This investigation uniquely evaluates performance across multiple datasets with dif-
ferent sensor placements (waist-mounted in UCI-HAR vs. front pocket in WISDM),
demonstrating the architecture’s robustness to sensor positioning variations—a prac-
tical challenge rarely addressed in previous studies.

4. Our systematic ablation experiments quantify the specific contribution of each ar-
chitectural component. This methodical approach reveals that the SE mechanism
improves model stability (reducing standard deviation by over 50%) while enhancing
accuracy—insights not previously established in the HAR literature.

The remainder of this paper is structured to the following: Section 2 examines relevant
literature in HAR, deep learning techniques, and attention mechanisms. Section 3 delineates
the suggested deep learning framework and its constituents. Section 4 delineates the
experimental configuration and exhibits the findings. Section 5 analyzes the findings.
Section 6 ultimately concludes the paper and delineates prospective research directions.

2. Related Work
This section reviews pertinent research in HAR using wearable sensors, deep learning

techniques, and attention mechanisms. It places our work within a more comprehensive
scientific context.

2.1. HAR Using Wearable Sensors

HAR using wearable sensors has been a significant research area for over a decade
due to its accessibility, affordability, and portability [9]. Wearable sensor signals are typ-
ically favored over video camera signals for different explanations [10]: (1) Wearable
sensors circumvent the environmental and static constraints of cameras, which are immo-
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bile; (2) Considerable sensors affixed to the body enhance signal accuracy and efficiency;
(3) Wearable sensors collect signals for designated objectives, in contrast to cameras that
may inadvertently record non-target individuals; (4) Wearable sensors provide enhanced
privacy, as video cameras perpetually capture full-body footage during daily activities;
(5) Subjects must remain within the fixed field of view of a camera system, limiting mobility
and practicality; and (6) Video processing is intricate and expensive.

Conventional machine learning techniques, such as support vector machine and ran-
dom forest, have been extensively utilized in HAR tasks [11]. These approaches typically
depend on hand-crafted features extracted from time and frequency domains. Although
such methods adequately recognize simple physical activities, they often exhibit limitations
in capturing complex or subtle movement patterns. Deep learning approaches have sig-
nificantly advanced HAR. CNNs excel at extracting spatial features from sensor data [12].
Recurrent neural networks (RNNs), especially LSTM networks, effectively capture tempo-
ral dependencies in activity sequences [13]. Integrating models that incorporate CNNs and
LSTMs utilizes both spatial and temporal data [14].

Hybrid models integrating one-dimensional CNNs and RNNs have been thoroughly
investigated. Our prior research [15] demonstrated that hybrid CNN with LSTM models
surpass independent CNN or LSTM models in performance. Challa et al. [16] employed a
hybrid model combining CNN and bidirectional LSTM (BiLSTM) networks. Their multi-
branch CNN with BiLSTM network can autonomously extract features from raw sensor data
without extensive pre-processing. Canizo et al. [17] introduced a multi-headed CNN–RNN
architecture, assigning a specific CNN head to each sensor. The feature maps created by
the CNN are merged and transmitted to the RNN module to detect temporal patterns.
Dua et al. [18] introduced a neural network model that employs CNNs and GRUs for
automated feature extraction and movement identification.

2.2. Attention Mechanisms in Deep Learning

Attention mechanisms are crucial for improving models developed using deep learn-
ing by allowing them to concentrate on the most pertinent aspects of the input data [19].

SE networks, proposed by Hu et al. [7], have markedly enhanced image classification
challenges through the flexible recalibration of channel-wise feature reactions. The SE block
employs global data that selectively emphasize significant features while attenuating less
relevant features.

Zhongkai et al. [20] investigated the feasibility of SE blocks in HAR studies by assess-
ing the HAR capabilities of several cutting-edge CNN models (such as VGG16, Inception,
ResNet18, and PyramidNet18) that were trained with them. In order to recognize tran-
sitional activities, Mekruksavanich et al. [21] suggested a deep learning model called
SEResNet-BiGRU. This model integrates SE, residual, and bidirectional GRUs (BiGRUs)
blocks. A multi-branch deep learning design was presented by Khan et al. [22]. In this
structure, each branch extracts and re-weights feature maps using a CNN-based model
with a SE unit.

3. Methodology
This section outlines a detailed methodology for recognizing human actions using

our proposed ConvResBiGRU-SE model. As shown in Figure 1, the methodology includes
three main components: data acquisition, data pre-processing, and model development.

In the data acquisition phase, we collect sensor data from wearable devices, focusing
on the UCI-HAR and WISDM datasets, which offer diverse real-world scenarios for activity
recognition. During the data pre-processing process, we perform essential phases such as
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noise reduction, data normalization, and segmentation to prepare the raw sensor data for
deep learning.

Finally, the model development phase describes our innovative architecture integrat-
ing CNNs, residual connections, BiGRU, and SE mechanisms to achieve robust activity
recognition. Each component is meticulously designed to address specific challenges in
sensor-based HAR while ensuring computational efficiency and model interpretability.
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Figure 1. The HAR workflow used in this work.

3.1. Evaluation Datasets

This study utilized two publicly available HAR datasets, UCI-HAR and WISDM,
to assess the proposed deep learning model. These datasets were selected because they
encompass diverse real-world scenarios in HAR employing wearable sensors. They fea-
ture different sensor placements, sampling rates, and types of activities. Both datasets
include measurements from inertial sensors (accelerometer and gyroscope) collected via
smartphones, making them ideal for assessing HAR systems based on wearable devices.

3.1.1. UCI-HAR Dataset

This research employs the UCI human behavior recognition dataset obtained through
handheld electronic devices [23] to observe events in the community. The UCI-HAR dataset
comprises action data from thirty individuals, with ages, nationalities, heights, and weights
varying between 18 and 48 years. Individuals carried a Samsung Galaxy S-II smartphone
(Suwon, Republic of Korea) at waist height while engaging in routine activities. Each
participant performed six distinct activities: walking, ascending stairs, descending stairs,
sitting, standing, and lying down. Sensor data was captured utilizing integrated tri-axial
measurements from the smartphone’s accelerometer and gyroscope. Sensor data were
recorded at a sampling rate of 50 Hz, capturing linear acceleration and angular velocity
throughout the six predefined activities.

3.1.2. WISDM Dataset

The WISDM dataset [24] is an essential human activity recognition dataset from the
Wireless Sensor Data Mining Laboratory. This openly accessible dataset was generated
by the WISDM team and collected using a smartphone positioned in the front leg pocket
of the subjects’ trousers. The dataset comprises 1,098,207 samples and documents the
behavior trends of 36 participants. The activities included walking, jogging, ascending,
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descending, sitting, and standing. Individuals gathered information by placing an Android
smartphone in their front leg pocket, employing the device’s integrated accelerometer
sensor at a sampling frequency of 20 Hz.

3.2. Data Pre-Processing

Raw sensor data from wearable instruments usually includes noise and variations
that can negatively impact HAR model interpretation. This study implemented several
pre-processing efforts to improve data quality and enhance model recognition. The pre-
processing channel has three prominent phases: data denoising to eliminate undesirable
noise from sensor signals, data normalization to regularize input values, and data seg-
mentation employing a sliding window method to formulate sequential data for the deep
learning model. These pre-processing phases are essential for providing the HAR system’s
robustness and reliability, as they support reducing the effects of sensor noise, instrument
variations, and temporal inconsistencies in unprocessed data.

3.2.1. Data Denoising

In contexts involving smart wearable devices, including domestic environments, out-
door athletics, and routine employment, a smartwatch’s integrated inertial measurement
unit (IMU) could create noise. This distortion may arise from surrounding magnetic fields,
external interference, and equipment exactness, impacting the efficacy of the individual’s
behavior identification technique. Employing data from various wearable inertial mea-
surement units can mitigate noise effects in multi-sensor systems. Nonetheless, noise can
substantially impact the identification method in routine scenarios where a single IMU
is employed for data acquisition. Consequently, data filtration in single-sensor networks
is imperative.

Diverse algorithms, such as median, low-pass, and Kalman filtering, are available.
Studies demonstrate that routine interactions between individuals generally oscillate be-
tween 1 and 15 Hz, a low-frequency spectrum amenable to filtration via a low-pass filter
on IMU signals [25]. The Butterworth filter is a conventional, accessible filter utilized as
a low-pass filter to attenuate high-frequency noise. This filter exhibits a maximum flat
frequency response curve in the passband and gradually increases attenuation to zero in
the stopband. The amplitude attenuation ratio in the stopband is directly correlated to the
filter’s order. The Butterworth filter is extensively utilized in signal processing because of
its superior response to frequency properties.

The Butterworth filter can be represented by Equation (1):

|H(ω)|2 =
1

1 + ( ω
ωc
)2N =

1
1 + ε2( ω

ωp
)2N (1)

where N represents the filter hierarchy, ωc is the cut-off frequency, and ωp is the boundary
frequency of the passband.

This study establishes the wearable device’s IMU sampling rate at 100 Hz to ensure
high-precision behavioral interpretation. The filter’s cut-off frequency is established at
20 Hz with an order of 4 to preserve movement data below 15 Hz. Following the segmenta-
tion of sensor data from public datasets, the accelerometer and gyroscope data frames from
a selected sensor are subjected to filtering. Figure 2 illustrates the signal waveforms prior
to and subsequent to filtering.
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Figure 2. Sample accelerometer signal frames of walking activity, shown before and after applying
filtering techniques.

3.2.2. Data Normalization

The unprocessed sensor data is subsequently normalized to a range of 0 to 1. This
normalization procedure resolves the model learning concern by guaranteeing that all
data values fall within a comparable scope. As a result, gradient descent algorithms can
converge more efficiently [26].

Xnorm
i =

Xi − xmin
i

xmax
i − xmin

i
, i = 1, 2, . . . , n (2)

Xnorm
i denotes the normalized data, n signifies the number of channels, while xmax

i
and xmin

i denote the highest and lowest points of the i-th channel, respectively.

3.2.3. Data Segmentation

Due to the extensive volume of signal data gathered by wearable sensors, it is unfea-
sible to enter all possible information into the HAR model concurrently. Consequently,
sliding window segmentation is executed before inputting the data into the model. The
sliding window technique is one of the most widely used data segmentation approaches
in HAR. It is effective in capturing both dynamic activities (e.g., jogging, walking) and
static activities (e.g., standing, sitting, lying down) [27]. The unprocessed sensor signals are
segmented into fixed-length intervals, with an overlapping section between consecutive
intervals. This overlap enhances the quantity of training data samples and is beneficial in
preventing the omission of changeover between operations. The windowing procedure is
depicted in Figure 3.

The segmented sample data, utilizing a sliding window of length N, has dimensions
of K× N. The sample Wt is represented as:

Wt = [a1
t a2

t . . . aK
t ] ∈ RK×N (3)

where the column vector ak
t = (ak

t1
ak

t2
. . . ak

tN
)T represents the signal data of sensor k at

window time t. Additionally, T denotes the transpose operator, K is the number of sensors,
and N is the length of the sliding window. To utilize the correlations among windows and
facilitate the training process, the window data is divided into sequences of windows.
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S = {(W1, y2), (W1, y2), . . . , (WT , yT)} (4)

where T denotes the duration of the window sequence and yt signifies the associated activity
label for window W. If a window comprises several activity classes, the predominant
activity sample will be selected as the label for that window.
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Figure 3. Fixed-length sliding window method employed in this study.

3.3. The Proposed ConvResBiGRU-SE Model

This section presents the ConvResBiGRU-SE model, an innovative deep-learning
structure designed for efficient HAR utilizing data from wearable sensors. The model
incorporates the benefits of CNNs, residual connections, BiGRUs, and SE mechanisms.
This amalgamation ensures substantial feature acquisition and accurate behavior catego-
rization. As shown in Figure 4, the architecture includes several essential components: a
convolutional block for initial feature extraction, multiple SE-Residual blocks with bidi-
rectional GRU units for hierarchical feature learning, and a classification module for final
action recognition.
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Figure 4. Comprehensive and expanded architecture of the proposed hybrid deep residual model.

3.3.1. Convolutional Block

When employing CNNs, a particular array of components is generally utilized. CNNs
are frequently employed in learning under supervision, wherein each neuron is intercon-
nected with every neuron in the following layer. The value entered by the neurons is
transformed into an output value via the activation function of the neural network. The
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efficiency of this function is dictated by two principal factors: sparsity and its capacity to
regulate the diminished gradient flow to the network’s layers below.

CNNs often utilize pooling for dimensionality reduction, implementing both maximum
and average pooling functions, referred to as max-pooling and average-pooling, respectively.

This study employs a convolutional block (ConvB) to derive low-level features from
unprocessed sensor data. The ConvB consists of four layers: one-dimensional convolutional
(Conv1D), batch normalization (BN), exponential linear unit (ELU), and max-pooling (MP)
layers, as illustrated in Figure 4. The Conv1D layer employs several trainable convolutional
kernels to extract diverse features, with each kernel generating a distinct feature map. The
BN layer enhances stability and accelerates the training operation. The ELU activation
function enhances the model’s representational capacity by introducing non-linearity while
avoiding vanishing gradient issues. The MP layer reduces the spatial dimensions of the
feature maps by retaining the most salient features within each pooling region.

3.3.2. Structure of GRU

The GRU was created as a novel architecture derived from RNNs to mitigate the
challenges of expanding or vanishing gradients. Nonetheless, the memory cells within its
architecture lead to increased memory consumption [28]. The GRU is a streamlined variant
of the LSTM model, lacking a distinct memory cell in its architecture [29,30].

A GRU contains update and reset gates that regulate the revised magnitude of each
hidden state. These gates dictate the data that should be transmitted to the subsequent
state and withheld, as depicted in Figure 5a. The concealed state ht at time t is determined
by the output of the update gate zt, the reset gate rt, the current input xt, and the preceding
hidden state ht−1. The mathmatical formulas of the gates in GRU are shown as follows:

zt = σ(Wzxt ⊕Uzht−1 + bz), (5)

rt = σ(Wrxt ⊕Urht−1 + br), (6)

gt = tanh(Wgxt ⊕Ug(rt ⊗ ht−1) + bg), (7)

ht = ((1− zt)⊗ ht−1)⊕ (zt ⊗ gt) (8)

where W represents the weight matrices for the current input, U represents the weight
matrices for the previous hidden state, and b are bias vectors. The function σ represents a
sigmoid function. The symbol ⊕ denotes a basic addition operation, while ⊗ signifies a
fundamental multiplication operation.

(a) (b)

ht − 1

Hidden state
input from t − 1

Hidden state
output from t

ht

tanh
!

Output from t

ht

xt Current data

!
ztrt gt

1-
1−zt

(1−zt)    ht-1

zt      gt

Reset gate

Update gate

xt+1

ht+1

GRU

GRU

xt

ht

GRU

GRU

xt−1

ht−1

GRU

GRU
ht−1htht+1

ht−1htht+1

Forward
direction

Backward
direction

Input

Output

Figure 5. Structure of BiGRU: (a) GRU cell and (b) unroll BiGRU.
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In 1997, Schuster and Paliwal designed the bidirectional RNN (BiRNN) to overcome
the constraints of the traditional unidirectional RNN [31]. In contrast to standard RNNs,
the output at any specific time step in a BiRNN incorporates information from preceding
and subsequent inputs. This is achieved by simultaneously training two separate RNN
layers: one processes the sequence in the forward direction, while the other processes it
in reverse.

In a BiRNN, the neurons of a conventional RNN are partitioned into two segments:
one for interpreting data in the forward direction and the other for the backward direction.
Conversely, the outputs of positive neurons are not linked to negative neurons. This yields
the overall structure illustrated in Figure 5b. The subsequent equations delineate the
mathematical operations involved:

−→
ht = GRU(xt,

−−→
ht−1) (9)

←−
ht = GRU(xt,

←−−
ht+1) (10)

ht = [
−→
ht ,
←−
ht ] (11)

where GRU() represents the GRU function that processes the current input xt along with
the previous hidden state in either the forward (

−−→
ht−1) or backward (

←−−
ht+1) direction.

3.3.3. SE-Residual Block

Fundamental deep learning architectures, such as LeNet, AlexNet, and VGGNet,
typically consist of convolutional layers followed by fully connected layers for classifica-
tion or regression tasks. These models do not incorporate residual or skip connections.
Instead, each layer feeds its output directly into the next, forming what are known as
sequential networks.

As the layers in a sequential network grow, concerns with vanishing or exploding
gradients could arise. ResNet incorporates residual blocks that facilitate skip connections
among convolutional layers. This enhances gradient propagation and facilitates the training
of significantly deeper CNNs with no facing gradient vanishing issues. A residual layer
could be depicted in the following format:

ELU(x) =

x x ≥ 0

α ∗ (ex − 1) x < 0
(12)

R(x) = ELU(x + f (x)) (13)

In this setting, f (x) denotes the layer’s result, whereas x signifies the input value. The
function ELU(x) represents the exponential linear unit function, while R(x) represents
the result of the residual block. The residual component f (x) in this block is defined
by two consecutive sequences of three processes: convolution with a 3 × 1 filter, batch
normalization, and ELU activation. The feature map from f (x) is combined with the input
x. These concatenated features are subjected to the ELU activation function.

This study introduces the SEResidual block, which systematically retrieves hybrid
features by integrating spatiotemporal and channel-wise data [32]. This residual block
comprises Conv1D, BN, ELU, SE modules, and a shortcut connection with BiGRU, as
depicted in Figure 4. The SE modules augment the model’s representational capacity by
emphasizing channel attention.

Figure 6 illustrates the configuration of a SE module. The convolution process provides
multiple feature maps. Specific maps may include superfluous information. The SE
component executes feature recalibration to accentuate the salient features and diminish
the less pertinent ones. This module functions in two primary steps: squeeze and excitation.
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During the squeeze stage, all data on the channels is gathered. The dimensions of
the feature map U for a single channel are C× H ×W, where H ×W denotes the feature
map’s dimensions. Feature maps for each channel are condensed into 1× 1 feature maps
utilizing a channel descriptor function, such as global average pooling (GAP) [33]. A
scalar value denoting the channel’s global information is generated within this period. The
squeeze process is delineated in Equation (14), where (uc(i, j)) signifies a feature map for
channel c after the passage of X through the convolution layer. Fsqueeze denotes the channel
characterization function, and GAP was employed in this research.

Zc = Fsqueeze(Uc) (14)

=
1

H ×W

H

∑
i=0

W

∑
j=0

Uc(i, j) (15)

Subsequently, during the excitation phase, channel-wise dependencies are modeled
using the descriptors obtained from the preceding squeeze phase. This is achieved via
fully-connected (FC) layers and non-linear functions. Equation (16) delineates the excitation
phase, wherein z denotes the value derived from the squeeze phase, Wi signifies the ith
fully connected layers, σ denotes the sigmoid function, and Fexcite indicates the excitation
function. The sigmoid function guarantees that the result of the excitation phase is confined
within the interval of 0 to 1, which can subsequently serve as a calibration weight. The
newly derived weight s from the excitation phase is multiplied by the current feature
map U. Figure 6 illustrates the functionality of the SE module employed in the present
investigation, showcasing the configuration of the squeeze and excitation phases within
the SE block.

s = Fexcite(z, W) (16)

= σ(g(z, W)) (17)

= σ(W2ReLU(W1z)) (18)

The last stage entails restructuring the outcome U to implement activations in the side
path network. In this context, X = [x1, x2, . . . , xn] and snUn represent the element-wise
multiplication of the scalar sn with the feature map. This method allocates adaptive weights
to the feature channels, which is the core principle of the SE block [34].

Global Average 
Pooling FC ReLU FC Sigmoid

Squeeze Excitation

Feature maps
U

Feature maps
U’

H

C
W

H

C
W

Figure 6. Structure of the SE module.

3.4. Model Training and Hyperparameters

The proposed ConvResBiGRU-SE model’s performance is dependent on the availabil-
ity of sufficient and diverse training data and the careful tuning of architectural design
parameters, commonly known as hyperparameters. The hyperparameters comprise epoch
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counts, learning rates, and batch size. To guarantee strong model performance, we utilized
a conventional method that entails partitioning the data into training and validation sets.
The training set facilitated hyperparameter optimization, whereas the holdout validation
set served for independent comparative evaluation.

We identified the optimal hyperparameter settings that maximized the model’s ac-
curacy through trial and error. The parameters consist of a batch size of 128, a learning
rate of 1 × 10−3, and a maximum epoch limit of 200. An early stopping strategy was
employed to prevent overfitting and ensure that the model learns generalizable patterns
rather than merely memorizing the training data. The training was automatically halted
after 10 consecutive epochs without any enhancement in validation accuracy. Furthermore,
we instituted an adaptive learning rate strategy that decreases the learning rate by 25%
if no enhancement is detected during the specified interval. This method facilitates more
efficient model convergence and prevents entrapment in suboptimal solutions.

Table 1 presents a comprehensive overview of the hyperparameters employed in our
model architecture. The convolutional block employed a kernel size of 3 and 256 filters,
facilitating efficient spatial feature extraction from the raw sensor data. The SE-Residual
blocks, central to our proposed architecture, were designed with BiGRU units featuring
128 hidden states to capture temporal dependencies, while the convolutional paths utilized
varying kernel sizes (3 and 5) to extract multi-scale features. The classification block
employed global average pooling, succeeded by fully connected layers, resulting in an
output layer with neurons corresponding to the number of activity classes.

Table 1. Summary of hyperparameters of the ConvResBiGRU-SE model.

Stage Hyperparameters Values

Architecture Convolution Block

1D Convolution
Kernel Size 3
Stride 1
Filters 256

Batch Normalization -
Activation ELU
Max Pooling 2

SE-Residual Block - 2
(Path 1)
BiGRU Unit 128

(Path 2)

Conv1D
Kernel Size 3
Stride 1
Filters 256

Batch Normalization -
Activation ELU

Conv1D
Kernel Size 5
Stride 1
Filters 256

Batch Normalization -
SE -

Classification Block
Global Average Pooling -
Dense 64
Dense No. of activity classes

Training Loss Function Cross-entropy
Optimizer Adam
Batch Size 128
Number of Epochs 200

This carefully tuned hyperparameter configuration yielded a model that achieved
outstanding performance while maintaining reasonable computational complexity, making
it suitable for practical applications in human activity recognition using wearable sensors.
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3.5. Model Evaluation

The efficacy of identifying activities in the suggested deep learning approach is evalu-
ated through a 5-fold cross-validation technique. The subsequent equations delineate the
mathematical representations for all five metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1− score = 2× Recall × Precision
Recall + Precision

(22)

The following are the principal assessment requirements employed in HAR investiga-
tions. Recognition is categorized based on true positive (TP) classification for the target
class and true negative (TN) identification for all other classes. Occasionally, activity sensor
data from one category may be erroneously classified as belonging to another, resulting in
a false positive (FP) identification. Likewise, data from a different class may be erroneously
classified as the target class, leading to a false negative (FN) classification.

The efficacy of the deep learning models in the present research was evaluated utilizing
a confusion matrix. This square matrix with k classes offers comprehensive findings for
a multiclass classification issue. The confusion matrix provides an in-depth evaluation
of accurately and inaccurately classified occurrences by supervised learning models. An
element ci,j in the matrix denotes the frequency of instances of class Ci that have been
categorized as class Cj. The confusion matrix also emphasizes classification inaccuracies.

Let C represent a confusion matrix derived from the identical testing method. In these
expressions, C1, C2, C3, . . . , Ck represent the k categories of activities in a HAR dataset, and
n = ∑ ∑ ci,j denotes the overall amount of data elements classified within the matrix C.
Diagonal elements represent concordant components that are accurately classified within
the same category, whereas ci,j for i ̸= j denotes discordant components that are part of Ci

but are classified as Cj. The confusion matrix C is depicted in Figure 7.

Figure 7. The confusion matrix C.

3.6. Model Interpretation

Deep learning has emerged as a prominent and developed domain across multiple
sectors that adopt modern innovations. The advancement of community life depends on
deep learning to address intricate issues and deliver dependable alternatives. Deep learning
is often regarded as having the potential to automate human-centric tasks, reducing or
eliminating the need for direct human intervention. However, the inherently opaque
nature of deep learning models has led many communities to hesitate to adopt them for
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routine decision-making tasks. As a result, there is a growing demand for transparency
and interpretability in these emerging methodologies.

Since 2018, many investigators have developed a novel discipline known as eXplain-
able Artificial Intelligence (XAI) [35]. XAI tackles the scientific aspects of deep learning
models to guarantee a degree of interpretability while incorporating principles of confiden-
tiality and accountability.

From a technical standpoint, the interpretability of a recently created deep learning
model can improve its implementation. Primarily, constructing an interpretable model
ensures equity in the decision-making process. Additionally, interpretability can detect
possible adversarial changes that influence forecasting, facilitating targeted enhancements
to the model’s foundation. Lastly, interpretability guarantees that only significant fea-
tures affect the intended output, elucidating the fundamental causality in the data and
model rationale.

Grad-CAM is an interpretability method employed in deep learning, especially for
CNNs, to emphasize the areas in an image that significantly influence the prediction caused
by a model for a specific class. The procedure entails calculating the gradients of the target
class score concerning the feature maps in the last convolutional layer. The gradients are
subsequently weighted according to their significance, and the weighted sum is utilized
to generate a heatmap that illustrates the discriminative areas that affected the model’s
conclusion [36,37].

Grad-CAM is utilized in multiple applications, such as image classification, object
identification, and clinical image analysis. It offers perspectives on essential features and
enhances the interpretability of CNNs by generating spatially accurate visualizations of
class-specific activations.

4. Experimental Environments and Findings
This section considerably evaluates our suggested ConvResBiGRU-SE model via exper-

imental validation on two public HAR datasets: UCI-HAR and WISDM. Initially, we outline
the experimental setup, detailing the hardware configuration, software environment, and
implementation specifics. Subsequently, we provide a comprehensive performance analy-
sis, contrasting our model with various baseline methods utilizing standard assessment
indicators, including accuracy, precision, recall, and F1-score. The experimental findings
demonstrate the efficacy of our suggested approach in identifying human actions from
wearable sensor data.

4.1. Experimental Settings

This research utilized Google Colab Pro+, equipped with a Tesla L4 GPU, to accelerate
the training of deep learning models. The ConvResBiGRU-SE model, in conjunction with
various standard deep learning networks (CNN, LSTM, BiLSTM, GRU, and BiGRU), was
constructed utilizing a Python library with TensorFlow 2.17.1 and CUDA backends. The
following Python libraries were also employed:

• Numpy 1.26.4 and Pandas 2.2.2 for data management, including retrieval, processing,
and sensor data investigation.

• Matplotlib 3.10.0 and Seaborn 0.13.2 are utilized to visualize and demonstrate data
exploration and model assessment outcomes.

• Scikit-learn 1.5.2 for sampling and data generation in experiments.
• TensorFlow 2.17.1 and Keras 2.5.0 for establishment and training deep learning models.

Analyses were conducted on the UCI-HAR and WISDM datasets to determine the most
efficacious methodology. By employing the data segmentation technique in Section 3.2.3,
the dataset derived from the two datasets utilized in our study was initially partitioned into
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10,299 segments for UCI-HAR and 10,864 segments for WISDM. The quantity of segmented
samples in each activity class is presented in Table 2.

Table 2. Numbers of segmented samples in each activity class of the UCI-HAR and WISDM datasets.

Dataset Walking Walking Walking Sitting Standing Laying Jogging TotalUpstairs Downstairs

UCI-HAR 1722 1544 1406 1777 1906 1944 - 10,299
WISDM 4148 1236 1001 597 484 - 3366 10,864

To mitigate the reliance of findings on specific data partitioning into training and
testing subsets, we employed a stratified 5-fold cross-validation methodology as illustrated
in Figure 8. This validation scheme involves partitioning the dataset into five equal folds,
with each fold (20% of the data) utilized sequentially for testing, while the remaining four
folds (80% of the data) serve for training. This validation technique preserves the original
dataset’s class label proportions in each fold.
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Figure 8. Schematic diagram of Stratified 5-fold cross-validation.

4.2. Experimental Findings
4.2.1. Experimental Results from UCI-HAR Dataset

The experimental findings on the UCI-HAR dataset highlight the exceptional interpre-
tation of our proposed ConvResBiGRU-SE model compared to baseline methods. These
results are presented in Table 3.

Table 3. Performance comparison of deep learning models on the UCI-HAR dataset (results are
presented as mean percentage ± standard deviation over 5-fold cross-validation, with top-performing
results highlighted in bold).

Model
Recognition Performance (Mean% (±std.%))

Accuracy Precision Recall F1-Score

CNN 98.02% (±0.21%) 98.11% (±0.21%) 98.13% (±0.20%) 98.12% (±0.21%)
LSTM 96.75% (±0.74%) 96.97% (±0.67%) 96.95% (±0.71%) 96.95% (±0.70%)
BiLSTM 97.86% (±0.64%) 98.05% (±0.54%) 97.98% (±0.62%) 97.99% (±0.61%)
GRU 98.27% (±0.61%) 98.37% (±0.58%) 98.37% (±0.56%) 98.36% (±0.57%)
BiGRU 98.77% (±0.26%) 98.85% (±0.22%) 98.83% (±0.24%) 98.84% (±0.24%)
ConvResBiGRU-SE 99.18% (±0.20%) 99.25% (±0.17%) 99.23% (±0.20%) 99.24% (±0.19%)

Table 3 demonstrates that the model attained an accuracy of 99.18% (±0.20%), markedly
exceeding all baseline models. The model’s comprehensive performance indicators reveal a
precision of 99.25% (±0.17%), underscoring its effectiveness in reducing false positives. The
recall rate of 99.23% (±0.20%) illustrates its efficacy in accurately determining true positives.
The F1-score of 99.24% (±0.19%) signifies a well-balanced efficiency in precision and recall.

Among the baseline models, BiGRU performed second best with an accuracy of 98.77%,
showcasing the benefits of bidirectional temporal information processing. GRU and CNN
also performed well, with accuracies of 98.27% and 98.02% respectively. The basic LSTM
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model had a relatively lower performance at 96.75%, while BiLSTM improved upon this
with an accuracy of 97.86%.

The low standard deviations (around ±0.2%) across all metrics for our proposed
model indicate its stability and reliability. Integrating the SE mechanism with the residual
architecture enhanced the model’s feature learning capability, leading to more accurate and
robust activity recognition. These results validate our approach of combining attention
mechanisms with deep residual learning for HAR tasks.

4.2.2. Experimental Results from WISDM Dataset

The experimental findings on the WISDM dataset confirm the efficacy of the suggested
ConvResBiGRU-SE model. The outcomes are presented in Table 4.

Table 4. Performance comparison of deep learning models on the WISDM dataset (results are
presented as mean percentage ± standard deviation over 5-fold cross-validation, with top-performing
results highlighted in bold).

Model
Recognition Performance (Mean% (±std.%))

Accuracy Precision Recall F1-Score

CNN 92.59% (±0.77%) 90.67% (±0.87%) 89.43% (±0.98%) 89.90% (±0.91%)
LSTM 97.40% (±0.50%) 96.13% (±0.60%) 96.08% (±1.08%) 96.09% (±0.82%)
BiLSTM 97.86% (±0.22%) 96.88% (±0.58%) 96.82% (±0.58%) 96.84% (±0.57%)
GRU 97.45% (±0.24%) 96.34% (±0.42%) 96.10% (±0.37%) 96.20% (±0.40%)
BiGRU 97.96% (±0.20%) 96.96% (±0.50%) 96.70% (±0.61%) 96.82% (±0.56%)
ConvResBiGRU-SE 98.78% (±0.24%) 98.04% (±0.49%) 98.16% (±0.56%) 98.09% (±0.53%)

As indicated in Table 4, the ConvResBiGRU-SE model attained the highest accuracy
of 98.78% (±0.24%) among all the methods compared. This highlights its superior ability
to recognize human activities from wearable sensor data. The model’s detailed metrics
include a precision of 98.04% (±0.49%), a recall of 98.16% (±0.56%), and an F1-score of
98.09% (±0.53%), demonstrating consistent performance across various evaluation criteria.

Among the baseline models, BiGRU performed well with an accuracy of 97.96%
(±0.20%). BiLSTM followed closely with an accuracy of 97.86% (±0.22%), showcasing
the effectiveness of bidirectional processing in capturing temporal dependencies. GRU
and LSTM models achieved similar performance levels, with accuracies of 97.45% and
97.40% respectively. This suggests that unidirectional recurrent architectures can still
effectively model sequential patterns in human activity data. The basic CNN model had
the lowest performance, with an accuracy of 92.59%, indicating that simple convolutional
architectures alone may not be sufficient to capture the complex temporal patterns present
in the WISDM dataset.

5. Discussion
This section shows an in-depth analysis of the performance and attributes of our

ConvResBiGRU-SE model. We analyze the model’s behavior through three main aspects:
performance across various datasets, ablation studies of its architectural components, and
the interpretability of its decision-making process. This analysis expects to deliver insights
into the quantitative outcomes and qualitative understanding of our model’s effectiveness
in HAR tasks.

5.1. Performance Analysis

The performance of our ConvResBiGRU-SE model can be evaluated using quantitative
metrics and training dynamics. Figure 9 illustrates that the model maintains stable training
behavior on the UCI-HAR and WISDM datasets. For the UCI-HAR dataset (Figure 9a), the
model converges quickly within the first 25 epochs. Training and validation accuracy curves
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show steady improvement before leveling off at approximately 99% accuracy. The loss
curves initially drop sharply and stabilize, indicating effective learning without overfitting.

Model Accuracy Model Loss

Early stopping checkpoint 
Accuracy of training data
Accuracy of validation data

Early stopping checkpoint 
Accuracy of training data
Accuracy of validation data

(a) UCI-HAR dataset

Model Accuracy Model Loss

Early stopping checkpoint 
Accuracy of training data
Accuracy of validation data

Early stopping checkpoint 
Accuracy of training data
Accuracy of validation data

(b) WISDM dataset

Figure 9. Accuracy and loss curves of the proposed model using different datasets: (a) UCI-HAR
(b) WISDM.

Comparable training dynamics are noted for the WISDM dataset (Figure 9b), albeit
with some distinct features. The model converges around epoch 50, with the final accuracy
stabilizing at about 98.7%. The slower convergence rate compared to the UCI-HAR dataset
is likely due to the unique challenges of the WISDM dataset, such as its larger size and
more varied activity patterns.

Our implementation of early stopping proved critical to model performance. While
Figure 9 displays the entire 200-epoch trajectory for completeness, the vertical lines indicate
where early stopping typically occurs (around epoch 75 for UCI-HAR and 50 for WISDM).
This approach effectively prevented overfitting, as evidenced by the consistent accuracy of
validation and loss curves following convergence. The difference in convergence speed
between the two datasets highlights how our training strategy adapts to dataset complexity,
terminating earlier for more straightforward recognition tasks while allowing more epochs
for more challenging ones.

The confusion matrices in Figure 10 offer deeper insights into the model’s classification
performance. For the UCI-HAR dataset (Figure 10a), the model demonstrates excellent
discrimination across all activity classes, with most diagonal elements exceeding 0.98.
Notably, the model effectively distinguishes between similar activities like walking and
walking upstairs, a common challenge in HAR systems.
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Figure 10. Confusion matrices s of the proposed model using different datasets: (a) UCI-HAR
(b) WISDM.

The results for the WISDM dataset (Figure 10b) show similarly strong performance,
though with slightly more variation across activity classes. Static activities such as sit-
ting and standing are recognized with near-perfect accuracy (>0.99). Dynamic activities
have slightly lower but impressive recognition rates (>0.96). The minor confusion be-
tween walking and walking upstairs (around 0.02) reflects the inherent similarity in their
sensor patterns.

The confusion matrices depicted in Figure 10 illustrate normalized values compiled
from all five folds of our stratified cross-validation process. Each fold generates a distinct
confusion matrix, and these five matrices were aggregated and normalized to create the final
visualization. The aggregation and subsequent rounding of decimal values for display pur-
poses may cause some rows to total slightly more or less than 100%. In the WISDM dataset
results (Figure 10b), 99% of standing activities are accurately classified, whereas roughly
2% are erroneously classified as sitting. This apparent discrepancy (99% + 2% = 101%) is a
byproduct of the rounding process applied to the normalized aggregated values from all
five folds, where the actual decimal values total precisely 100%.

The consistently low standard deviations in our performance metrics (approximately
±0.2% for UCI-HAR and ±0.25% for WISDM) across multiple runs indicate the model’s relia-
bility and stability. This robust performance is due to several key architectural components:
the SE mechanism’s effective feature recalibration, the residual connections’ optimization
of gradient flow, and the bidirectional GRU’s ability to capture temporal patterns.

5.2. Ablation Studies

The ablation study is now frequently employed in neural networks [38] to analyze
a model’s comprehension by modifying specific aspects [39]. Consequently, we examine
the effects of ablation on our proposed model through three case studies. Altering various
blocks and layers enables us to assess their influence on the exhibited structure [40]. Upon
concluding each of the research circumstances, we can ascertain the optimal configuration
of our ConvResBiGRU-SE model, attaining the highest possible identification efficacy.
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5.2.1. Impact of Convolution Blocks

The first ablation study examines how the convolutional block affects the model’s per-
formance by comparing the entire ConvResBiGRU-SE architecture with the convolutional
block and a version without it, as revealed in Table 5. The experimental outcomes highlight
the convolutional block’s significant contribution to the model’s overall interpretation of
both datasets.

For the UCI-HAR dataset, adding the convolutional block increased the model’s
accuracy from 97.29% to 99.18%, an absolute improvement of about 1.89%. Similarly, the
F1-score improved from 97.34% to 99.24%. The relatively small standard deviations (±0.20%
for accuracy) indicate consistent performance across different runs. This improvement
suggests that the convolutional block effectively extracts relevant spatial features from the
raw sensor data, providing a better foundation for subsequent layers.

In the case of the WISDM dataset, including the convolutional block led to an accuracy
increase from 97.91% to 98.78% and an F1-score increase from 97.11% to 98.09%. Although
the performance gain is smaller than on UCI-HAR, it remains significant and confirms the
block’s effectiveness across different datasets. The slightly more significant standard devia-
tions on WISDM (±0.24% for accuracy) suggest more variability in the model’s effectiveness,
possibly due to the different characteristics and complexity of datasets.

Table 5. Impact of convolution blocks.

Model

Recognition Performance

UCI-HAR WISDM

Accuracy F1-Score Accuracy F1-Score

ConvResBiGRU-SE without the convolutional block 97.29% (±0.16%) 97.34% (±0.15%) 97.91% (±0.16%) 97.11% (±0.29%)

Our ConvResBiGRU-SE with the convolutional block 99.18% (±0.20%) 99.24% (±0.19%) 98.78% (±0.24%) 98.09% (±0.53%)

5.2.2. Impact of the SE-Residual Blocks

The second ablation study evaluates the effect of SE-Residual blocks on the model’s
effectiveness by comparing the ConvResBiGRU-SE architecture with a version that excludes
these blocks, as shown in Table 6. The findings reveal that SE-Residual blocks are essential
for enhancing the model’s ability to determine human movements across both datasets.

For the UCI-HAR dataset, incorporating SE-Residual blocks significantly improved
performance. Accuracy increased from 96.80% to 99.18%, an absolute gain of 2.39%. The
F1-score also improved, rising from 96.97% to 99.24%. Additionally, the standard deviation
for accuracy decreased from ±1.06% to ±0.20%, indicating that SE-Residual blocks boost
performance and contribute to more stable and consistent predictions.

The impact on the WISDM dataset was similarly significant. The model with SE-
Residual blocks achieved an accuracy of 98.78%, compared to 96.03% without them. The
F1-score increased from 94.57% to 98.09%, showing enhanced balanced performance across
all activity classes. The reduction in standard deviation from ±1.20% to ±0.24% further
confirms the stabilizing effect of these blocks.

Table 6. Effect the SE-Residual blocks.

Model

Recognition Performance

UCI-HAR WISDM

Accuracy F1-Score Accuracy F1-Score

ConvResBiGRU-SE without the SE-Residual blocks 96.80% (±1.06%) 96.97% (±1.02%) 96.03% (±1.20%) 94.57% (±1.27%)

Our ConvResBiGRU-SE with the SE-Residual blocks 99.18% (±0.20%) 99.24% (±0.19%) 98.78% (±0.24%) 98.09% (±0.53%)
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5.2.3. Impact of the SE Mechanism

The third ablation study evaluates the impact of the SE mechanism by comparing the
full ConvResBiGRU-SE model with a version that excludes the SE mechanism. The findings
in Table 7 show that the SE mechanism improves the model’s capability to recalibrate
features and support overall recognition performance.

For the UCI-HAR dataset, adding the SE mechanism increased the model’s accuracy
from 98.86% to 99.18%, an absolute improvement of 0.32%. The F1-score also rose from
98.93% to 99.24%. Although these improvements might seem modest, they are significant
given the high baseline performance. More importantly, including the SE mechanism
resulted in more stable predictions, as indicated by the reduction in standard deviation
from ±0.54% to ±0.20% for accuracy.

The SE mechanism had a more pronounced effect on the WISDM dataset. Accuracy
improved from 98.25% to 98.78%, and the F1-score increased from 97.29% to 98.09%. The
substantial decrease in standard deviation from ±1.14% to ±0.24% for accuracy indicates
that the SE mechanism significantly enhances the model’s stability and reliability. This
improvement is particularly valuable for real-world applications where consistent perfor-
mance is crucial.

Table 7. Effect the SE mechanism.

Model

Recognition Performance

UCI-HAR WISDM

Accuracy F1-Score Accuracy F1-Score

ConvResBiGRU-SE without the SE mechanism 98.86% (±0.54%) 98.93% (±0.51%) 98.25% (±1.14%) 97.29% (±1.90%)

Our ConvResBiGRU-SE with the SE mechanism 99.18% (±0.20%) 99.24% (±0.19%) 98.78% (±0.24%) 98.09% (±0.53%)

5.2.4. Intrepretablility of the Proposed Model

We employed Grad-CAM [36] to enhance the interpretability and transparency of
the model we developed. This approach enables us to interpret and pinpoint particular
areas within the sensor data that substantially influence the forecasts made by the model.
In time-series data, Grad-CAM emphasizes significant occurrences in the sequence that
affect the network’s classification selections. The visualization features a demonstration
sequence with a colormap accentuating these significant areas [41]. In this research, we
extracted and normalized the activation features produced by Grad-CAM to a scale of
0 to 1. Figures 11 and 12 illustrate the Grad-CAM activations for arbitrarily chosen portions
from the UCI-HAR and WISDM datasets utilizing our ConvResBiGRU-SE model. Brighter
shades denote elevated activation outcomes, indicating a more significant influence on
the forecast.

As illustrated in Figure 11, Grad-CAM visualizations display distinct activation pat-
terns for various activities for the UCI-HAR dataset. During walking movements (walking,
stepping upstairs, and downstairs), the model emphasizes the periodic patterns in ac-
celerometer and gyroscope signals, highlighted by bright regions in the activation maps.
For static activities like sitting and standing, the activation patterns are more evenly dis-
tributed, indicating that the model recognizes the sustained nature of these postures. The
laying activity exhibits minimal activations across the sensor channels, reflecting the low-
intensity nature of this static position.
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Walking

(a)

Walking Upstairs

(b)

Walking Downstairs

(c)

Standing

(e)

Sitting

(d)

Laying

(f)

Figure 11. Visualization of the Grad-CAM method using UCI-HAR dataset: (a) Walking, (b) Walking
upstairs, (c) Walking downstairs, (d) Sitting, (e) Standing, and (f) Laying. The white lines in the
figures represent the original raw sensor signals from the accelerometer and gyroscope channels,
allowing for direct visual comparison between the model’s activation patterns (shown by the colored
heatmap regions) and the underlying sensor data.
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(a)
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(c)

Sitting

(d)

Standing

Upstairs

(e)

Walking

(f)

Figure 12. Visualization of the Grad-CAM method using WISDM dataset: (a) Downstairs, (b) Jogging,
(c) Sitting, (d) Standing, (e) Upstairs, and (f) Walking. The white lines in the figures represent the
original raw sensor signals from the accelerometer channels, allowing for direct visual comparison
between the model’s activation patterns (shown by the colored heatmap regions) and the underlying
sensor data.

The results from the WISDM dataset (Figure 12) reveal similar interpretability patterns
with some unique characteristics specific to the dataset. The jogging activity displays
intense activations at regular intervals, reflecting the rhythmic nature of the movement.
The activations are more concentrated in specific sensor channels for standing and sitting
activities, indicating that the model distinguishes these static postures through subtle
differences in sensor orientations.

5.3. Resource Utilization and Processing Speed

This study aimed to enhance recognition accuracy and model interpretability; however,
computational efficiency is also vital for the practical implementation of HAR systems,
especially on resource-limited wearable devices.

Our ConvResBiGRU-SE model, with its multiple specialized components, requires
more computational resources than simpler architectures such as basic CNN or LSTM
models. During our experiments on the Google Colab Pro+ environment with Tesla L4
GPU, the average training time per epoch was approximately 5.85 s for the UCI-HAR
dataset and 6.39 s for the WISDM dataset. The inference time for a single activity sample
was approximately 0.5352 ms for the UCI-HAR dataset and 0.5171 ms for the WISDM
dataset, which is acceptable for most real-time applications.

The model size is approximately 1.1 MB, which might present challenges for de-
ployment on extremely resource-limited devices without optimization. However, several
approaches could mitigate these constraints, including model compression techniques
(pruning, quantization), knowledge distillation to smaller models, or on-device optimiza-
tion frameworks.
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5.4. Comparison Results with State-of-the-Art Models

To thoroughly assess the effectiveness of our ConvResBiGRU-SE model, we perform
extensive comparisons with state-of-the-art methods using the UCI-HAR and WISDM
datasets. These comparisons cover a range of architectural paradigms, from traditional
deep learning models to modern hybrid architectures, offering a comprehensive evaluation
of our model’s capabilities. The evaluation includes accuracy and detailed performance
metrics to ensure a fair and thorough comparison.

We divide this analysis into two parts. First, we examine the results of the UCI-
HAR dataset, a standard benchmark in the field. Then, we evaluate the performance of
the WISDM dataset, which presents unique challenges due to its distinct data collection
methods and activity patterns. Through these comparisons, we aim to highlight the
advantages of our proposed architecture and its contributions to advancing human activity
recognition.

5.4.1. Comparison Results from UCI-HAR Dataset

To confirm the effectiveness of our ConvResBiGRU-SE model, we compare its perfor-
mance with several state-of-the-art methods on the UCI-HAR dataset. Table 8 shows the
comparative analysis, which includes various deep learning architectures. These meth-
ods encompass different strategies for HAR, from traditional convolutional and recurrent
architectures to more advanced hybrid models.

Table 8. Performance comparison of state-of-the-art model on the UCI-HAR dataset.

Reference Year of Publication Model Accuracy (%)

Zhao et al. [42] 2018 Residual BiLSTM 93.60%
Xia et al. [43] 2020 LSTM-CNN 95.78%
Wang and Lie [44] 2020 Hierarchical Deep LSTM 91.65%
Cruciani et al. [45] 2020 CNN 91.98%
Ronald et al. [46] 2021 iSPLInception 95.09%
Bhattacharya et al. [47] 2022 Ens-HAR 95.05%
The proposed model - ConvResBiGRU-SE 99.18%

Table 8 compares the proposed ConvResBiGRU-SE model with various prominent
HAR methodologies utilizing the UCI-HAR dataset. The results underscore the remarkable
efficacy of our model, attaining an accuracy of 99.18%, substantially surpassing current
methodologies.

Historically, earlier methods, such as Zhao et al.’s Residual BiLSTM [42] and Cru-
ciani et al.’s CNN [45], achieved accuracies of 93.6% and 91.98%, respectively. More recent
advancements, including Ronald et al.’s iSPLInception [46] and Bhattacharya et al.’s Ens-
HAR [47], showed improved accuracies of 95.09% and 95.05%, respectively. This steady
increase in accuracy over the years indicates continuous progress in HAR model architectures.

When evaluating different architectural strategies, simpler models like CNN and Hier-
archical Deep LSTM had relatively modest accuracies of 91.98% and 91.65%, respectively.
Hybrid architectures, such as Xia et al.’s LSTM-CNN model [43], performed better with
an accuracy of 95.78%, suggesting the advantages of combining various neural network
components. Nonetheless, our proposed ConvResBiGRU-SE model surpasses these hybrid
approaches by over 3%.

5.4.2. Comparison Results from WISDM Dataset

We perform comparison research using the WISDM dataset to evaluate the general-
ization capability and robustness of the ConvResBiGRU-SE model. Table 9 displays this
comparative analysis, which includes several deep learning architectures.
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Table 9. Performance comparison of state-of-the-art model on the WISDM dataset.

Reference Year of Publication Model Accuracy (%)

Zhang et al. [48] 2018 U-Net 97.00%
Quispe et al. [49] 2018 KNN 96.20%
Pienaar et al. [50] 2020 RNN-LSTM 94.00%
Bhattacharya et al [47] 2022 Ens-HAR 98.70%
The proposed model - ConvResBiGRU-SE 98.78%

Table 9 provides a comparative analysis of the ConvResBiGRU-SE model we propose
against several leading methods for human activity recognition on the WISDM dataset.
The proposed model attains an accuracy of 98.78%, showcasing competitive performance
and slightly surpassing existing methods.

Examining the chronological development of HAR models, Zhang et al.’s U-Net
architecture [48] set a strong baseline with 97% accuracy, while Quispe et al.’s KNN ap-
proach [49] achieved 96.20% accuracy. The evolution continued with Pienaar et al.’s
RNN-LSTM model [50], which showed relatively lower performance at 94%. This indi-
cates that not all architectural advancements necessarily lead to improved results on this
specific dataset.

A notable recent development is Bhattacharya et al.’s Ens-HAR [47], which achieved
an impressive accuracy of 98.70%. Our ConvResBiGRU-SE model builds upon this progress,
achieving a marginal improvement with 98.78% accuracy. Although this 0.08% improve-
ment may seem modest, it represents a significant advancement in a field where perfor-
mance gains become increasingly challenging to achieve at higher accuracy levels.

6. Conclusions and Future Works
This paper introduces ConvResBiGRU-SE, an inventive deep-learning architecture for

HAR employing wearable sensor data. The proposed model effectively integrates CNNS,
residual connections, BiGRU, and SE mechanisms to attain state-of-the-art implementation
on standard HAR benchmarks. Our experimental results highlight several significant
contributions to the field: (1) ConvResBiGRU-SE model achieves superior recognition
accuracy compared to existing methods, reaching 99.18% accuracy on the UCI-HAR dataset
and 98.78% on the WISDM dataset. These results represent substantial advancements
over previous state-of-the-art approaches, demonstrating the efficacy of our architectural
design choices; (2). Our comprehensive ablation studies validate the significance of each
component in the architecture. The convolutional blocks enhance feature extraction ca-
pabilities, while the SE-Residual blocks enhance feature recalibration and model stability.
Integrating bidirectional GRU units captures temporal dependencies in sensor data, leading
to more robust activity recognition; and (3). We address the critical challenge of model
interpretability in HAR systems by integrating Grad-CAM visualization techniques. These
visualizations deliver insights into the decision-making procedure of the model, revealing
how different sensor channels and temporal regions contribute to activity classification.
This advancement towards explainable HAR is essential for creating confidence in real-
world applications.

Future research should optimize the model for real-time use on resource-constrained
devices through compression and quantization. Transfer learning can enhance cross-dataset
generalization, and personalization strategies can tailor the model for individual users
while ensuring privacy and efficiency. Additionally, extending the framework to recognize
complex, long-duration activities, incorporating more sensor modalities, and developing
advanced visualization methods will improve interpretability. Energy efficiency is also
crucial, balancing accuracy and power consumption for wearable devices.
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