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Abstract: To understand the influence of trans-boundary air pollution on the air quality of
Fukuoka, the mass concentration and chemical composition of fine particulate matter (PM) were
observed at urban (Fukuoka) and rural (Fukue Island) sites in the northern Kyushu area in Japan.
Chemical composition was measured using an aerosol mass spectrometer. Organic aerosol (OA)
data were analyzed by the positive matrix factorization (PMF) method. Sulfate and low-volatile
oxygenated OA (LV-OOA) were dominant for all of the PM2.5 mass variations on Fukue Island,
where the trans-boundary air pollution is dominant in the winter-spring season. In Fukuoka,
however, sulfate accounted for the largest fraction of total chemical species under high PM2.5 mass
concentrations (>35 µg¨ m´3), while organics and nitrate made up a large fraction under low PM2.5

(<10 µg¨ m´3). Under the high PM2.5 condition, LV-OOA was also dominant. This indicates that high
PM2.5 mass concentrations were attributed to the long-range transport of air pollution. Although the
trans-boundary air pollution prevails in the winter-spring season, high sulfate concentrations were
observed in the summer of 2012. In addition to the volcanic activities and photochemical reactions,
long-range, trans-boundary air pollutions are influential factors not only in winter-spring but also
in summer.

Keywords: aerosol mass spectrometer; particulate matter; organic aerosol; positive matrix
factorization; long-range transport

1. Introduction

Air pollution emissions from East Asia have increased in recent years in connection to rapid
economic growth. Kurokawa et al. [1] reported that emission of air pollutants in East Asia significantly
increased from 2000 to 2008. These air pollutants mainly consist of sulfur dioxide (SO2), nitrogen oxides
(NOx), carbon monoxide (CO), volatile organic compounds (VOCs), and their emissions in 2008 (growth
rate between from 2000 to 2008) were increasing 56.9 Tg (+34%), 53.9 Tg (+54%), 359.5 Tg (+34%), and
68.5 Tg (+46%), respectively. China contributed to the Asian emissions for largest fraction in Asian
countries because of continuous increase in its energy consumption, and their emissions of each species
are 33.5 Tg (+46%), 27.0 Tg (89%), 202.0 Tg (+42%), and 27.1 Tg (+71%), respectively [1]. It is reported
that SO2 emissions in China decreased after 2006 [2]; however, emissions of these air pollutants in
China still increased monotonically [1]. It is well known that these air pollutants are transported
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throughout the continent from China to Japan with seasonal monsoons in winter and spring [3–9].
Many recent studies reported that atmospheric aerosol was transported from mainland China to the
northern part of the Kyushu area and Okinawa, which face the East China Sea in Japan [3–9]. In these
studies, high concentrations of particulate matter (PM2.5), which were noted to be over environmental
quality standards in Japan for 24 h of 35 µg¨ m´3, were observed. We observed chemical composition of
atmospheric aerosol by using an aerosol mass spectrometer and a filter sampling method at Cape Hedo
in Okinawa, and on Fukue Island, Nagasaki, in Japan in previous studies. Both sites are located on the
windward side of the seasonal monsoons in winter and spring. High concentrations of sulfate were
observed when the air mass was transported from mainland China to these sites [3,4,8–12].These high
values were considered to be due to trans-boundary air pollution [3,4,8–12]. It is, therefore, important
to understand the transport of air pollutants including PM.

Fukuoka, one of the largest cities in Japan, is located in the northern part of the Kyushu area in
the western part of Japan. The population of Fukuoka is about 1.5 million and there are numerous
commercial, residential, and industrial areas. Therefore, local emission in Fukuoka is expected to be
high. Since Fukuoka is influenced by both local emissions and long-range transported air pollution,
the city’s exposure to air pollution is expected to be high [9]. In order to improve Fukuoka’s air quality,
it is necessary to assess the contributions from both local and transported air pollutants.

PM mass concentrations and chemical composition were observed on Fukue Island, which is in
a rural area located in the East China Sea, approximately 180 km west of Fukuoka. Although Fukue
Island is mostly influenced by transported air pollutants, a similar level of PM2.5 mass concentrations
were observed in both Fukuoka and Fukue Island, despite a large difference in local emissions [6,7].
This indicates that air pollution transported from mainland China, spreads over a very wide area,
which includes both Fukuoka and Fukue Island.

PM mass concentration and chemical composition were measured both in Fukuoka and on
Fukue Island in order to assess the contributions from both local and transported air pollutants.
The chemical composition of PM reflects their transport process [9]. Thus, we measured PM mass and
chemical composition and classified the chemical composition with respect to PM2.5 mass concentration.
A positive matrix factorization (PMF) method was applied to analyze the organic composition, which
is also considered to reflect their transport process.

2. Experiments

2.1. Locations and Periods

The chemical composition and mass concentration of atmospheric fine aerosol, i.e., particulate
matter (PM), were observed in two sites in 2012 (Figure 1). The first was an urban site: Fukuoka,
Fukuoka prefecture (33.55˝N, 130.36˝E). The observation was carried out at the Fukuoka University,
which is located 5 km away from the downtown area and the city highway is about several hundred
meters away. Fukuoka is one of the largest cities in Japan with a population around 1.5 million.
There is a large network of transportation infrastructure including railways, highways, and the
airport [6,7,9]. The second observation site was rural: Fukue Island, Nagasaki prefecture (32.75˝N,
128.68˝E). The population is approximately 40,000 and it is generally considered to have few emission
sources [3,5–7]. Observations were conducted throughout 2012, with the exception of summer (from
June to September) on Fukue Island.
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2.2. Instruments

The chemical composition of fine aerosol (PM1) in Fukuoka City was observed by using
a quadrupole-type aerosol mass spectrometer (Q-AMS, Aerodyne Research Inc., Billerica, MA, USA.
An aerosol inlet with PM2.5 cut cyclone (URG-2000-30ED, URG Co., Chapel Hill, NC, USA) was set
on a window of the fourth floor of the Faculty of Science Building (about 20 m from the ground)
at Fukuoka University. The cyclone removed coarse particles. Sample air was introduced through
an o.d. 3.18 mm stainless steel tube (main sampling line with o.d. 12.7 mm connected to the inlet
tube for the implementation of isokinetic sampling), 0.1 mm pore size orifice, and an aerodynamic
lens into the Q-AMS with the flow rate at 0.1 L¨ min´1. The sample air was separated into gases and
aerosols by the aerodynamic lens and particle beam formed. The particle beam hit the vaporizer,
with a temperature set to 873 K (600 ˝C), and where non-refractory species in the aerosol were
vaporized. The vaporized molecules were ionized by the electron impact method with 70 eV. The ions
were analyzed using a quadrupole type mass spectrometer. The particle mass was calibrated using
ammonium nitrate (NH4NO3) particles with a 350 nm diameter, and the ionization efficiency (IE) and
the relative ionization efficiency (RIE) were determined. The averaged IE for NO3

´ was 7.50 ˆ 10´7,
RIE for NH4

+ was 3.36. The collection efficiency (CE) for all the measured species was 1.0. Sulfate,
nitrate, ammonium, and chloride were calculated from the fragment signals of the mass spectra.
Organics were calculated by subtracting the known inorganic and gaseous species, such as sulfate,
nitrate, nitrogen, oxygen, and argon from the total mass. The details of the Q-AMS and calibration
procedures are described in the literature [3,4,13–17]. For measuring PM2.5 mass concentrations, an air
pollution monitoring station using beta-ray absorption technique was set up at Kashii which belongs
to municipal government offices of Fukuoka City.

On Fukue Island, aerosol chemical composition was measured using a quadrupole-type aerosol
chemical speciation monitor (Q-ACSM, Aerodyne Research Inc., Billerica, MA, USA). The Q-ACSM is
a simplified version of Q-AMS, and the principle of the measurement is also the same. The averaged
IE for NO3

´ was 2.82 ˆ 10´11, RIE for NH4
+ was 6.03. The CE for all the measured species

was 0.5. The sampling inlet with cyclone was set to the rooftop of the building at the Observatory of
Atmospheric Environment on Fukue Island (about 3 m from the ground). Mass concentrations of
PM2.5 were measured using a tapered element oscillating microbalance (TEOM, Model 1400a, R&P Co. Inc.,
East Greenbush, NY, USA).

2.3. Analysis

Organic data obtained by Q-AMS and Q-ACSM were analyzed by the PMF method, originally
invented by Paatero [18,19]. The analysis was carried out using the PMF evaluation tool for the aerosol
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mass spectrometer developed by Ulbrich et al. [20]. PMF is a receptor-only factorization method.
PMF method processes multiple environmental data and calculates factor profiles and contributions.
All of the values in the profiles and contributions are constrained to be positive. Since we measured
the aerosol chemical composition only in the receptor area (Fukuoka City and Fukue Island), we
adopted the PMF method to analyze our Q-AMS and Q-ACSM organic data. The factor profiles and
contributions can provide sources of organic aerosol measured by Q-AMS and Q-ACSM.

Backward trajectories were calculated using the National Oceanic and Atmospheric Administration
(NOAA) Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) [21,22] to track the
pathway of air mass (NOAA Air Resouces Laboratory, College Park, MD, USA). Starting altitude and
calculation time were set to be 500 m and 48 h, respectively. The spatial distribution of sulfate was also
investigated using Chemical Weather Forecasting System (CFORS) numerical simulations [23,24].

3. Results

3.1. Chemical Composition

Figure 2a,b shows variations in the PM mass concentrations and chemical composition measured
in Fukuoka City and Fukue Island. Monthly averages of each of these values is listed in Table 1.
For Fukuoka, there are several periods when data were missing due to the Q-AMS pump trouble.
Because the main focus was on trans-boundary air pollution from mainland China, data for Fukue
Island were measured only from January to May and then from October to December to correspond
to the pollution’s winter-spring season. Total mass concentrations of chemical components (stack on
graph) show a similar variation with that of PM2.5 mass concentrations. While sulfate and organics are
major components in both sites, nitrate is more significant in Fukuoka City than that on Fukue Island.
High PM2.5 and sulfate events were observed several times in both sites in spring and summer.
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Table 1. Monthly averaged mass concentrations of PM2.5 and chemical composition in Fukuoka City
and on Fukue Island in 2012.

Fukuoka City/µg¨ m´3

Month PM2.5 Ammonium Nitrate Sulfate Chloride Organics

January 16 1.3 1.0 2.5 0.1 2.7
February 13 3.1 2.5 4.9 0.3 6.4

March 19 2.7 1.7 4.4 0.1 4.6
April 20 2.1 0.8 3.8 0.1 3.7
May 26 - - - - -
June 18 2.1 0.8 4.5 0.1 6.2
July 23 2.6 0.4 7.2 0.0 4.8

August 15 0.8 0.2 2.2 0.0 3.3
September 16 1.1 0.2 2.5 0.0 2.3

October 15 0.9 0.4 1.6 0.0 2.7
November 16 1.5 1.0 2.7 0.1 3.4
December 11 1.4 0.9 2.6 0.1 2.7

Fukue Island/µg¨ m´3

Month PM2.5 Ammonium Nitrate Sulfate Chloride Organics

January 16 1.2 0.4 4.6 0.0 3.3
February 13 0.9 0.3 3.6 0.0 2.5

March 20 2.7 0.7 5.6 0.1 4.2
April 14 1.3 0.4 4.0 0.1 3.4
May 20 1.3 0.2 4.1 0.0 3.5
June 14 - - - - -
July - - - - - -

August - - - - - -
September - - - - - -

October 14 0.5 0.1 1.9 0.0 1.6
November 15 0.6 0.1 2.2 0.0 1.7
December 11 0.6 0.1 3.5 0.0 2.0

Figure 3a,b show the breakdown of the chemical composition of PM measured in Fukuoka
City and Fukue Island under high (>35 µg¨ m´3), middle (10–35 µg¨ m´3), and low (<10 µg¨ m´3)
PM2.5 mass concentrations for 2012. On Fukue Island, sulfate accounted for approximately 50%,
which is the largest fraction of total PM, and nitrate was minor in every case. The fraction of each
chemical component did not change with PM2.5 mass variation. In contrast, in the case of high PM2.5

concentrations in Fukuoka City during the observation period, sulfate accounted for the largest fraction
of total PM measured by Q-AMS for the event of highest PM2.5 concentration, while organics and
nitrate made up a large fraction under low PM2.5 concentrations. High levels of sulfate within high
PM2.5 concentrations are similar to the results for Fukue Island.
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3.2. PMF Analysis

The organic spectra of Q-AMS and Q-ACSM were analyzed using the PMF method. They were
analyzed with two factors given that the focus was only on air pollution from long-range transport or
from local emissions. Figures 4a and 5a show the mass spectra and variations of mass concentrations of
each factor in Fukuoka City. The mass spectra for factor 1 show a distinctive signal of m/z = 44
(COO+ fragment), this is low-volatile oxygenated organic aerosol (LV-OOA) corresponding to
well-aged organics [17,20,25–27]. The mass spectra of factor 2 contain m/z = 41, 43, 55, 57. As for
m/z = 43 (partially aldehydes fragment), they are semi-volatile oxygenated organic aerosols (SV-OOA)
corresponding to partially aged organics [17,20,25–27]. As for m/z = 41 (C3H5

+), 43 (CH2CHO+, C3H7
+),

55 (C4H7
+), 57 (C4H9

+), which are mainly normal alkanes, they are hydrocarbon-like organic aerosols
(HOA) corresponding to fresh organics [17,20,25–27]. For the Q-AMS system, m/z = 43 cannot be
separated into aldehyde (CH2CHO+) and normal alkane (C3H7

+). Thus, two factors are used: one of
them is LV-OOA and the other consists of a mixture of SV-OOA and HOA. Figures 4b and 5b show the
result of mass spectra and variation of mass concentrations of each factor on Fukue Island. Similar mass
spectra are observed as in Fukuoka City. The signal of m/z = 44 is large and m/z = 55, 57 are small.
For both sites, there were no significant diurnal variations of each factor.
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The fractions of each PMF factor were classified with PM2.5 mass concentrations as in the case
with aerosol chemical composition (Figure 6a,b). In Fukuoka City, factor 2 (SV-OOA and HOA) is
dominant under low PM2.5 concentrations, where fractions account for approximately 60% of total
mass concentrations. Factor 1 (LV-OOA) made up a large fraction with increasing PM2.5 concentrations.
On Fukue Island, factor 1 is dominant under all conditions and the fractions reached approximately 70%.
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3.3. Simulation Results

Figures 7 and 8 show the typical backward trajectories in Fukuoka City and sulfate space
distributions in East Asia when sulfate and PM2.5 concentrations are high (7 March) and low (29 February)
in spring. In Figure 7a, most of the trajectories end up in mainland China via the East China Sea when
PM2.5 mass concentrations are high. In Figure 8a, high sulfate levels cover the region of mainland
China all the way to western Japan under high PM2.5 concentrations. These simulations indicate that
high sulfate and PM2.5 levels were due to the air pollution transported from mainland China.
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4. Discussion

4.1. Air Quality in Fukuoka City-Local vs. Trans-Boundary Air Pollution

Fukue Island’s population of approximately 40,000 relies heavily on the main industries of fishing
and tourism. Therefore, local emissions on Fukue Island are expected to be very low compared to
Fukuoka City. Chemical composition shows that sulfate levels are high on Fukue Island, regardless of
PM2.5 mass concentrations. The PMF results show that factor 1 (LV-OOA) is dominant. This indicates
that the air quality on Fukue Island is mainly influenced by long-range transport of air pollution from
mainland China. This is consistent with previous reports [3,5–8].

In Fukuoka City, the results are different from those observed on Fukue Island. The chemical
composition varies according to PM2.5 concentrations. High sulfate levels were observed under high
PM2.5 concentrations. In this case, factor 1 (LV-OOA) in the PMF analysis is dominant. Under low
PM2.5 concentrations, however, nitrate and organic fractions are more prevalent. In addition, factor 2
(SV-OOA and HOA) in the PMF analysis is larger than factor 1 (LV-OOA).

Based on these results, it is considered that the air quality in Fukuoka City is mainly influenced
by the long-range transport of air pollution from mainland China when PM2.5 mass concentrations
are high (>35 µg¨ m´3). In contrast, when PM2.5 mass concentrations are low (<10 µg¨ m´3), the
air quality in the Fukuoka is mainly influenced by local air pollution in and around the Fukuoka.
The backward trajectories and the CFORS simulations support these results. As aforementioned, most
of the trajectories reach mainland China via the East China Sea, and high sulfate regions cover China
to western Japan under high PM2.5 concentrations (Figures 7a and 8a). With low PM2.5 concentrations,
the trajectories either reach from the Japanese side or Pacific Ocean, and high sulfate regions are not
covering western Japan (Figures 7b and 8b). These results are also consistent with the previous report [9].

Air pollution in Fukuoka consists of two parts. The first is local emissions. At low PM2.5

concentrations, the fractions of nitrate and fresh organics (HOA) are relatively large, indicating that
combustion is a major contributor to emissions affecting local air quality [17,25–27]. The source of
this combustion could be any of the several highways, the Fukuoka airport, the Fukuoka shipyard,
and numerous commercial areas in Fukuoka City. Therefore, it can be concluded that local emissions
influence the local air quality. The other part is air pollution from China. Sulfur dioxide (SO2) and
nitrogen oxides (NOx) in China are still a large component of emissions [1,2,28]. In 2008, SO2 emissions
for China and Japan were 33.5 Tg and 0.8 Tg, respectively: SO2 levels were more than 40 times higher
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in China than in Japan. Although it is considered that SO2 emissions in China have been decreasing
since 2006, the SO2 concentration has been still high in China. It is reasonable that sulfate is found to
be high when the trans-boundary air pollution is dominant under high PM2.5 concentration.

Nitrate was not found in PM1 measured using Q-AMS when PM2.5 concentrations were high.
In 2008, NOx emissions for China and Japan were 27.0 Tg and 2.2 Tg, respectively: NOx levels were
about 13 times higher in China than in Japan. Although NOx emissions are much higher in China
compared to the NOx emission in Japan, the nitrate is usually found in coarse particles after the
long-range transport [12]. In contrast, sulfate remains in the fine particles. Therefore, sulfate is found
to be the major chemical component of fine particulate matter (PM1) when the trans-boundary air
pollution is dominant.

Figure 9 shows the frequency of daily PM2.5 mass concentrations throughout 2012 for Fukuoka.
There were a total of 20 days when PM2.5 mass concentrations exceeded environmental quality standard
(>35 µg¨ m´3), which are 5.5% per year and 11% in spring time (10 days between March–May). The air
quality in Fukuoka, which is in the western part of Japan, is largely affected by trans-boundary,
long-range transported air pollution from mainland China.
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4.2. High PM2.5 Event in Summer

It was considered that trans-boundary air pollution was often observed in the winter-spring
season. In 2012, high PM2.5 concentrations were observed during summer time. There were several
days when the daily PM2.5 concentrations were over 35 µg¨ m´3. Figure 10a shows hourly and daily
averaged PM2.5 concentrations from 19 July to 2 August. The maximum daily PM2.5 concentration
was 63.1 µg¨ m´3 on 25 July. That day, a high PM2.5 concentration was also observed in Osaka [29].
The chemical and organic compositions are shown in Figure 11. The fraction of sulfate and factor
1 (LV-OOA) is about 50% and 60%, respectively. There are several reasons for this high sulfate event.
The first one is volcanic activities. There is an active volcano called Mt. Sakurajima in Kagoshima,
which is about 300 km south to Fukuoka City (31.34˝N, 130.39˝E). Explosive eruption have been
occurring continuously since 1955. Mt. Sakurajima was active in summer 2012 and volcanic eruption
occurred several times. During the high PM2.5 period shown in Figure 10b, high concentration peaks
of SO2, measured at Fukuoka City Hall, were observed several times. The biggest eruption occurred
at 19:15 on 24 July [30], and high sulfate and SO2 were observed on 25 July. Therefore, one of the
reasons can be attributed to the volcanic activities. The second reason is photochemical reaction in the
atmosphere. The fraction of factor 1 (LV-OOA) is about 60%, which is not as high as that on Fukue
Island during winter-spring season and similar to the average values of urban OOA [31]. Therefore, the
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aged and oxygenated organic compounds in urban area certainly contributed the factor 1 (LV-OOA).
The third one is trans-boundary air pollution. The CFORS simulation for 25 July shows that the high
sulfate area covers the northern Kyushu region shown in Figure 12. The high sulfate area originally
covered in the mainland China on 20 July, and the area moved to the northern part of China and the
Korean peninsula. Then, a part of high sulfate area moved down to the southern area and covered
some part of Japan. A simulation called SPRINTARS also shows that the high sulfate region averaged
in July 2012 covered the northern part of Kyushu and the west Japanese region facing the Japan
Sea [29]. This high sulfate region moved from China to Japan during this high PM2.5 concentration
period (from 20 to 28 July). Although we do not know if summer levels in 2012 were unique, this high
PM2.5 concentration event shows that trans-boundary air pollution occurs not only in winter-spring
but also in summer and plays a significant role in air quality for Fukuoka City.
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5. Conclusions

This study observed PM mass concentrations and chemical compositions in Fukuoka and Fukue
Island in the northern part of Kyushu, Japan in 2012. Based on the chemical analysis, air quality
in Fukuoka City was influenced by trans-boundary air pollution when the PM2.5 concentrations
were high. It was found that sulfate and LV-OOA were dominant under high PM2.5 concentrations
(>35 µg¨ m´3), and the air mass was transported from China according to backward trajectories and
CFORS simulations. It is considered that local emissions influence the air quality in Fukuoka City
when PM2.5 concentrations are low. The fractions of nitrate and organics of non-LV-OOA were large
under low PM2.5 concentration (<10 µg¨ m´3), and the air mass passed around the Pacific Ocean and
Japanese side.

There were a total of 20 days when the PM2.5 mass concentrations exceeded environmental quality
standards (>35 µg¨ m´3) in Fukuoka. High PM2.5 concentrations were observed in summer 2012.
Three reasons are considered, which are volcanic activities, photochemical reaction and trans-boundary
air pollution. Although previous studies have shown that trans-boundary air pollution prevails in
the winter-spring season, it occurs not only in winter-spring but also in summer and has a significant
impact on the air quality of Fukuoka.
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Q-ACSM Quadrupole-type aerosol chemical speciation monitor
TEOM Tapered element oscillating microbalance
PMF Positive matrix factorization
CFORS Chemical weather forecasting system
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LV-OOA Low-volatile oxygenated OA
SV-OOA Semi- volatile oxygenated OA
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