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Abstract: Understanding variations in rainfall in tropical regions is important due to its impacts
on water resources, health and agriculture. This study assessed the dekadal rainfall patterns and
rain days to determine intra-seasonal rainfall variability during the March–May season using the
Mann–Kendall (MK) trend test and simple linear regression (SLR) over the period 2000–2015.
Results showed an increasing trend of both dekadal rainfall amount and rain days (third and
seventh dekads). The light rain days (SLR = 0.181; MK = 0.350) and wet days (SLR = 0.092;
MK = 0.118) also depict an increasing trend. The rate of increase of light rain days and wet days
during the third dekad (light rain days: SLR = 0.020; MK = 0.279 and wet days: SLR = 0.146;
MK = 0.376) was slightly greater than during the seventh dekad (light rain days: SLR = 0.014;
MK = 0.018 and wet days: SLR = 0.061; MK = 0.315) dekad. Seventy-four percent accounted for
2–4 consecutive dry days, but no significant trend was detected. The extreme rainfall was increasing
over the third (MK = 0.363) and seventh (MK = 0.429) dekads. The rainfall amount and rain days
were highly correlated (r: 0.43–0.72).

Keywords: rain days; wet days; light rain days; dekadal rainfall; intra-season rainfall variation

1. Introduction

Rainfall is one of the key climatic variables [1–3], and its temporal variability over the Lake
Victoria Basin (LVB) has far reaching effects on the social, economic and ecological aspects of the
region [4,5]. The LVB has an area of about 198,000 km2 and is home to about 340 million people [6];
most of whom depend on rain-fed agriculture and fishing [7]. Previous studies on areal rainfall over
the LVB found a strong influence of rainfall on agriculture and hydrology. For example, Sabiiti et al. [8]
found that banana yields in the LVB could reduce by 46% due to reduced rainfall. Over the LVB, heavy
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rainfall has normally caused floods, which are exacerbated by poor drainage systems, especially in
urban areas [9]. Rainfall is also the major source of water for Lake Victoria, which is the main source of
the Nile River [4].

The rainfall over the LVB is affected by a number of factors, including the Inter-Tropical
Convergence Zone (ITCZ), El Niño/La Niña episodes, the Indian Ocean Dipole, as well as
quasi-biennial oscillation and other extra-tropical weather systems [4–6]. The diurnal variations
are influenced by lake-land circulation [4,5,10], and these have an influence on a number of activities,
like fishing and tourism. Anyah et al. [5] also attribute the inter-annual variability of rainfall over
LVB to the periodic episodes of anomalously wet or dry conditions associated with sea surface
temperature anomalies over the equatorial Indian Ocean and also to the Pacific Ocean sea surface
temperature perturbations.

The rainfall variability on different temporal scales, such as the inter-annual, seasonal and
inter-decadal, is extensively studied globally as observed by Barron et al. [11]. For example,
Goswami et al. [12] studied rainfall variability over central India and found rising trends in
the magnitude and frequency of extreme rain events during the monsoon from 1951–2000.
Cheung et al. [13] found an increasing trend of June–September rainfall over Ethiopia. Kizza et al. [4],
and Nsubuga et al. [2] found a positive rainfall trend over the 20th century, while Awange et al. [6]
found a slight increasing annual rainfall trend over LVB. Additional seasonal rainfall investigation has
been carried out by Nimusiima et al. [14] who found the potential of the December–February season
becoming wetter over Uganda for the period 2020–2050, and Awange et al. [6] expect these projected
changes in rainfall over LVB to impact the population around LVB.

The intra-seasonal rainfall studies have been carried out over different areas for different seasons
and using different methods. For example, Bowden and Semazzi [15] used empirical orthogonal
analysis for the October–December season from 1979 to 2001. They observed that the dominant cause
of October–December seasonal rainfall variations was the El Niño/La Niña episodes and Indian Ocean
Dipole. However, they did not consider intra-season rainfall characteristics, which are important
especially in agriculture production. A thorough analysis of intra-seasonal rainfall variability should
attempt to answer the questions: (1) What period of season has a rainfall reduction/increase? (2) What
are the characteristics of the onset and cessation of seasonal rainfall? Grouping seasonal rainfall into
dekads can segment the periods of the season. A dekad is a ten-day rainfall period. We studied
the variation of seasonal rainfall within dekads to illustrate the period within the March–April–May
(MAM) season that have an increase/reduction in rainfall.

Over the LVB, many studies about rainfall variability have been carried out, such as
Awange et al. [6], Kizza et al. [4] and Anyah et al. [5]. Kizza et al. [4] suggested the need of constantly
carrying out temporal analysis of precipitation using updated datasets in order to analyze the current
trends in precipitation over LVB, and Hartter et al. [16] urged the need of using fine-scale climatic
information on trends. Additionally, Ogwang et al. [1] illustrated the necessity of having a clear
understanding of the past climatic trends. Studies by Nimusiima et al. [17] established that the
community believed there was a changing temporal and spatial rainfall pattern and that seasonal
rainfall has become unpredictable. What is not clear are the intra-seasonal changes regarding wet and
dry spells. The community perceives that dry spells have become longer, but is not sure which period
(month) of the season is more affected than the other.

Our study addresses the uncertainty regarding intra-seasonal rainfall variability with the focus
on dekadal trends of the MAM season. We aimed at identifying the periods within the MAM season
that are becoming drier or wetter and considered variability in rainfall characteristics over the LVB
because this variability is important due to its impact on water levels of the lake [4], health [18] and
agriculture [8,19]. The objectives of our paper were: (1) to examine the dekadal rainfall trends during
the MAM season; (2) to analyze the trend of dekadal rain days during the MAM season; and (3) to
assess the trend of rainfall events (i.e., light rain days and wet days).
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2. Methods and Data Sources

2.1. Study Area

The study was focused on the Ugandan side of Lake Victoria Basin (Figure 1a), which is found
in East Africa covering three countries: Uganda, Kenya and Tanzania. Geographically, Lake Victoria
spans latitudes 0.33◦N–3◦S and longitudes 31.67◦E–34.88◦E [4,6] and is the second largest lake in the
world [10]. The LVB experiences annual rainfall of about 1200 mm throughout the year [5,10] generally
distributed into two distinct rainfall seasons (Figure 1b,c). These seasons are March–April–May (MAM)
and September–October–November (SON) , which coincide with the seasonal migration of the ITCZ.
The LVB has a population of about 340 million people [6] with an annual growth rate of between 2.5%
and 11.5% [20].

Entebbe
Kamenyamigo

Makerere Kituuza
Namulonge Jinja

Ntuusi

Tororo

Ü

Legend
Lakes
Lake Victoria Region
Districts

0 40 80 120 16020
Kilometers

(a) Study region

(b) MAM rainfall (c) SON rainfall

Figure 1. (a) The map of Uganda and the study region; (b) average Lake Victoria Basin (LVB) MAM
seasonal rainfall; and (c) the average LVB SON seasonal rainfall.

2.2. Data

Daily rain gauge rainfall data were obtained from the Uganda National Meteorological
Authority (UNMA) for eight stations, namely Entebbe, Makerere, Namulonge, Jinja, Kituza, Ntuusi,
Kamenyamigo and Tororo, drawn from the same climatological zone [21], as illustrated in Figure 1.
These data are for 16 years (2000–2015) and were treated to quality control measures by testing
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homogeneity using the double–mass method suggested by [22,23] (Appendix A.1) and normality
using Shapiro–Wilk’s test (w) described by Royston [24–26] (Appendix A.2). Although limitations of
the double–mass curve have been discussed by Wigbout [23], it is extensively used in hydrological
studies, e.g., by Tabari and Aghajanloo [27] and Sayemuzzaman and Jha [28]. The missing values in
the data were filled using a simplified normal ratio method (Appendix A.3), Equation (1), which is
recommended by the World Meteorology Organization (WMO) [29] and is presented as:

bi = B× ai

(A)
(1)

where bi is the missing record to be filled of station B; ai is the observed record of station A; A and
B are the mean of observed records of stations A and B, respectively. The condition for using this
method is that the missing records should be less than 5% of total observations, and the stations A and
B should be highly correlated.

We then computed dekadal rainfall by summing up ten-day accumulated rainfall [13,30]; the total
rain days over the dekads and obtained nine dekads over the entire MAM season. In order to
comprehensively study rain days, the number of consecutive dry days (i.e., no rain), ‘light rain days’,
‘wet days’ and ‘days with extreme rainfall’ over the MAM season are also analyzed. The light rain day
is defined by Tennant and Hewitson [31], and adopted by UNMA [32], as a day having total rainfall
less than 1 mm; the wet day is defined by Kiktev et al. [33] as a day having accumulated rainfall
greater than 10 mm, while days with extreme rainfall are days having total rainfall greater than the 95
percentile [34,35]. We also investigated the rainfall intensity over the dekads by using a proxy estimate
computed as the ratio of accumulated dekadal rainfall to the dekadal number of rain days.

2.3. Data Analysis

The trends in rainfall were determined using the Mann–Kendall MK trend test (Appendix A.4)
and simple linear regression, SLR (Appendix A.5). The MK trend test is a non-parametric test used to
investigate the trends of hydro-meteorological variables. It has been used widely, e.g., by Kizza et al. [4]
investigating rainfall trends over LVB and Mugume et al. [36] analyzing temperature trends over
Northern China. When using the MK trend test, Zende et al. [37] suggested a null hypothesis of “there
is no trend” at the 95% confidence level. If say MK < 0, the trend is considered a decreasing trend, and
if MK > 0, it is considered an increasing trend. The SLR is a popular parametric trend analysis tool
used in many trend studies; e.g., Lacerda et al. [38] used SLR to obtain negative precipitation trends
over Northeast Brazil and Cape Verde. This combination of methods is also used by Nsubuga et al. [2]
while investigating rainfall trends over western Uganda.

3. Results and Discussion

3.1. Seasonal Rainfall Amount and Rain Days for the Period 2000–2015

The average rainfall amount and the number of rain days registered during the MAM and SON
seasons over LVB is presented in Table 1. It is noticeable that the total seasonal rainfall amount of
MAM is marginally greater than that of SON (471 mm for MAM vis-à-vis 437 mm for SON) and on
overage the same rainfall days. We also noted that the MAM season had slightly fewer light rain days
and slightly more wet days than the SON season.

The rainfall data were tested for homogeneity using the double-mass curve (Figure 2) and found
to be homogeneous. Tororo station experienced comparatively more rainfall than the other stations,
which is illustrated by the its steep slope (i.e., the yellow line).

The gradient of the curves varies due to the spatial variation of rainfall events. Additional data
quality control was inspecting the rainfall data to make sure we did not have bogus data, such as
rainfall less than 0 mm. We then carried out normality tests using Shapiro–Wilk’s normality tests
(w) (Table 2). The w results show that our data were homogeneous, and 65% of the dekads used
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had a normal distribution. The values with an asterisk (*), i.e., 35% of the dekads in Table 2, are not
significant at the 95% confidence level.

Table 1. Average MAM and SON seasonal rainfall characteristics.

Station Rainfall Amount (mm) Rainfall Days Light Rain Days Wet Days
MAM (mm) SON (mm) MAM SON MAM SON MAM SON

Entebbe 611 387 44 31 9 9 20 12
Jinja 443 446 33 36 8 10 14 14
Kamenyamigo 367 291 30 25 3 3 13 11
Kituza 564 583 42 43 2 3 18 18
Makerere 394 495 34 40 10 14 12 16
Namulonge 393 325 34 30 4 4 12 11
Ntusi 300 415 28 38 6 7 9 14
Tororo 692 557 45 44 9 10 20 17

Average 471 437 36 36 6 8 15 14
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Figure 2. Double-mass curves for the study areas in reference to Entebbe station.

Table 2. Shapiro–Wilk statistic (w) for normality.

Station dk_01 dk_02 dk_03 dk_04 dk_05 dk_06 dk_07 dk_08 dk_09

Entebbe 0.88 0.95 0.79 * 0.86 * 0.87 * 0.89 0.94 0.93 0.94
Jinja 0.89 0.90 0.90 0.85 * 0.90 0.89 0.91 0.92 0.72 *
Kamenyamigo 0.95 0.94 0.98 0.90 0.94 0.95 0.94 0.94 0.91
Kituza 0.86 * 0.91 0.87 * 0.93 0.86 * 0.91 0.95 0.94 0.90
Makerere 0.85 * 0.90 0.73 * 0.91 0.88 * 0.96 0.86 * 0.97 0.85 *
Namulonge 0.94 0.96 0.85 * 0.95 0.99 0.85 * 0.85 * 0.74 * 0.89
Ntusi 0.83 * 0.83 * 0.89 0.97 0.80 * 0.78 * 0.92 0.76 * 0.82 *
Tororo 0.90 0.89 0.88 * 0.91 0.97 0.90 0.86 * 0.94 0.92

*: those values were significant at 95%.
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We also determined the correlation of dekadal rainfall and dekadal rain days (Table 3). The results
show a significant high correlation at the 95% confidence level. The high correlation coefficient (r)
(i.e., r: 0.43–0.72) implies that the dekadal rainfall variability is affected by the variation of dekadal
rain days and is in line with the observation by Zhai et al. [39] that the variation of total rainfall is
attributed to the changes in the frequency of rain days. The exception case occurred for the sixth dekad
that had a low correlation (r: 0.43) with Jinja giving a negative correlation (r: −0.57).

Table 3. Dekadal Pearson correlation coefficient over MAM.

Station dk_01 dk_02 dk_03 dk_04 dk_05 dk_06 dk_07 dk_08 dk_09

Entebbe 0.71 0.54 0.67 0.82 0.67 0.49 0.64 0.75 0.69
Jinja 0.65 0.66 0.61 0.57 0.82 −0.57 0.50 0.91 0.66
Kamenyamigo 0.70 0.50 0.55 0.72 0.83 0.57 0.73 0.83 0.65
Kituza 0.67 0.74 0.72 0.52 0.60 0.22 0.70 0.91 0.60
Makerere 0.64 0.70 0.49 0.63 0.53 0.36 0.77 0.65 0.51
Namulonge 0.66 0.75 0.48 0.69 0.75 0.31 0.63 0.44 0.82
Ntusi 0.68 0.32 0.68 0.77 0.53 0.72 0.54 0.60 0.54
Tororo 0.32 0.74 0.69 0.67 0.26 0.37 0.21 0.63 0.35

Average 0.63 0.62 0.61 0.67 0.62 0.43 0.59 0.72 0.60

3.2. The Trend of Dekadal Rain Days

Table 4 presents the results of the MK trend of individual stations under study for the dekadal
rain days. The results show that 6/8 stations in the third dekad (MK: 0.179–0.330) had an increasing
trend of dekadal rain days, which is also observed during the seventh dekad (MK: 0.091–0.559).
However, these trends were not significant at the 95% confidence level, but the small variation among
the trends of individual stations (e.g., indicated by standard deviation of 0.148 for the third dekad)
suggest consistency and probably demonstrate that rain days are increasing over these dekads. With
the exception of Namulonge (which had 8/9 dekads with decreasing MK score), all of the other
stations presented an increasing trend; increasing in the range of 0.099–0.259 days/year an average of
0.192 days/year. Further investigation of the trend of the light rain days over the MAM season (SLR;
Figure 3) revealed that with the exception of Entebbe (SLR: −0.068 per year; MK: −0.086; Figure 3a),
all of the other stations had an increasing trend with an average of SLR: 0.181 per year; MK: 0.35 and
p-value = 0.065. For the “wet days”, apart from Makerere (SLR: −0.103 per year and MK: −0.120)
and Ntusi (SLR: −0.087 per year and MK: −0.098), all of other stations had an increasing trend of
the MAM wet days. We obtained a general increasing trend of MAM wet days over the region (SLR:
0.092 per year and MK: 0.118, p = 0.5576; Figure 3i). In general, the rate of increase of light rain days
(SLR: 0.181 per year and MK: 0.350) is twice the rate of the increase of wet days (SLR: 0.092 per year
and MK: 0.118). The increasing trend of light rain days, greater than the wet days will likely impact
hydrological and agriculture sectors negatively since light rain events have little use in agriculture
and hydrology.

Table 4. MK results for the dekadal trend of rain days.

Station dk_01 dk_02 dk_03 dk_04 dk_05 dk_06 dk_07 dk_08 dk_09

Entebbe −0.219 −0.518 0.330 0.054 −0.087 0.037 0.559 −0.221 −0.044
Jinja −0.199 −0.009 0.256 −0.197 −0.153 0.010 0.241 −0.009 −0.164
Kamenyamigo 0.159 −0.107 0.179 0.223 0.113 0.161 0.452 0.322 0.183
Kituza 0.000 −0.054 0.234 0.151 0.009 −0.132 0.301 −0.072 0.027
Makerere −0.067 −0.127 0.299 −0.009 0.019 −0.073 0.251 −0.052 −0.009
Namulonge −0.235 −0.284 −0.080 0.093 −0.328 −0.071 −0.337 −0.286 −0.279
Ntusi −0.081 −0.311 0.000 −0.139 −0.097 −0.135 −0.366 −0.063 0.000
Tororo −0.312 −0.035 0.269 0.158 0.110 −0.091 0.091 0.111 0.277
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Figure 3. The figure is for MAM light rain days and MAM wet days for each of the study locations
with (i) indicating the average over the study region. “SLR_lrd” is the regression rate for light rain
days; “SLR_wd” is the regression rate for wet days; “MK_lrd” is the Mann–Kendall trend score for
light rain days; “MK_wd” is the Mann–Kendall trend score for wet days; “p_lrd” is the significance
level for light rain days; “p_wd” is the significance level for wet days; “lrd” means light rain days; and
“wd” is wet days. (a) Entebbe; (b) Jinja; (c) Kamenyamigo; (d) Kituza; (e) Makerere; (f) Namulonge;
(g) Ntusi; (h) Tororo; (i) average.

Additional analysis of the trend of light rain days and the wet days during the third and seventh
dekads is presented using Figures 4 and 5, respectively. For the third dekad, only Jinja, Kamenyamigo
and Ntusi had a decreasing trend of light rain days, but all other stations had an increasing trend
of light rain days. For the wet days, all of the stations had an increasing trend during the third
dekads. Analysis of the seventh dekad showed that Entebbe, Kamenyamigo, Makerere and Tororo had
a decreasing trend of rain days. For the wet days, only Ntusi had a decreasing trend. Generally, for the
third dekad, the rate of increase of light rain days (SLR: 0.020 per year and MK: 0.279) is slightly
smaller than the rate of increase of wet days (SLR: 0.146 per year and MK: 0.376), which was also
noted for the seventh dekad (wet days: SLR = 0.061 per year; MK = 0.315 and rain days: SLR = 0.014
per year; MK = 0.018).
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Figure 4. The figure represents the analysis of the light rain days and wet days over the third dekad.
The vertical axis is the number of rain days, and the horizontal axis is the period. (a) Entebbe; (b) Jinja;
(c) Kamenyamigo; (d) Kituza; (e) Makerere; (f) Namulonge; (g) Ntusi; (h) Tororo; (i) Average over the
entire region representing the stations.

Rain days have profound importance to agricultural production [40], and the decreasing trend of
rain days during the first and the second dekads can have a negative impact on the onset of seasonal
rainfall. It can create a serious shortage of available soil water to support crop germination [41],
thus rendering a late start of the season. The change in rain days can also impact the presence and
severity of dry spells or drought within a given season. If a severe dry spell occurs during the flowering
period, e.g., during the 5th–6th dekad (which is considered to have a peak rainfall regarding the MAM
season by Camberlin et al. [42]), caused by a decreasing number of rain days over the same period,
crop loss may result [43]. The actual severe impact will depend on the available water in the soil,
especially the water holding capacity of the soil in question [11,43]. The decreasing number of dekadal
rain days during the ninth dekad can have a positive impact during the harvesting period and even
lead to a reduction in post-harvest losses [44].
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Figure 5. The figure represents the analysis of the light rain days and wet days over the seventh dekad.
The vertical axis is the number of rain days, and the horizontal axis is the period. (a) Entebbe; (b) Jinja;
(c) Kamenyamigo; (d) Kituza; (e) Makerere; (f) Namulonge; (g) Ntusi; (h) Tororo; (i) Average over the
entire region representing the stations.

3.3. The Trend of the Dekadal Rainfall Amount

The general time-series trend of dekadal rainfall over the LVB is presented using Figure 6 by
averaging the daily rainfall of individual stations. The results of SLR and the MK trend were put
inside the respective figure. We noted that the average dekadal rainfall over the third and the seventh
dekads is increased at SLR: 3.924 and 2.393 per year, respectively. The MK trend also showed an
increasing trend, significant at the 95% confidence level with the third and seventh increasing at MK:
0.400 and p-value = 0.034 (Figure 6c) and MK: 0.450 and p-value = 0.017 (Figure 6g), respectively.
Additional results of the MK trend for each station are presented using Table 5.
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Figure 6. The figure is for accumulated dekadal rainfall averaged over the study locations. The vertical
axis represents average dekadal rainfall for a given dekad, and we have used same scale for the ease of
comparison. The rate of decrease/increase of the average dekadal rainfall; the Mann–Kendall trend
along with its significant level is presented along with each subfigure (a–i). “dk” means dekad. (a) First
dekad rainfall; (b) second dkrainfall; (c) third dk rainfall; (d) fourth dk rainfall; (e) fifth dk rainfall;
(f) sixth dk rainfall; (g) seventh dk rainfall; (h) eighth dk rainfall; (i) ninth dk rainfall.

Table 5. MK results for dekadal accumulated rainfall.

Station dk_01 dk_02 dk_03 dk_04 dk_05 dk_06 dk_07 dk_08 dk_09

Entebbe −0.019 −0.086 0.295 −0.124 0.219 −0.162 0.333 −0.067 −0.159
Jinja −0.191 −0.143 0.333 −0.209 0.033 −0.077 0.117 0.100 −0.183
Kamenyamigo −0.135 −0.295 −0.033 0.253 0.165 0.077 0.641 0.077 −0.271
Kituza −0.276 0.05 0.257 −0.183 0.067 −0.124 0.287 −0.105 0.086
Makerere −0.219 −0.083 0.167 −0.150 −0.067 −0.219 0.283 −0.057 0.133
Namulonge −0.387 0 0.050 0.105 0.029 −0.143 0.055 −0.066 0.165
Ntusi 0.153 −0.096 0.221 −0.086 0.086 −0.121 −0.390 −0.048 0.209
Tororo −0.192 −0.153 0.083 0.100 0.050 −0.010 0.233 0.100 −0.033
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The SLR results are in line with the MK trend results, and the dekadal rainfall trend of individual
stations was increasing at 0.25–5.48 mm annually for each of the MAM seasons, aggregating to
an average of 2.62 mm annually. We also noted an insignificant decreasing trend in dekadal
rainfall amount during the first (MK: −0.158; SLR: −1.271 mm/year), second (MK: −0.101;
SLR: −0.641 mm/year) and sixth (MK:−0.097; SLR: −1.291 mm/year) dekads. This probably implies
a decrease in rainfall intensity over the dekads identified and an increase in wetness over the third
and seventh dekads. This view of increased wetness over a given period was pointed out by
Zende et al. [37] while studying the rainfall trend over a semi-arid region of India, but they used
monthly rainfall totals.

The decreasing rainfall amount during the first and second dekads can impact negatively the
onset of the MAM season, as there will be less moisture to support crop germination [40,45,46],
yet on-set is important regarding the performance of MAM rains over East Africa [45]. However,
Mugalavai et al. [46] found no significant shift in MAM seasonal rainfall on-set and cessation over
LVB during the last century, and Awange et al. [6] noted that spatial and temporal rainfall patterns
have not changed appreciably over LVB for the period 1998–2012. The noted variations of dekadal
rainfall can therefore be attributed to the variability of mesoscale systems. These results of varying
dekadal rainfall are consistent with the variation of dekadal rain days over the same period described
in Section 3.3.

3.4. The Dekadal Rainfall Intensity

Table 6 presents the results of the MK trend for the dekadal rainfall intensity defined in Section 2.2.
We did not compute the SLR trend since dekadal rainfall intensity is a derived proxy parameter, yet
SLR being a parametric tool requires actual values. For the third and seventh dekads, 6/8 stations
had increase trend of dekadal rainfall intensity in the range of MK: 0.150–0.276 and MK: 0.033–0.317,
respectively. Since both dekadal rainfall and dekadal rain days are increasing during the third and
seventh dekads, these results probably suggest that the dekadal rainfall is increasing at a slightly
greater rate compared to the dekadal rain days. We also noted a decreasing trend of dekadal rainfall
intensity during the first dekad (MK:−0.276 to−0.019) with the exception of Ntusi and the sixth dekad
(MK: −0.219 to −0.010) with the exception of Kamenyamigo, and we had earlier noted a decreasing
trend of dekadal rainfall (Section 3.3) and dekadal rain days (Section 3.2) during the same period,
which make us confirm a decreasing trend of dekadal rainfall since dekadal rainfall and dekadal rain
days are positively correlated (r: 0.63 and 0.43, respectively).

Table 6. MK results for dekadal rain intensity.

Station dk_01 dk_02 dk_03 dk_04 dk_05 dk_06 dk_07 dk_08 dk_09

Entebbe 0.154 0.238 0.162 −0.010 0.257 −0.219 0.317 −0.200 −0.067
Jinja −0.253 −0.333 0.200 −0.308 −0.033 −0.143 0.033 −0.017 −0.100
Kamenyamigo −0.364 −0.390 −0.205 0.265 0.077 0.205 0.179 −0.026 −0.244
Kituza −0.385 −0.033 0.276 −0.257 0.083 −0.162 −0.010 −0.077 0.124
Makerere −0.238 0.033 0.150 −0.183 −0.117 −0.314 0.067 −0.121 0.117
Namulonge −0.319 0.183 0.150 0.319 0.276 −0.077 0.282 0.055 0.308
Ntusi 0.087 −0.077 0.243 −0.162 −0.124 −0.143 −0.314 0.077 0.143
Tororo −0.159 −0.055 0 0.050 0.133 −0.010 0.250 −0.283 −0.105

3.5. The Trend of Extreme Weather

The results for the trend of consecutive dry days during the MAM season of 2000–2015 are
presented using Table 7 and Figures 7 and 8. Table 7 shows the absolute number of consecutive dry
days for each station over 2000–2015; Figure 7 shows the seasonal average number of consecutive
dry days for each station per year; while Figure 8 shows the percentage number of the consecutive
dry days over the study period. The results show that there was more frequent short dry spells with
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2 days, 3 days and 4 days of consecutively no rain forming 40%, 22% and 14%, respectively (Figure 8).
We noted that Jinja (MK: 0; SLR: 0.012), Kituza (MK: 0.033; SLR: 0.008), Namulonge (MK: 0.143;
SLR: 0.043) and Tororo (MK: 0.397; SLR: 0.080) had increasing trends and that Tororo’s trend was
increased significantly at 90%, and since we found that Tororo could have experienced more rainfall in
Section 3.1, it could probably indicate an increased frequency of consecutive dry days with occasional
heavy rainfall. The other stations had decreasing trends, and we also found a general non-significant
decreasing trend (Figure 7i) on aggregating all of the stations (MK: −0.017; SLR: 0.003 and p-value:
0.964). The increasing trend of consecutive dry days has implications for dry spells [47] within a
given season. The dry spells can result in meteorological drought whose effects can cascade, affecting
agriculture and hydrology negatively.

The MK trend results for extreme rainfall over the study region are presented in Table 8. The
values with an asterisk (*) and a double asterisk (**) are significant at the 90% and 95% significance
levels, respectively. We noted that during the third dekad, 6/8 stations had an increasing trend,
while 7/8 stations had an increasing trend during the seventh dekad. On aggregating the dekads,
results indicated that extreme rainfall is increasing significantly during the third and seventh dekads
compared to the overall season.

Table 7. Number of consecutive dry days.

Station 2 Days 3 Days 4 Days 5 Days 6 Days 7 Days 8 Days 9 Days 10 Days+

Entebbe 68 34 19 11 2 3 1 2 3
Jinja 73 41 33 16 3 4 3 4 6
Kamenyamigo 75 42 38 16 12 3 9 2 12
Kituza 66 38 12 10 8 5 5 2 8
Makerere 74 38 17 12 8 4 5 3 6
Namulonge 66 27 23 14 9 3 4 2 15
Ntusi 64 42 31 24 8 10 2 5 11
Tororo 76 41 21 10 7 9 0 1 7

Average 70 38 24 14 7 5 4 3 9
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Figure 7. The figure is for consecutive dry days. For each station, an average of consecutive dry
days (days with no rainfall) is computed to give the trend for different stations. (a) Entebbe; (b) Jinja;
(c) Kamenyamigo; (d) Kituza; (e) Makerere; (f) Namulonge; (g) Ntusi; (h) Tororo; (i) An average over
the number of consecutive dry days over the study area.

Figure 8. Figure representing the percentage of dry consecutive days over the period 2000–2015.

Table 8. Trend of extreme rainfall.

Station dk_3 dk_7 MAM

Entebbe 0.371 * 0.502 ** 0.036
Jinja 0.275 0.178 −0.269
Kamenyamigo −0.011 0.472 ** 0.168
Kituza 0.389 * 0.259 0.184
Makerere 0.364 * 0.179 −0.009
Namulonge 0.182 0.228 0.052
Ntusi 0.225 −0.254 −0.127
Tororo −0.084 0.227 −0.157

Average 0.363 * 0.429 ** 0.209

*: significant at 90%; **: significant at 95%.
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4. Summary and Conclusions

The main aim of our study was to investigate the intra-seasonal rainfall variability over LVB by
analyzing dekadal rainfall. The daily rainfall obtained from UNMA was first treated to the normality
test using Shapiro–Wilk’s normality test and homogeneity test using double-mass curves. Sixty five
percent of the data was found normally distributed at the 95% confidence level, and all stations had
homogeneous rainfall data records. The missing rainfall data were less than 5% and filled using the
modified normal ratio method. The rainfall data were then classified in dekads from which dekadal
rainfall amount and dekadal rain days were computed. The average rainfall and rain days during
the March–May and September–November seasons over LVB was almost similar in magnitude, and
we also noted that the March–May season had fewer light rain days and more wet days than the
September–November season.

The trend of accumulated rainfall and the total number of rain days over a given dekad were
analyzed using the Mann–Kendall trend test and simple linear regression and presented using tables
and figures. The majority of the trends were generally not significant at the 95% confidence level, but
consistent and pointed to an increasing trend in both accumulated rainfall and total number of rain
days during the third and seventh dekads and decreasing trends during the 1st, 2nd and 6th dekads.
We also noted a greater and significant increase of dekadal rainfall of the seventh dekad compared to
the third dekad over the last ten years (2006–2015) and a corresponding significant decrease in dekadal
rainfall during the eight dekad.

Additionally, we found that the trend of light rain days was generally twice as much as the increase
of wet days, which was also evident during the third and seventh dekads. We also analyzed the trends
of dekadal rainfall intensity and found them consistent with earlier results showing increasing trends
during the third and seventh dekads and decreasing trends for the first and sixth dekads. Analysis of
consecutive dry days showed that 2–4 days with consecutively no rainfall accounted for 74%, and we
did not find a significant trend. The days with extreme rainfall increased significantly during the third
and seventh dekads. Since other studies over the same region have pointed to a ‘no significant change’
in March–May seasonal rainfall regarding on-set and cessation, our results suggest intra-seasonal shift
in March–May seasonal rainfall, making the third and seventh dekads become wetter.
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Appendix A.

Appendix A.1. The Double-Mass Curve

Given two datasets:
y = y1, y2, · · · , yn

and
x = x1, x2, · · · , xn

such that Y and X are the cumulative values of y and x, respectively, and that:

Yi =
n

∑
i=1

yi (A1)
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and

Xi =
n

∑
i=1

xi (A2)

the graph of a curve passing through the coordinate (Xi, Yi) is a double-mass curve [23]. We used “ebb”
as the reference dataset.

Appendix A.2. Shapiro–Wilk’s Normality Test

Given dekadal rainfall data:
R1, R2, · · · , Rn

from which we get an order data:
R(1), R(2), · · · , R(n)

Shapiro–Wilk’s statistic tests normality by using a null hypothesis of ‘the population is normally
distributed’. We use the Shapiro–Wilk (w) test statistic as:

w =

[
n

∑
i=1

αiR(i)

]2

n

∑
i=1

(R(i) − Ri)2
(A3)

where Ri is the smallest i-th dekadal rainfall value, Ri is the mean dekadal rainfall computed using:

w =
1
n

n

∑
i=1

Ri (A4)

and αi constants depending on expected values of order statistics from a standard normal distribution.
The values of w are such that:

0 < w < 1

with values of w closer to one indicating high normality.

Appendix A.3. The Normal Ratio Method

According to Subramanya [48], given a rainfall time-series,

R1, R2, · · · , Rn

with normal rainfall within 10% of a station with missing rainfall Ri, the rainfall, Ri can be estimated by:

Ri =
(Ri)

N

(
R1

(R1)
+

R2

(R2)
+ · · ·+ Rn

(Rn)

)
(A5)

where Rj is the j-th mean rainfall for the period under consideration and N is the number of stations
used. For daily rainfall, we can take a station with high correlation to help estimate the rainfall of a
missing station. If we simplify and take one station (i.e., N = 1) with the highest correlation to estimate
the missing rainfall, Equation (A5) becomes:

Ri = Ri ×
R1

(R1)
(A6)

Equation (A6) is used to estimate missing rainfall values as Equation (1) with two conditions that
(1) the station with missing data is highly correlated with the station having all of the data and (2) the
missing data should be less than 5%.
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Appendix A.4. The Mann–Kendall Trend Test

The MK test is a sign test for detecting trends in stationery hydro-meteorological variables.
The sign (S) is obtained using Equations (A7) and (A8) and following the algorithm written by
McLeod [49].

S =
n−1

∑
i=1

n

∑
j+i=1

sgn(Rj − Ri) (A7)

where Ri and Rj are rainfall amounts (or rain days) sequentially, and sgn(Rj − Ri) is obtained as:

sgn(Rj − Ri) =


+1 : if Rj − Ri > 0

0 : if Rj − Ri = 0

−1 : if Rj − Ri < 0

(A8)

For non-tied values of Ri, the variance δ2(S) of the distribution of S is computed using:

δ2(S) =
n(n− 1)(2n + 5)

18
(A9)

For tied values of Ri, the variance is given by:

δ2(S) =
n(n− 1)(2n + 5)−∑ ti(i)(i− 1)(2i + 5)

18
(A10)

ti is number of ties of extent i. The MK test statistic is then given by the standard Gaussian value,
MK defined as:

MK =


S−1
δ(S) : if S > 0

0 : if S = 0
S+1
δ(S) : if S < 0

(A11)

Appendix A.5. Regression Analysis

Linear regression is a simple method for determining the trends of time-series data [41]. Given an
n time-ordered rainfall (rain days) dataset: {R1, R2, · · · , Rn−1, Rn}, ordered in time, t the simple linear
regression is given as (A12):

Ri = αti + ε (A12)

where
i = 1, 2, · · · , n

α is the rate of change, ε is the error and the decadal rate of change of rainfall (rain days) over the study
period and α is the gradient of the regression line.
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