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Abstract: The paper describes the net momentum transported by the transient electromagnetic
radiation field of a long transient dipole in free space. In the dipole a current is initiated at one
end and propagates towards the other end where it is absorbed. The results show that the net
momentum transported by the radiation is directed along the axis of the dipole where the currents
are propagating. In general, the net momentum P transported by the electromagnetic radiation of
the dipole is less than the quantity U/c, where U is the total energy radiated by the dipole and c
is the speed of light in free space. In the case of a Hertzian dipole, the net momentum transported
by the radiation field is zero because of the spatial symmetry of the radiation field. As the effective
wavelength of the current decreases with respect to the length of the dipole (or the duration of the
current decreases with respect to the travel time of the current along the dipole), the net momentum
transported by the radiation field becomes closer and closer to U/c, and for effective wavelengths
which are much shorter than the length of the dipole, P ≈ U/c. The results show that when the
condition P ≈ U/c is satisfied, the radiated fields satisfy the condition ∆t∆U ≥ h/4π where ∆t is the
duration of the radiation, ∆U is the uncertainty in the dissipated energy and h is the Plank constant.

Keywords: dipole radiation; electromagnetic fields; classical electrodynamics; position momentum
uncertainty principle; time energy uncertainty principle

1. Introduction

Electromagnetic radiation fields are associated not only with energy but also with a
momentum [1,2]. Thus, any object that emits electromagnetic radiation will experience a momentum
equal and opposite to the momentum transported by the electromagnetic radiation. The net momentum
transported by the radiation depends on its directive properties. If the electromagnetic radiation is
directed in one particular direction, then the electromagnetic radiation will transport a net momentum
in that direction. If the spatial distribution of the emitted electromagnetic field has mirror symmetry
with respect to the x–y, x–z, and y–z planes, the net momentum transported by the radiation is zero.
Here we consider a transient dipole where a current is initiated at one end and propagates towards
the other end where it is absorbed. The electromagnetic fields radiated by such transient dipoles are
neither directed in one particular direction nor completely symmetric with respect to the three-spatial
axis. In the case of dipoles, the net momentum transported by the radiation depends on the directivity
of the radiation. The directivity of the radiation emitted by a transient dipole depends on the length
of the dipole and the effective wavelength of the excitation current. The effective wavelength in turn
depends on the duration of the current waveform.
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The literature on the radiation produced by Hertizian dipoles is numerous, and it is sufficed to
refer to several textbooks dealing with the subject such as Jackson [1] and Panofsky and Philips [2].
There is also a significant amount of literature on the radiation fields of oscillating long dipoles.
A dipole working in frequency domain is called “long” because the wavelength associated with the
current oscillations is either comparable or shorter than the length of the dipole [3]. Even in the case
of long transient dipoles, a certain amount of information on their radiation fields is available in the
literature [4]. In the case of transient dipoles, the adjective “long” shows that the effective wavelength
of the current exciting the dipole is either comparable to or shorter than the length of the dipole, or the
duration of the current is either comparable to or shorter than the travel time of the current along
the dipole. The current evolution in these dipoles has to be described by current pulses that travel
from one end of the dipole to the other. Theories on long dipoles are developed mainly in connection
with lightning research, where currents are assumed to propagate along long lightning channels [4].
Irrespective of these advances, however, the way in which the momentum transported by the radiation
fields of a dipole varies with the duration of the excitation current and the length of the dipole has
never been investigated in the literature. The goal of this paper is to fill this gap in our knowledge
concerning dipole radiation.

In this paper we will consider the momentum transported by the radiation fields of a long
transient dipole. We will consider the general case where the characteristic wavelength of the current
pulse propagating along the dipole can take any value with respect to the length of the dipole.

2. Radiation Fields Produced by a Transient Dipole

2.1. Transient Hertzian Dipole

The features of radiation fields generated by Hertzian dipoles are described in any textbook
on electromagnetic theory. Consider a dipole, of length L and radius a, located along the z-axis.
The relevant geometry is shown in Figure 1a. Let us denote the excitation current of the dipole
by i(t). In our study, we will consider a Gaussian current pulse (see Section 2.2 for more details).
Since our interest here is to obtain general results concerning the connection between the energy
and the momentum transported by the radiation fields of transient dipoles, the Gaussian pulse is
more appropriate. Moreover, the frequency spectrum of a Gaussian current pulse is also a Gaussian.
However, as we will show later, the results obtained are also valid for other current signatures. In a
Gaussian current pulse, the amplitude decays by e−2 when one moves 2σ away in either direction in
time from the peak value. Thus, the duration τ of the Gaussian pulse is about 4σ. The characteristic
wavelength (the wavelength associated with the frequency when the amplitude of the frequency
spectrum decays to e−2 of its peak value), λe, associated with the current is approximately equal to τc,
where c is the speed of light in free space [5]. In the case of a Hertzian dipole, the effective wavelength
should satisfy the conditions λe >> a and λe >> L. When the distance to the point of observation r
is much larger than the effective wavelength λe of the dipole, its electromagnetic fields become pure
radiation. The radiation fields generated by a Hertzian dipole are given by [1,2]

Eθ =
L

4πε0c2r
sinθ

di(t− r/c)
dt

aθ (1)

Hϕ =
L

4πcr
sinθ

di(t− r/c)
dt

aϕ (2)

Dθ =
L

4πc2r
sinθ

di(t− r/c)
dt

aθ (3)

One can use this set of equations to evaluate the energy and momentum transported by
Hertzian dipoles.
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Figure 2. The normalized Gaussian current pulse with standard deviation   = 10 ns. 

Figure 1. Geometry relevant to the derivation of equations presented in this paper. (a) Hertzian dipole;
(b) long dipole. Observe that in defining the unit vectors ar, aθ, and aϕ we are using a spherical
coordinate system with the centre of the dipole located at the origin of coordinate system. In this
coordinate system r is the radial distance, θ is the polar angle, and ϕ is the azimuthal angle. ar, aθ,
and aϕ are unit vectors in the direction of increasing radial distance, polar angle and azimuthal
angle, respectively.

2.2. Transient Long Dipole

The geometry relevant to the problem under consideration is shown in Figure 1b. A current
pulse is initiated at end L1 of the dipole and travels with constant speed towards the end L2 of the
dipole. The constant speed of propagation of the current pulse is assumed to be equal to the speed
of light in free space. This indeed is the speed of propagation of current pulses in antennas located
in free space [1,3]. The length of the dipole is denoted by L and it is located along the z-axis. Thus,
the direction of propagation of the current is aligned along the z-axis. The point of observation is
denoted by P and the distances to the point of observation and its angular position with respect to the
ends of the dipole are shown in Figure 1b. Since we are interested in the net momentum transported
by the emitted electromagnetic radiation, it is sufficed to evaluate the radiation fields generated by
the dipole. The signature of the radiation field generated by a dipole which is excited by a transient
current consists of two pulses, one generated during the initiation of the current pulse at L1 and the
other during the termination of the current pulse at L2 [6].

In the present study, the temporal variation of the current pulse propagation along the dipole
is represented by a Gaussian curve, which can be described mathematically by the following
analytical function:

i(t) = i0exp

(
− (t− 4σ)2

2σ2

)
(4)

Note that, for the ease of calculation, the Gaussian current pulse is shifted forward in time by 4σ,
where σ is the standard deviation. This pulse, with the amplitude normalized to unity, is shown in
Figure 2. In the calculation, it is assumed that σ = 10 ns. Observe, in this diagram, that the duration
of the current pulse τ is about 4σ (see Section 2.1).
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An expression for the radiation field produced by the propagation current pulse at a distant point
(r1 ≈ r2 ≈ r; θ1 ≈ θ2 ≈ θ; r � L) where the field is pure radiation is given by [6]. It can be described
mathematically by the following set of equations:

Erad(t, θ) =
i(t− r/c)sinθ

4πεocr

[
1

1− cosθ

]
aθ for r/c < t < r/c + δ1 (5a)

Erad(t, θ) =
sinθ

4πεocr

[
i(t− r/c)
1− cosθ

− i(t− r/c− δ1)

1− cosθ

]
aθ for t > r/c + δ1 (5b)

where
δ1 =

L
c
− Lcosθ

c
(5c)

Note that δ1 is the delay in the emission of radiation from the two ends. The field components
Hϕ and Dθ can be obtained from the equations given above using the relationships

∣∣Hϕ

∣∣ = ε0c |Eθ|
and Dθ = ε0Eθ. It is possible to show that when the conditions λe >> L and λe >> a are satisfied,
Equations (5a,b) reduce to the Hertzian dipole electric field given by Equation (1) [7].

The radiation field generated by a long dipole (with τ/(L/c) = 0.01) along the direction θ = 20◦

is shown in Figure 3. Observe that the radiation field amplitude is normalized to unity. The two
radiation bursts that one can see in the figure are generated at the initiation and termination of the
current pulse.
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Figure 3. Normalized radiation field generated along the direction θ = 20◦ at a distant point by
a long dipole. The dipole is excited by a Gaussian current pulse. In the calculation, σ = 10 ns and
τ/(L/c) = 0.01.

3. The Energy and Momentum of the Radiation Field

The energy density generated by an electromagnetic field is given by the Poynting vector S which
in turn is defined by [1,2]

S = E×H (6)

This gives the power transmitted by the electromagnetic wave across a unit area located
perpendicular to the direction of propagation of the wave. The momentum density associated with
this electromagnetic field P is given by [1,2]

P =
1
c

E×H (7)
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This expression gives the linear momentum transferred per unit time by the wave across a unit
area located perpendicular to the direction of propagation of the wave. In the above equations, E and H
are the electric flux density and magnetic field intensity, respectively.

3.1. Transient Hertzian Dipole

The Poynting vector and the momentum density vector associated with the Hertzian dipole is
given by

S(t, θ) =
L2sin2θ

16π2εoc3r2

(
di(t− r/c)

dt

)2

ar (8)

P(t, θ) =
L2sin2θ

16π2εoc4r2

(
di(t− r/c)

dt

)2

ar (9)

The total energy radiated by the dipole is given by

U =
L2

16π2εoc3 F
2π∫
0

π∫
0

sin3θ dθ dϕ (10)

where

F =

∞∫
0

(
di(t)

dt

)2

dt (11)

One can easily show that, due to symmetry, net momentum transported by the radiation field
in any given direction is zero. For example, the net momentum transported in the z-direction by a
Hertzian dipole is given by

Pz =
L2

16π2εoc4 F
2π∫
0

π∫
0

sin3θ cosθdθ dϕ (12)

Due to symmetry, the value of the above integral is zero. In other words, the ratio Pz/(U/c) for a
Hertzian dipole is zero. In the sections to follow, we will show that this ratio departs from zero as the
dipole changes from a Hertzian to a long dipole.

3.2. Long Transient Dipole

Using the expressions for the electric radiation fields given in Equation (5), and noting that
H = E/µ0c for radiation fields, we obtain

S(t, θ) =
i2(t− r/c)sin2θ

16π2εocr2
1

[1− cosθ]2
ar for r/c < t < r/c + δ1 (13a)

S(t, θ) =
sin2θ

16π2εocr2

[
i(t− r/c)
1− cosθ

− i(t− r/c− δ1)

1− cosθ

]2

ar for t > r/c + δ1 (13b)

and

P(t, θ) =
i(t− r/c)2sin2θ

16π2ε0c2r2
1

[1− cosθ]2
ar for r/c < t < r/c + δ1 (14a)

P(t, θ) =
sin2θ

16π2ε0c2r2

[
i(t− r/c)
1− cosθ

− i(t− r/c− δ1)

1− cosθ

]2

ar for t > r/c + δ1 (14b)

The energy radiated across a unit area in any given direction θ is given by

u(θ) =
∞∫

0

S(t, θ)dt (15)
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The total energy radiated by the system can be obtained by integrating the Poynting vector over a
spherical region. That is, the total energy dissipated by the system is given by

U =

2π∫
0

π∫
0

u(θ)sinθr2dθ dϕ (16)

The net momentum transported by the electromagnetic field through a unit area in the direction θ

is given by

p(θ) =
∞∫

0

P(t, θ)dt (17)

Due to the angular symmetry of the emitted radiation, the x and y components of this momentum
will add up to zero, leaving behind only the z component. The net momentum transported in the
z- direction by the electromagnetic field is given by

Pz =

2π∫
0

π∫
0

p(θ)sinθcosθr2 dθ dϕ (18)

Since this is the only component of the net momentum transported by the radiation, we will drop
the subscript z and write it simply as P.

Consider a transient electromagnetic field emitted in a direction θ by a dipole. If the
electromagnetic field is confined only to direction θ, then the total energy radiated U and the total
momentum P transported by the electromagnetic field are related through Equations (6) and (7) as

P = U/c (19)

In the case of a normal dipole, the net momentum transported by the radiation field departs from
this equation because the radiation is not directed in one particular direction. However, as we will
show in this paper, as the effective wavelength λe of the current becomes comparable to or shorter than
the length of the dipole (or the duration of the current pulse becomes comparable to or shorter than the
travel time of the current pulse across the dipole), the radiation becomes more and more directional
and the relationship between the momentum transfer and the total energy approaches P = U/c (note
that P is the z-component of the transferred momentum). This will be investigated in the next section.

4. The Total Electromagnetic Energy Radiated and the Total Electromagnetic Momentum
Transported by a Long Dipole—General Case

In order to take into account the radiation fields generated by long dipoles excited by current
waveforms of different durations, let us define a parameter β as

τ = βL/c (20)

In Equation (20), τ is the duration of the pulse and L/c is the time taken by the current pulse to
propagate the length of the dipole. In the case of the Gaussian pulse, τ = 4σ and, therefore, β and τ,
are connected through the equation σ = βL/4c. As β decreases, the duration of the current pulse
becomes shorter and shorter in comparison to the time given by L/c.

The way in which the radiated energy of a dipole varies as a function of τ and β has been studied
previously by Cooray and Cooray [8]. They showed that the total energy radiated by a long dipole
excited by a Gaussian current pulse can be written as

U/c = q2Fu(β)/τ (21)
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In the above equation, Fu(β) is a function that depends only on β, and q is the charge associated
with the Gaussian current pulse. That is:

q =

∞∫
0

i(t)dt (22)

Since the time dependence of the current, which appeared in the expressions for both the energy
and the momentum transfer, is the same except for a geometrical factor that arises due to the presence
of cosθ in the integration that appears in Equation (12), the net momentum transported by the radiation
field can be written as

P = q2Fp(β)/τ (23)

Thus, the ratio of the total momentum and the total energy (divided by the speed of light)
transported by the dipole is given by

P
U/c

=
Fp(β)

Fu(β)
(24)

This ratio depends only on the parameter β. In the case where β� 1 one can derive an analytical
expression for the above ratio. This is done in the next section.

5. The Total Electromagnetic Energy Dissipated by the Long Dipole and the Total Momentum
Transported by the Radiation—Case When β � 1

Observe that, as given by Equation (5c), the delay between the two radiation pulses generated by
the dipole during current initiation and termination is equal to (1− cosθ)L/c. For very small angles,
the two pulses overlap. As the angle θ increases from zero, the separation between the radiation
field pulses increases; when it reaches a critical value, say θ0, the two pulses separate from each other
completely. This critical angle is given by

(1− cosθ0)
L
c
= τ (25)

Substituting for τ in terms of β, we obtain

cosθ0 = (1− β) (26)

As the value of β decreases, the angle θ0 decreases; for very small values of β, it becomes almost
equal to zero. In such cases, almost all the energy generated by the dipole is confined to the spatial
region where θ > θ0. As pointed out earlier, in this region of space the radiation field consists of two
separate pulses, each with a signature identical to that of the current pulse. Thus, the total energy
radiated by the dipole can be approximated by

U =

2

[
∞∫
0

i2(t− r/c)dt

]
16π2εoc

2π∫
0

π∫
θ0

sin3θ

[1− cosθ]2
dθ dϕ (27)

The factor 2 in the above equation comes from the fact that there are two identical radiation
pulses, each with a time signature identical to that of the current waveform. The expression for the
total momentum transported by the radiation field is given similarly by the expression

P =

2

[
∞∫
0

i2(t− r/c)dt

]
16π2εoc2

2π∫
0

π∫
θ0

sin3θcosθ

[1− cosθ]2
dθ dϕ (28)
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The spatial integrals in Equations (27) and (28) can be evaluated without much difficulty.
Furthermore, when one evaluates the ratio P/(U/c), the time integral of the square of the current
cancels off. Thus, the final result is given by

P
U/c

=
log(1/β)− 1.3

log(1/β)− 0.305
β� 1 (29)

Note in the above equation that the ratio becomes 1 as 1/β goes to infinity.

6. The Relationship between the Total Energy Dissipated and the Total Momentum Transported
by the Long Dipole Field

Let us consider the ratio P/(U/c) for a dipole. This ratio is given by Equation (24) and, for the
case β � 1, by Equation (29). Again, we remind the reader that P stands for the net momentum
transferred by the radiation field in the z-direction. A plot of P/(U/c) as a function of 1/β is shown in
Figure 4. The ratio calculated using the approximate expression given by Equation (29) is shown in the
same diagram by a dotted line. Observe that this ratio depends on the value of 1/β. Let us study how
this ratio varies with this parameter. For small values of 1/β, the ratio P/(U/c) is significantly less
than unity, and this indicates that the radiation is not strongly directional. Indeed, as seen earlier, for a
Hertzian dipole 1/β� 1 and the ratio P/(U/c) is equal to zero. However, as 1/β increases, the ratio
increases and its value asymptotically approaches unity. For values of 1/β larger than about 105–106,
this ratio is almost equal to unity. This shows that as 1/β increases, the radiation becomes more and
more directional and it aligns along the z-axis (or along the axis of the dipole). When 1/β ≥ 105, the
total momentum transported by the field is almost equal to U/c, where U is the total energy radiated.
In other words, for 1/β� 1 the radiation emitted by the dipole can be treated as almost unidirectional.
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Figure 4. The variation of the ratio of z-momentum to U/c as a function of 1/β. The solid line is
calculated using Equation (24) and the dashed line by using Equation (29).

The results presented here are obtained for a Gaussian current pulse. However, observe that the
ratio P/(U/c) for large 1/β is independent of the current. Thus, the results obtained above—which
show that the radiation becomes more and more unidirectional as 1/β increases—is valid also for other
current waveforms. Actually, a similar effect can also be observed in dipole antennas where sinusoidal
currents are oscillating. When the length of the antenna to the wavelength ratio (i.e., L/λ is very small),
the radiation as a function of θ has a broad peak, as in the case of sinusoidal Hertzian dipole [3].
However, as the ratio L/λ increases, the radiation becomes more and more directional; for an antenna
located along the z-axis, the radiation direction aligns along the z-axis [3,8]. This is exactly what
happens when 1/β increases in the long dipole. Note that the equivalent wavelength, λe, for a current
pulse of duration τ is about cτ. Thus, the ratio L/λe is equal to L/τc, and this in turn is equal to 1/β.
This shows that the reason for the increase in directivity of the radiation as 1/β increases can also be
understood by appealing to radiation generated by dipole antennas working in frequency domain.
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7. Discussion

The results presented in this paper can be utilized in a hypothetical experiment to derive an
interesting property associated with dipole radiation. Consider an electromagnetic dipole completely
at rest. Its location is unknown. At a given time, the dipole emits a burst of electromagnetic radiation
whose duration is ∆t. The task is to measure the momentum and the location of the dipole by using the
emitted electromagnetic radiation. Let us assume that the emission mechanism of radiation satisfies
the condition that the total momentum transported by the dipole electromagnetic field is given by U/c
where U is the total energy associated with the electromagnetic radiation (i.e., 1/β ≥ 105). The law
of momentum conservation dictates that a momentum of equal magnitude but of opposite direction
is transferred to the dipole by the outgoing radiation field. Let ∆U represents the uncertainty in the
emitted energy. Then, the uncertainty in the momentum of the dipole ∆P is equal to ∆U/c. This is
the case because P = U/c. If the duration of the radiation emitted by the dipole is ∆t, the effective
wavelength associated with the radiation is c∆t. Now, when an object is illuminated by electromagnetic
radiation, the location of the object cannot be specified to an accuracy better than the wavelength of the
radiation [9]. Thus, the uncertainty in the position of the dipole in the z-direction, ∆z, is equal to c∆t.
Since the uncertainty in the position and the momentum of any object should satisfy the Heisenberg’s
uncertainty principle we can write

∆P ∆z ≥ h
4π

(30)

In the above equation, h is the Plank constant. Substituting ∆P = ∆U/c and ∆z = c∆t in
Equation (30) we obtain

∆U ∆t ≥ h
4π

(31)

In our case, the condition P = U/c is approximately satisfied by the radiation fields when
the value of 1/β is larger than about 105. Thus, for dipoles working in time domain where the
condition 1/β ≥ 105 is satisfied, the emitted radiation should satisfy approximately the condition
given by Equation (31). This is an interesting result, which shows that dipole fields, when excited by
fast current pulses, satisfy a time–energy uncertainty relationship as given by Equation (31). Indeed,
Cooray and Cooray [8] used this relationship to show that the smallest charge that can radiate in an
antenna working in time domain is equal to the electronic charge.

In order to be treated as a Hertzian dipole, the effective wavelength associated with the radiation
λe of the dipole should satisfy the conditions λe >> a and λe >> L, where a and L are the radius and
length of the dipole, respectively. In the case of a long dipole, we relax the second condition, and this
makes it necessary to consider the propagation effects of the current along the dipole. However, even
in the case of a long dipole, we still have to satisfy the condition λe >> a. Thus, the results obtained
for a long dipole are valid, provided this condition is satisfied. This shows that the possible values
of 1/β are bound on one side by the smallest radius of the conductor that can be realized in nature
and on the other side by the longest dipole that can be realized in nature (i.e., L� Lu where Lu is the
radius of the universe).

In this paper, we have considered an idealized situation in which current pulses are assumed
to propagate along the long dipole with speed of light and without attenuation. This idealization
was warranted here because the goal of the study reported in this paper was to understand the
connection between the energy and momentum transported by the long dipole radiation. However,
the application of this procedure in more practical situations needs further consideration. For example,
dipole antennas are constructed in practice by locating vertical conductors over perfectly conducting
ground. In this case, the long dipole acts as a vertical transmission line. Pulses propagating along
vertical conductors located over a ground plane are affected by the finite conductivity of the material
of the conductor and by the effects of radiation damping [1]. The calculations conducted by Baba
and Rakov [10] show that the current pulses propagating along such conductors can attenuate as
they propagate along them. Moreover, close to the ground end of the conductors, even the speed of
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propagation of the current pulses is slightly less than the speed of light. At present, we are investigating
these effects to extract the conditions under which the ideal assumptions made in the present paper,
namely propagation of current pulses without attenuation, are valid. The results obtained by us at
present using the mathematical equations developed by Wu [11] and Chen [12] for pulse propagation
along vertical conductors located over a ground plane, indicate that the ideal conditions assumed
in the present paper are valid for values of 1/β less than about 106–107. Further research work is
necessary to confirm this result.

Another natural phenomenon that acts as a dipole located over a ground plane is the lightning
return stroke. Experimental data show that the return stroke can be treated as a current pulse
propagating along a more or less vertical channel with an average speed of propagation of about
(1–2) × 108 m/s while undergoing attenuation. The actual front speed decreases with increasing
height [13]. In reality, the ground is finitely conducting and the radiation fields are affected by
the propagation losses. Research work is underway to investigate the momentum transferred by
radiation fields of lightning return strokes and how it is related to the total energy radiated by them.
Furthermore, how the magnitude of the radiated momentum and its relationship to total radiated
energy vary as a function of return stroke parameters—such as current amplitude, current signature,
speed of propagation, and current attenuation along the channel—are under investigation. We hope to
present the results of these investigations in the near future.

8. Conclusions

The paper describes the net momentum transported by the radiation emitted by a transient dipole
working in time domain. In the dipole a current is initiated at one end and propagates towards the
other end where it is absorbed. The net momentum associated with the radiation is directed along
the axis of the dipole. It is shown that as the duration of the excitation current of the dipole decreases
with respect to the travel time of the current along the dipole, P→ U/c where P is the net momentum
associated with the radiation, U is the total energy radiated by the dipole and c is the speed of light
in free space. When the ratio of the duration of the current to the travel time of the current along the
dipole decreases below about 10−5, the net momentum and the radiated energy are connected by the
relationship P ≈ U/c. Due to momentum conservation, the radiating dipole experiences a momentum
of equal magnitude but in the opposite direction. The results show that under the conditions when
P ≈ U/c is satisfied, the radiation fields satisfy the relationship ∆t∆U ≥ h/4π where ∆t is the duration
of the radiation, ∆U is the uncertainty in the radiated energy, and h is the Plank constant.
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