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Abstract: The very low-cost Nova particulate matter (PM) sensor SDS011 has recently drawn attention
for its use for measuring PM mass concentration, which is frequently used as an indicator of air
quality. However, this sensor has not been thoroughly evaluated in real-world conditions and its data
quality is not well documented. In this study, three SDS011 sensors were evaluated by co-locating
them at an official, air quality monitoring station equipped with reference-equivalent instrumentation
in Oslo, Norway. The sensors’ measurement results for PM2.5 were compared with data generated
from the air quality monitoring station over almost a four-month period. Five performance aspects of
the sensors were examined: operational data coverage, linearity of response and accuracy, inter-sensor
variability, dependence on relative humidity (RH) and temperature (T), and potential improvement
of sensor accuracy, by data calibration using a machine-learning method. The results of the study are:
(i) the three sensors provide quite similar results, with inter-sensor correlations exhibiting R values
higher than 0.97; (ii) all three sensors demonstrate quite high linearity against officially measured
concentrations of PM2.5, with R2 values ranging from 0.55 to 0.71; (iii) high RH (over 80%) negatively
affected the sensor response; (iv) data calibration using only the RH and T recorded directly at the
three sensors increased the R2 value from 0.71 to 0.80, 068 to 0.79, and 0.55 to 0.76. The results
demonstrate the general feasibility of using these low cost SDS011 sensors for indicative PM2.5

monitoring under certain environmental conditions. Within these constraints, they further indicate
that there is potential for deploying large networks of such devices, due to the sensors’ relative
accuracy, size and cost. This opens up a wide variety of applications, such as high-resolution air
quality mapping and personalized air quality information services. However, it should be noted
that the sensors exhibit often very high relative errors for hourly values and that there is a high
potential of abusing these types of sensors if they are applied outside the manufacturer-provided
specifications particularly regarding relative humidity. Furthermore, our analysis covers only a
relatively short time period and it is desirable to carry out longer-term studies covering a wider range
of meteorological conditions.

Keywords: air pollution; air quality monitoring; evaluation and calibration; low-cost sensors; Nova
PM sensor SDS011; particulate matter; PM2.5

1. Introduction

Particulate matter (PM) is one of the major airborne pollutants in urban environments and is one
of the most problematic air pollutants, in terms of its negative effects on human health [1]. The effects
of PM on human health, which have been widely studied in the last twenty years, include asthma, lung
cancer and cardiovascular issues [2,3]. Generally, the level of health effects from PM are related to the
size of particles. For instance, PM up to 10 micro-meters (µm) in diameter (PM10,) can penetrate into
the bronchi. PM up to 2.5 µm (PM2.5, fine particles) can penetrate the lungs, while ultrafine particles
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(PM0.1) are able to pass through the lung tissue and enter the circulatory system [4,5]. The International
Agency for Research on Cancer (IARC) concluded in 2013 that PM is carcinogenic to humans [6].
According to the European Environmental Agency (EEA), in 2014, 428,000 premature deaths in 41
European countries were caused by PM2.5 in the air [7].

Traditionally, like most other pollutants, PM concentration is measured at fixed air quality
monitoring stations by using accurate and expensive instrumentation. In the European Union,
the density of such networks of monitoring stations is determined by the EU Air Quality Directive
2008/50/EC, which defines the minimum number of fixed monitoring stations for each target pollutant
based on the air pollution levels, population and coverage area [8]. However, due to the substantial
cost associated with setting up and maintaining such stations, the number of monitoring sites tends to
be quite small in most areas, and, while the resulting networks are capable of fulfilling the regulatory
needs, their number is generally insufficient for providing detailed information about the spatial
distribution of the pollutants, identify pollution hotspots, or provide comprehensive personalized
information about air quality to citizens at locations not covered by the network. Although pollutant
dispersion models can be used to address this issue to some extent, they often exhibit bias [9,10].
Integrating the observations from a dense network of low-cost sensors with model information
through techniques such as data fusion and data assimilation is able to provide spatially continuous
concentration fields with significantly reduced bias [11–13]. This adds values to the sensor observations
by spatially interpolating between monitoring locations and at the same adds value to the model
by constraining the model with actual observations. As such, the advantages of both datasets are
combined in a mathematically objective fashion, and the resulting up-to-date concentration fields
allow for the possibility of providing more relevant personalized information about air quality and
exposure to the public.

The recent advancements in the field of low-cost micro-sensors and information and communication
technology (ICT) are an opportunity to realise this objective of providing up-to-date and useful air
quality information by complementing the official outdoor air quality monitoring networks and
improving the spatial and temporal resolution of air quality data [13–16].

Currently, several categories of low-cost micro-sensors for PM measurements are available,
e.g., Sharp GP2Y1010 [17], Shinyei PPD42NS [18], Plantower PMS1003 [19,20], Nova SDS011 [21],
AirBeam [22], Alphasense Optical Particle Counter (OPC-N2) [23], and Wuhan Cubic PM3007 [24].
These sensors are all based on optical light scattering using a laser and applying Mie theory on the
scattered light to determine the particle size [25]. These PM sensors come in compact sizes, are light,
have low energy consumption, operate at a high sampling frequency, and cost from tens to hundreds
of Euros each [26]. Such sensors are promising to be deployed in the outdoor environment in terms of
their size, cost and ease of use. In particular, such sensors have already been used among non-profit
organisations and citizen scientists [27]. However, it is crucial that the sensors’ accuracy, precision and
reliability are assessed in a comprehensive and repeatable manner under real-world conditions before
they are deployed in large numbers [27].

So far, only a limited number of studies have evaluated this new generation of low-cost sensors for
PM2.5 monitoring, and their performance under various environmental conditions and different time
scales is still not well understood [28]. Genikomsakis et al. (2018) [29] performed an on-field testing
of low-cost portable system for monitoring PM2.5 concentrations in Thessaloniki (Greece), by using a
Nova PM sensor SDS011 with an equipped calibrated instrument as the basis of comparison, during
the period of 6–8 March 2017. Their results showed that the Nova PM sensor SDS011 maintained a
high level of accuracy (R2 value ranging from 0.93 to 0.95) despite of the errors introduced due to
the conditions of the mobile test run. Badura et al. (2018) [30] conducted a performance assessment
for Nova PM sensor SDS011, ZH03A (Winsen), PMS7003 (Plantower), and OPC-N2 (Alphasense)
sensors, with a TEOM 1400a analyser for almost half a year from 21 August 2017 to 19 February 2018 in
Wrocław (Poland). They found a high, linear relationship between TEOM and sensors for 1 min, 15 min,
and 1-hour averaged data for the PMS7003 sensors (R2 ≈ 0.83–0.89), for SDS011 units (R2 ≈ 0.79–0.86),
and for one unit of ZH03A (R2 ≈ 0.74–0.81), and R2 values for daily averages were at the level 0.91–0.93
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for PMS7003, 0.87–0.90 for SDS011, and 0.89 for ZH03A, respectively. The performance characteristics
of the available low-cost sensors should be well known, before their deployment for sensor-based
management of air pollution [10].

This study is one of the major tasks within the EU H2020 project hackAIR (www.hackair.eu) [31],
which is building a collective, awareness-raising platform for outdoor air quality with pilots in
local communities in Norway and Germany. In this study, PM2.5 measurements from a set of three
low-cost PM sensor units (SDS011) were compared against tapered element oscillating microbalance
(TEOM) observations made at an air quality monitoring station in Oslo, Norway. The TEOM device
is a well-characterised instrument and commonly used in air quality monitoring. We assessed the
performance of the three units for a four-month period in winter and spring 2018.

2. Materials and Methods

2.1. Nova PM Sensor SDS011

The SDS011 sensor is a quite recent air quality sensor developed by Inovafit, a spin-off from the
University of Jinan, Shandong province, P.R. China [17] (Figure 1). The technology is based on laser
diffraction theory, where particle density distribution is specified from the light intensity distribution
patterns [21,29]. The sensor contains a digital output and a built-in fan (Figure 2), which can measure
the particle density distribution between 0.3 to 10 µm in the air. A built-in algorithm convert the
particle density distribution into particle mass. A short technical specification of the SDS011 is given in
Table 1.
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Table 1. Characteristics of the Nova PM sensor SDS011 [17].

Item Specification

Measurement parameters PM2.5, PM10
Measuring range 0.0–999.9 µg/m3

Input voltage 5 V
Related current 70 mA ± 10 mA
Sleep current < 4 mA (lase and fan sleep)

Response time 1 s
Serial data output frequency 1 Hz (1 time/s)

Minimum resolution of particle 0.3 µm
Counting yield 70% @ 0.3 µm; 98% @ 0. n5 µm
Relative error Maximum of ± 15% and ±10 µg/m3

Temperature range Storage environment: −20–+60 ◦C; work environment: −10–+50 ◦C
Humidity range Storage environment: max. 90%; work environment: max. 70%

Air pressure 86 KPa–110 KPa
Product Size L ×W × H = 71 × 70 × 23 mm

Appropriate price €16/piece
Appropriate weight 50 g

Service life Up to 8000 h
Certification CE/FCC/RoHS

2.2. Sensors Co-Location and Its Measurement Site Description

Three SDS011 sensors were co-located at the official air quality monitoring station in Kirkeveien,
Oslo, Norway (59◦55′56” N; 10◦43′28” E), which is a road-side station (Figure 3). Road transport is the
dominant emission source of PM in the region.
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All three sensors were connected with a DHT22 digital temperature and humidity sensor, which
measured the relative humidity (RH) and temperature (T) inside the sensor casing. Sensor casing was
adopted from luftdaten.info platform [32].

A reference-equivalent instrument TEOM 1405 FDMS (filter dynamics measurement system,
which has been calibrated against the true reference Kleinfiltergeraet) is running at the Kirkeveien
measurement station. The TEOM 1405FDMS is a TEOM1405DF with an added FDMS unit. The TEOM
1405 DF is a dichotomous analyser. It measures both coarse and fine particles concurrently on two
microbalances. In principle, it is two TEOMs in parallel. The inlet airflow is split by a virtual impactor.
The FDMS unit compensates for any losses of volatile organic and inorganic compounds on the
particles. The inlet air is passed through a drier to avoid condensation. Mass in the dry air is left to
accumulate on the filter for 6 min and the mass concentration (MCbase) is measured. Then the dry
sample air is diverted through a filter and a chiller at 5 ◦C to remove all the particles and volatile
compounds from the air stream. The clean air is sampled on the filter for another 6 min and the mass
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concentration (MCref) is measured. The total mass concentration after 12 min is calculated as MC =
MCbase −MCref [33]. While the TEOM is not a true reference instrument, the uncertainties resulting
of the calibration against the Kleinfiltergeraet are so much smaller than the uncertainties of the SDS011
sensors that they are not likely to show any significant effect on our analysis.

2.3. Data Preparation

PM2.5 data measured by the instrumentation from the official air quality monitoring station was
used from 11 December 2017 to 31 March 2018. During this period, one sensor system (S1) using an
SD card for data storage recorded data every 30 second, while the other two sensor system (S2 and
S3) using the luftdaten.info approach recorded data every 2.5 minutes [32]. PM2.5 mass concentration
from each sensor and official monitoring station was provided at hourly time scale.

2.4. Data Analysis

The manufacturer limits the operating range of the SDS011 sensor in terms of RH to 0%–70%
(see Table 1). In many countries average RH lies consistently above this threshold for significant periods
of the year and as a result the sensors are in practice nonetheless being used somewhat inappropriately
by many projects and initiatives outside this range, without taking into account the official operating
range. While we are aware of the manufacturer specifications and the physical reasons behind this
restriction, we therefore evaluate the performance of the sensors over the entire range of RH, reflecting
ongoing practical use of such sensors under real-world conditions. This has the aim of quantifying the
uncertainty of the sensors when they are used outside of the official manufacturer-provided operating
range for RH. However, we also provide validation results restricted to the manufacturer-provided
RH operating range to show the performance of the sensor during appropriate use.

Five performance aspects were examined: operational data coverage of the sensor systems,
linearity of the response and accuracy, inter-sensor variability, dependence on air RH and T, and
potential accuracy improvement using data calibration with a machine-learning method.

The linearity of response between SDS011 sensors and the official air quality monitoring station
was assessed using linear regression, where the data from official air quality monitoring station was
the independent variable and the SDS011 sensor data the dependent variable. An R2 value close to 1
reflects a very good linearity of the sensor response in comparison with the official instrumentation.
A small R2 value indicates a poor linear relationship.

Accuracy is the degree of closeness between the sensors’ measured values and the reference value.
In this context, the long-term averaged data accuracy is here defined as follows [34,35]:

A % = 100 − |X− R|
R

× 100 (1)

where X is the average concentration measured by the sensors throughout testing period and R is the
average concentration measured by the official air quality monitoring station during the testing period.
The higher the positive value (percentage), the higher the sensor’s accuracy. For example, a value of
100% implies that sensors measure exactly what the reference instrument measures. In cases where
sensors overestimate the reference instrument by more than 100%, sensor accuracy is reported as a
negative value, using Equation (1) [34,35].

Inter-sensor variability is related to how close the measurements from three units of the same
sensor type are to each other. It is evaluated through a set of descriptive statistical parameters, such as
mean, range, and standard deviation. For a set of three sensors the inter-sensor variability is reported
as a percentage and is calculated as follows [34,35]:

Inter− sensor variability (%) =
(Mean− highest − Mean− lowest)

Mean− average
× 100 (2)
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where Mean-highest is the highest of the three sensors’ average concentrations, Mean-lowest is the lowest
of the three sensors’ average concentrations, and Mean-average is the average of the three sensors’
average concentrations.

The impact of RH and T on the sensor response was tested by analysing the relationship
between observed PM2.5 sensor error (measured as sensor observation data minus reference data)
and air temperature as well as RH for three sensors. A Loess fit [36] was used to better illustrate
the relationship.

Multiple-linear regression (MLR) [37] and a machine learning method (Random Forest) [38] were
used for illustrating potential sensor data accuracy improvement by correcting for the effects of RH
and T measured by DHT22 sensor, which was located right beside the SDS011 sensor within same
sensor casing.

All data analyses were carried out in the R environment for statistical computing and
visualization [39].

3. Results and Discussion

3.1. Sensors and Reference Instrument Operational Data Coverage

Figure 4 presents the results of PM2.5 measurements for the period of nearly four-month from
three SDS011 sensors and official reference monitoring station, respectively, at hourly time scale. Data
gaps (i.e., from 31 December 2017 to 3 March 2018) for the reference monitoring station were related
to official reference-equivalent instrument error (e.g., power outages and maintenance activities)
(Figure 4a). Data gaps for S2 and S3 (i.e., 3 March 2018 for S3, 30 March 2018 to 31 March 2018 for
both S2 and S3) were due to platform error (Figure 4c, d). In general, the operation of the tested three
SDS011 PM sensors was quite stable all near four-month study, and no obvious sensor errors have been
observed (Figure 4e). Episodes of elevated PM2.5 concentrations were observed during the new-year
eve within the time-period of 23:00 p.m., 31 December 2017 to 01:00 a.m., 1 January 2018. This is clearly
connected to particle emissions from the fireworks (Figure 4b–e).
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All measurements were conducted under varying meteorological conditions. Figure 5 illustrates
that the PM2.5 data from three sensors follow similar patterns near four-month period, thus indicating
that they respond similarly to varying environmental conditions. Qualitatively no significant drift
of the signal was observed for any of the three sensor systems over the study period. The PM2.5

concentrations at hourly time scale ranged from 0.4 µg/m3 to 127.5 µg/m3. The T range the sensor
systems were exposed to was −14.0–+11.4 ◦C, and the RH range was 15.4–+99.5%, respectively
(Figure 5). The operation of the three tested SDS011 sensors was stable throughout the almost
four-month study period and was no obvious errors in terms of data availability or failures of electronic
parts of the sensors were observed within these meteorological conditions.
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Figure 5. Evolution of sensor error (expressed as hourly sensor observation of PM2.5 minus the hourly
PM2.5 observation at the station) over time: Panels (a), (b) and (c) show the hourly sensor error (thin
line) and a Loess fit to the same data to highlight the overall temporal variability (thick line) for sensor
units S1 through S3, respectively. Panel (d) shows a direct inter-comparison of the Loess fits of all three
sensors units. Panels (e) and (f) show the relative humidity and temperature, respectively.

3.2. Linearity of the Response and Accuracy

Data from three SDS011 sensor systems was compared with data generated from the official
air quality monitoring station over a nearly four-month period (11 December 2017–31 March 2018)
(Figure 6, Table 2). The results show that the PM sensors provided a consistent measurement response
to measurements of the reference monitoring station. Three sensors demonstrated a substantial degree
of correlation against the official reference instrument from air quality monitoring station, with R2

values equal to 0.71 (S1), 0.68 (S2), and 0.55 (S3), respectively. This result is consistent with the similar
study implemented in Wroclaw, Poland by Badura et al. 2018 [30]. As can be seen in Table 2, the slope of
all three regression models is slightly below 1, indicating a general under-estimation of the PM2.5 mass
for all three units, particularly for higher pollution levels. Furthermore, the mean error is generally
below 2 µg/m3 and the RMSE (Root-Mean-Square Error) is less than 6 µg/m3 for all three units. Sensor
system S3 shows the overall worst performance of all three units.
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Table 2. Summary statistics for Figure 6 (SD: Standard Deviation; MAE: Mean Absolute Error; RMSE:
Root-Mean-Square Error; Mean reference value = 9.25 µg/m3).

Variable S1 S2 S3

Mean error −0.04 1.25 −1.87
SD 4.21 4.31 5.12

MAE 2.97 3.18 3.84
RMSE 4.21 4.49 5.45

Intercept 0.97 2.97 0.87
Slope 0.89 0.82 0.71

R2 0.71 0.68 0.55

The three sensors demonstrated satisfactory to comparatively high data accuracy of the long-term
mean concentration with values of 98.16%, 86.82% and 80.76%, respectively (Table 3). The long-term
averaged data accuracy for three sensors reached 88.58%.

Table 3. Long-term averaged data accuracy from sensors.

Sensor Model Sensor Mean (µg/m3) Official Reference Station Mean (µg/m3) Accuracy (%)

S1 9.08 9.25 98.16
S2 10.47 9.25 86.82
S3 7.47 9.25 80.76

3.3. Intersensor Variability

The inter-sensor variability over the almost four-month study period (11 December 2017–
31 March 2018) was analysed. We can see that three sensors provide quite similar results and do
not vary substantially (Figure 4, Table 4, Figure 7), with inter-model variability around 9.64%, which
calculated as following:

Intra−model variability (%) =
(Mean− highest −Mean− lowest)

Mean− average
× 100 =

10.47 − 7.47
9.01

× 100 = 9.64 %

Figure 7 visualizes inter-sensor variability for three SDS011 sensors as a scatterplot matrix with
inter-sensor correlations exhibiting R values higher than 0.97.
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Table 4. The statistical summary for inter-sensor variability for three SDS011 sensors.

Sensor
Model

Mean
(µg/m3)

Median
(µg/m3)

Min
(µg/m3)

Max
(µg/m3)

Range
(µg/m3)

SD
(µg/m3)

Variance
(µg/m3)2

S1 9.08 6.28 0.43 127.50 127.07 8.11 65.75
S2 10.47 7.93 1.73 131.03 129.30 7.69 59.11
S3 7.47 4.19 0.39 126.93 126.54 7.48 55.97
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shows the correlation between each sensor pair given as the Pearson R value.

3.4. Influence of Relative Humidity and Air Temperature

Sensors were exposed to T in the range of −14.0–+11.4 ◦C, and RH in the range of about
15.4–+99.5%. These parameters were measured by the DHT22 sensor located beside the SDS011
sensor, within same sensor casing. Therefore, measurements of T and RH are independent and not
affected by the data availability of sensors or electronic parts of sensors.

Most low-cost sensors for air quality, including such as Alphasense OPC-N2 [23,30], Plantower
PMS7003 [19,20,30], and Nova SDS011 [21,30], are to some extent influenced by the ambient
environmental conditions. Therefore, we explored the relationship between the observed PM2.5

error as a function of T and RH (Figure 8).
Figure 8 shows how the PM2.5 sensor error (calculated as the hourly mean sensor observation

minus the hourly mean observations from the TEOM instrument) varies with T and RH. While all of
the raw hourly data the overall patterns can be most easily observed by analysing the red line which
represent a Loess fit [40] to the raw data.

As for the dependence of the PM2.5 sensor error with air T, all three units show similar patterns.
For relatively low T under −5 ◦C the errors were either slightly negative on average (S1 and S3) or
close to zero (S2). For T around zero degrees, all three units show slightly positive errors between
0 µg/m3 and 5 µg/m3. For higher T the average PM2.5 of all three units decreases again. There is no
obvious physical reason for this pattern and we think that this peak at around zero degrees is rather
related to high RH values at these temperatures (see also Figure 9).
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Figure 8. Relationship between observed PM2.5 sensor error (measured as sensor observation minus
reference data) and air temperature (left Panels (a), (c), (e)) as well as relative humidity (right Panels
(b), (d) and (f)) for S1 (top row, Panels (a) and (b)), S2 (middle row, Panels (c) and (d)), and S3 (bottom
row, Panels (e) and (f)). Black dots indicate the actual hourly average observations, whereas the
coloured surfaces indicates the density of occurring observations, highlighting where the majority of
observations are located. The red line represents a Loess fit to the dataset with the grey area indicating
the 95% confidence intervals.
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There could be several reasons for the effect of RH on the sensor performance. The most obvious 
reason is that the low-cost sensor has no system for drying the particles before they enter the optical 
chamber, which means that aerosol particles as well as fog droplets are counted. This leads to a 
positive artefact compared to the TEOM. The second reason is particle growth by water vapour 
condensation. Depending on the chemical composition of the particles, water vapour can condense 
onto the particle and particles grow by condensation. This growth in particle diameter is reflected by 
the radius to the power of three in the particle mass and would also lead to a positive artefact 

Figure 9. Observed PM2.5 sensor error (measured as sensor observation minus reference data) as
a function of both relative humidity and air temperature. Small black dots represent the actual
observations. The coloured hexagons indicate the mean PM2.5 sensor error of all the observations
falling in each hexagon. The isolines represent the density of data points, highlighting where the
majority of observations are located.

In terms of the impact of RH on the PM2.5 sensor errors, we can initially observe that there is
a similar behaviour for all three units. The errors tend to be quite stable between −5 µg/m3 and
0 µg/m3 for RH levels less than approximately 80%. However, for RH values between 80% and 100%
we can see a substantial increase in PM2.5 error for all three units. At close to 100% RH, all three units
show positive PM2.5 errors of 10 µg/m3 to 15 µg/m3 on average. While the RH values that occurred
during our study period ranged from a low of 15% to nearly 100%, the highest frequency of RH values
in this study was found in two clusters of around 80% and 90%, respectively.

In order to better disentangle the effects of T and RH, Figure 9 shows the PM2.5 error of each
sensor as a function of both RH and air T at the same time. The most obvious pattern is the substantial
cluster of positive errors for high RH (>90%) at T above 0 ◦C. This pattern exists for all three units,
although there are some slight differences in the magnitude of the errors. We can further observe the
largest negative errors for low T (<−5 ◦C) and RH between approximately 40% and 80%. The errors
tend to decrease again slightly for even lower T (<−13 ◦C) but the range of RH is very small in this
case and the overall number of samples is very low, making it difficult to draw further conclusions.
The effect of RH and T on sensors’ data quality needs to be taken into consideration when using
low-cost particle sensors [41,42].

There could be several reasons for the effect of RH on the sensor performance. The most obvious
reason is that the low-cost sensor has no system for drying the particles before they enter the optical
chamber, which means that aerosol particles as well as fog droplets are counted. This leads to a positive
artefact compared to the TEOM. The second reason is particle growth by water vapour condensation.
Depending on the chemical composition of the particles, water vapour can condense onto the particle
and particles grow by condensation. This growth in particle diameter is reflected by the radius to the
power of three in the particle mass and would also lead to a positive artefact compared to the TEOM,
as the TEOM measures dry particles. The third reason is the change of optical properties of particles
measured if water condensation occurs onto the particle. A critical parameter when calculating the
particle density distribution is the refractive index of the particles. Water vapour condensation changes
the imaginary component in the Mie equation. This is the extinction coefficient of the material, defined
as the reduction of transmission of optical radiation caused by absorption and scattering of light,
leading to a wrong estimation of the size and therefore the mass reported by the instrument.

Based upon these observations of high RH negatively affecting the sensors’ response, we filtered
sensor data with RH less than 80%, and plotted it against officially measured concentrations of PM2.5

(Figure 10). The results indicate that the three sensors demonstrated an increased degree of correlation
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against the official reference instrument from air quality monitoring station (Figure 6), with R2 values
increased from 0.71 to 0.80 (S1), 0.68 to 0.79 (S2), and 0.55 to 0.71 (S3), respectively. However, the slope
of the regression lines is slightly lower than before for all three units (Figure 6).
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Figure 10. Linear regression for 1-hour average PM2.5 values for environmental condition with RH <
80% from the three SDS011 sensors versus the PM2.5 data from the air quality monitoring station for
the entire study period.

Furthermore, we filtered sensor data with RH less than 70% which aligned with the manufacturer-
provided RH operating range (max. RH 70%), and plotted it against officially measured concentrations
of PM2.5 (Figure 11). The results showed that three sensors demonstrated a decreased degree of
correlation against the official reference instrument from air quality monitoring station, with R2 values
decreased from 0.71 to 0.65 (S1), 0.68 to 0.57 (S2), and 0.55 to 0.47 (S3), respectively. The physical reason
for these decreased correlation is not entirely clear, but it may be related to the fact that nearly 60%
of the data were filtered out. Since this filtering also includes most observations at concentration of
greater than 20 µg/m3, the available range of concentrations is decreased significantly, which could be
responsible for a decrease in correlation.
Atmosphere 20189, 10, 41 14 of 19 

 

 
Figure 11. Linear regression for 1-hour average PM2.5 values for environmental condition with RH < 
70% from the three SDS011 sensors versus the PM2.5 data from the air quality monitoring station for 
the entire study period. 

3.5. Correction for Temperature and Humidity Effects 

It is to some extent possible to statistically correct for the effects of RH and T that were shown in 
the previous section, although such corrections tend to be specific to the location at which the co-
location is being carried out and cannot easily be transferred to other locations with different 
conditions. We demonstrate an example for such a correction procedure here using simple 
multilinear regression (MLR) [37] and a random forest (RF) model [38].  

Figure 12 shows the improvement in sensor accuracy that can be achieved when RH and T are 
accounted for as part of the calibration. The left column of Figure 12 shows the original out-of-sensor 
data for all three sensors, whereas the middle column and the right column show the data after 
calibration using a MLR and a RF model, respectively. It can be seen that already a simple linear 
regression can improve the accuracy with respect to reference data somewhat, although the increases 
in R2 value are relatively modest. However, using the same dataset with a RF model increases the 
correlation significantly, explaining roughly 10% more of the variability for sensors S1 and S2 and 
even 20% more of the variability in the case of sensor S3, with R2 value increased from 0.71 to 0.80, 
from 0.68 to 0.79, from 0.55 to 0.76, respectively (Figures 12). 

It should be noted that this correction for the effect of air T and RH is only valid for the particular 
location at which the model was trained. As such, the model is dependent on both the specific 
characteristics of the environmental parameters at this site but also of the characteristics of the PM 
that occurs at this site (e.g., particle type, size, etc.). Applying such a correction model at a different 
location that has either different environmental conditions or different particle characteristics is likely 
to result in inferior performance. 

Figure 13 shows scatter plots of the relative expanded uncertainty as a function of the PM2.5 

concentration measured at the air quality monitoring station, following the methodology described 
by Spinelle et al. (2015) [43]. Based on these plots, two out of the three units (S1 and S2) reach the data 
quality objective (DQO) of 50% as defined in the European Air Quality Directive [8]. Both sensors 
reach relative expanded uncertainties [44,45] of below 50% approximately at concentrations of 20 
μg/m3. S3, however, does not meet the DQO. 

Figure 11. Linear regression for 1-hour average PM2.5 values for environmental condition with RH <
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3.5. Correction for Temperature and Humidity Effects

It is to some extent possible to statistically correct for the effects of RH and T that were shown
in the previous section, although such corrections tend to be specific to the location at which the
co-location is being carried out and cannot easily be transferred to other locations with different
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conditions. We demonstrate an example for such a correction procedure here using simple multilinear
regression (MLR) [37] and a random forest (RF) model [38].

Figure 12 shows the improvement in sensor accuracy that can be achieved when RH and T are
accounted for as part of the calibration. The left column of Figure 12 shows the original out-of-sensor
data for all three sensors, whereas the middle column and the right column show the data after
calibration using a MLR and a RF model, respectively. It can be seen that already a simple linear
regression can improve the accuracy with respect to reference data somewhat, although the increases
in R2 value are relatively modest. However, using the same dataset with a RF model increases the
correlation significantly, explaining roughly 10% more of the variability for sensors S1 and S2 and even
20% more of the variability in the case of sensor S3, with R2 value increased from 0.71 to 0.80, from
0.68 to 0.79, from 0.55 to 0.76, respectively (Figure 12).Atmosphere 20189, 10, 41 15 of 19 
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Figure 12. Comparison of scatterplots between hourly reference PM2.5 observations and hourly sensor
PM2.5 observations for the test dataset of the original out-of-sensor data (left column), after correction for
relative humidity and temperature effects using multiple linear regression (middle column), and after
correction for relative humidity and temperature effects using a random forest model (right column).
The three rows represent the data for S1, S2, and S3, respectively. The individual data points are
coloured by the value of relative humidity.

It should be noted that this correction for the effect of air T and RH is only valid for the particular
location at which the model was trained. As such, the model is dependent on both the specific
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characteristics of the environmental parameters at this site but also of the characteristics of the PM
that occurs at this site (e.g., particle type, size, etc.). Applying such a correction model at a different
location that has either different environmental conditions or different particle characteristics is likely
to result in inferior performance.

Figure 13 shows scatter plots of the relative expanded uncertainty as a function of the PM2.5

concentration measured at the air quality monitoring station, following the methodology described by
Spinelle et al. (2015) [43]. Based on these plots, two out of the three units (S1 and S2) reach the data
quality objective (DQO) of 50% as defined in the European Air Quality Directive [8]. Both sensors reach
relative expanded uncertainties [44,45] of below 50% approximately at concentrations of 20 µg/m3.
S3, however, does not meet the DQO.
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at the station. The dots indicate the actual hourly average data points, whereas the coloured lines
represent the fit of a generalized additive model (GAM) to the data. The dashed black line indicates
the data quality objective (DQO) for indicative measurements as described in the European Air Quality
Directive [10].

4. Conclusions

The conducted comparison of three SDS011 sensors with data from an official reference air quality
monitoring station demonstrated that the SDS011 sensor generally follow the PM2.5 variability. Linear
regression indicated a good correlation between the two datasets with R2 values equal to 0.71 (S1),
0.68 (S2) and 0.55 (S3), respectively, over almost four-month period in challenging, Norwegian winter
conditions with frequently high relative humidity. The inter-sensor variability analysis showed
that the three sensors provided quite similar results and did not vary substantially from each other,
with inter-model variability around 9.64%, and inter-sensor correlations R values higher than 0.97.
RH and, to a very small extent, T affect the SDS011 performance. Particularly high RH values (over
80%) cause significant overestimates of the true PM2.5 mass. While the sensors provide generally
reasonable estimates of PM2.5 mass out-of-the-box, our results also indicate that a field calibration
under representative environmental conditions is highly beneficial for improving the accuracy of the
measurements. This study was limited to a relatively low number of months with limited variation in
environmental conditions. To cover a wider range of meteorological conditions and to test the long-term
stability of the sensors, we are working on a follow-up study that will evaluate the performance of
the sensors using a yearlong time series at least and sensors located in a wide variety of differing
environmental conditions and pollution regimes.

Despite the reasonably good performance of these sensors, it should be noted that the potential
misuse of these sensors is nonetheless high, especially when they are used outside of a research
environment for citizen science applications and personal air quality monitoring, where the users
might not have the required knowledge to adequately judge the uncertainty of the sensors. In such
cases, the deployment of these sensors will almost certainly not be confined to environments with
RH < 80%, and there is no specific notification to the users that the readings are unreliable when the
RH is > 80%, although the manufacturer provides a recommended RH operating range. In addition,
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the relative uncertainties can be quite high for hourly values, and users should be aware of this
limitation and take caution in interpreting such measurements. Nevertheless, considering their very
low cost and the performance assessment results overall, we conclude that the SDS011 has significant
potential for implementing a dense monitoring network when the environmental conditions exhibit
on average relatively low relative humidity (RH < 80%). When used under environmental conditions
that often exhibit high relative humidity, appropriate automated filtering or correction routines need
to be established to remove problematic observations from the datasets or at minimum provide the
users with clear indications of the estimated observations uncertainty. If these conditions are met,
we conclude that networks of SDS011 sensors could in future, for example, complement the regulatory
outdoor air quality monitoring networks and improve the spatial and temporal resolution of PM2.5

data, opening up various applications for the research community, regulatory agencies and raising
public awareness.
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