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Abstract: Bias correction methods are routinely used to correct climate model outputs for hydrological
and agricultural impact studies. Even though superior bias correction methods can correct the
distribution of daily precipitation amounts, as well as the wet-day frequency, they usually fail
to correct the temporal sequence or structure of precipitation occurrence. To solve this problem,
we presented a hybrid bias correction method for simulating the temporal sequence of daily
precipitation occurrence. We did this by combining a first-order two-state Markov chain with a
quantile-mapping (QM) based bias correction method. Specifically, a QM-based method was used
to correct the distributional attributes of daily precipitation amounts and the wet-day frequency
simulated by climate models. Then, the sequence of precipitation occurrence was simulated using
the first-order two-state Markov chain with its parameters adjusted based on linear relationships
between QM-corrected mean monthly precipitation and the transition probabilities of precipitation
occurrence. The proposed Markov chain-based bias correction (MCBC) method was compared with
the QM-based method with respect to reproducing the temporal structure of precipitation occurrence
over 10 meteorological stations across China. The results showed that the QM-based method was
unable to correct the temporal sequence, with the cumulative frequency of wet- and dry-spell length
being considerably underestimated for most stations. The MCBC method can could reproduce the
temporal sequence of precipitation occurrence, with the generated cumulative frequency of wet-
and dry-spell lengths fitting that of the observation well. The proposed method also performed
reasonably well with respect to reproducing the mean, standard deviation, and the longest length of
observed wet- and dry-spells. Overall, the MCBC method can simulate the temporal sequence of
precipitation occurrence, along with correcting the distributional attributes of precipitation amounts.
This method can be used with crop and hydrological models in climate change impact studies at the
field and small watershed scales.

Keywords: bias correction; precipitation occurrence; Markov chain; climate change

1. Introduction

As an essential part of the third working group report from the Intergovernmental Panel on
Climate Change’s (IPCC, 2018) sixth assessment report, food security under climate change conditions
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plays a vital role in the survival and development of human beings. Thus, it is vital to accurately
assess the climate change on site-specific or small catchment scales for adopting adaptation strategies
to mitigate the negative effect of climate change on agricultural production. Global climate models
(GCMs) are primary tools for studying the impacts of climate change on agriculture and hydrology, as
well as other fields [1–4]. However, the resolution of GCM outputs is too coarse to be used as direct
inputs into agricultural and hydrological models for site-specific and watershed climate change impact
studies [5–9]. In addition to the spatial mismatch, the biases deriving from the systematic error, such as
imperfect model specification, also hinder the direct use of GCM simulations for impact studies [10–13].
Dynamical downscaling, which involves nesting the regional climate model (RCM) with the initial
and time-dependent lateral boundary condition of GCMs by dynamical formulations [5,9,10,14–16],
has been developed to solve these problems. Although RCMs usually perform better than GCMs in
simulating climate at the regional scale, the resolution is still too coarse and the simulation is still
biased to be used for local and site-specific impact studies [10,17–19].

Bias correction methods are commonly used to post-process RCM and GCM simulations before
driving the agricultural and hydrological models for impact studies. When observations have a similar
spatial resolution (gridded data) to climate model outputs, bias correction methods correct the bias of
the climate model outputs. While the spatial resolution of climate model outputs is coarser than that of
the observations, the bias correction method serves as both downscaling and bias correction. A large
number of bias correction methods have been developed during the last two decades. They range
from simple mean-based methods to sophisticated distribution-based quantile mapping methods, and
from single-site approaches to multisite and multivariate approaches [5,6,20–22]. The mean-based
method corrects the multiple-year mean of a climate model simulation based on the difference between
the mean of the climate model simulation and that of the observation in the reference period. The
distribution-based method corrects the distribution of climate model simulations. Given the ease of
application and the reasonable performance, bias correction becomes the standard process when using
climate model outputs for impact studies [19,23–26].

Bias correction methods usually perform well in correcting the distributional attributes of climate
model outputs (e.g., precipitation and temperature). In particular, the distribution-based methods
usually perform better than the mean-based methods. For example, Teutschbein and Seibert [22]
compared five bias correction methods in correcting RCM-simulated temperature and precipitation in
terms of evaluating the hydrological climate change impacts over five catchments in Sweden. The
results showed that all bias correction methods could reduce the bias of RCM simulations and the
distribution-based methods generally performed better than the mean-based methods.

In addition to correcting the distributional attributes of climate variables, some superior bias
correction methods also correct the wet-day frequency of precipitation [10,27]. For example, Themeßl
et al. [28] proposed an empirical distribution mapping method, which corrects the wet-day frequency
along with the correction of the empirical cumulative distribution function of precipitation amounts.
Bias correction methods usually correct the wet-day frequency by finding a precipitation threshold to
ensure that the wet-day frequency of corrected data is equal to that of the observation in the reference
period [29]. The same precipitation threshold is used for the future period. However, all these bias
correction methods do not consider the correction of the temporal sequence of precipitation occurrence
(i.e., wet- and dry-spells) [6,21,30–33], which may result in biased hydrological simulations [21].

The temporal sequence of precipitation occurrence is essential for hydrological simulations over
small watersheds and crop production modeling at the field scale. For example, the unordered temporal
sequence of precipitation occurrence may result in biased runoff and soil water dynamics simulated
by a hydrological model, even though the total monthly precipitation amount is the same [11]. The
temporal sequence of precipitation occurrence can be simulated using stochastic models, such as a
Markov chain [19,34–41]. For example, Apipattanavis et al. [42] used a Markov chain-based model to
simulate the precipitation occurrence over Pergamino in Argentina, and they found that the Markov
chain was capable of capturing the statistics of all the spells. Zhang [19] validated a Markov chain-based
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model in reproducing the precipitation series at five stations in Oklahoma, where they found that
the sequence of the observed precipitation was well reproduced by this method for all stations. The
Markov chain-based model is usually incorporated into weather generators to simulate the temporal
sequence of precipitation occurrence. When using the weather generator as a downscaling tool, its
parameters need to be adjusted based on climate change information between future and historical
periods. However, the adjustment of weather generator parameters is not an easy task, especially for
downscaling precipitation occurrence.

This study proposes a hybrid bias correction method by combining a commonly used bias
correction method (i.e., the daily bias correction method, DBC) with the first-order two-state Markov
chain. The new method takes advantage of the traditional bias correction method in correcting the
distributional attributes of precipitation amounts and wet-day frequency, and it takes advantage of
the Markov chain in simulating the sequence of precipitation occurrence. The performance of the
proposed Markov-chain based bias correction method (MCBC) is evaluated using comparisons to the
DBC over 10 stations across China.

2. Study Area and Data Sources

2.1. Study Area

The performance of the proposed bias correction was demonstrated using ten meteorological
stations distributed across different climatic zones in China (Figure 1). The mean annual precipitation
at these stations ranged from 185 mm to 1565 mm, with the wet day frequency varying from 15% to
44%. The detailed information, including longitude, latitude, and elevation for the ten stations, can be
found in Table 1.
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Figure 1. The location of the ten stations in China.

Table 1. Name, location, mean annual precipitation, and wet day frequency of the ten stations.

Station Name Latitude
(◦N)

Longitude
(◦E)

Elevation
(m)

Mean Annual
Precipitation (mm)

Wet Day
Frequency

1 Wuqia 39.72 75.25 2176 185 0.18
2 Bayinbuluke 43.03 84.15 2458 277 0.32
3 Alashanzuoqi 38.83 105.67 1561 209 0.15
4 Langzhong 31.58 105.97 383 1028 0.37
5 Fengshan 24.55 107.03 487 1526 0.44
6 Anyang 36.05 114.40 63 562 0.20
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Table 1. Cont.

Station Name Latitude
(◦N)

Longitude
(◦E)

Elevation
(m)

Mean Annual
Precipitation (mm)

Wet Day
Frequency

7 Xianyou 25.37 118.70 800 1565 0.39
8 Dalian 38.90 121.63 92 623 0.21
9 Sunwu 49.43 127.35 210 540 0.32

10 Xinerbahuyouqi 48.67 116.82 554 241 0.18

2.2. Data Sources

This study used both the observed and GCM-simulated precipitation. The observed precipitation
series of 10 meteorological stations were obtained from the China Meteorological Data Sharing
Service System (http://data.cma.cn/data/index/0b9164954813c573.html), covering the 1961–2014 period.
Precipitation simulated by the 10 GCMs was extracted from the Coupled Model Inter-comparison
Project Phase 5 (CMIP5) database. Table 2 shows the detailed information of these GCMs. The grid
box that overlaps the observed gauge was selected to represent the simulated precipitation for this
station. All simulated precipitation time series cover the 1961–2005 period.

Table 2. Name, source and resolution of the ten global climate models.

No. Model Name Modelling Centre Source Spatial Resolution
(Longitude × Latitude)

1 ACCESS-1.0 CRIRO-BOM

Commonwealth Scientific and
Industrial Research Organization

(CSIRO) and Bureau of
Meteorology (BOM), Australia

1.875◦ × 1.25◦

2 CESM1-CAM5 NSF-DOE-NCAR
National Science Foundation,

Department of Energy National
Center for Atmospheric Research

1.25◦ × 0.94◦

3 CMCC-CM CMCC Centro Euro-Mediterraneo per I
Cambiamenti Climatici 0.75◦ × 0.75◦

4 CSIRO-Mk3-6.0 CSIRO-QCCCE

Commonwealth Scientific and
Industrial Research Organization
in collaboration with Queensland

Climate Change Centre of
Excellence

1.90◦ × 1.90◦

5 FGOALS-G2 LASG-CESS

LASG, Institute of Atmospheric
Physics, Chinese Academy of
Sciences and CESS, Tsinghua

University

2.81◦ × 3.00◦

6 GFDL-ESM2G
NOAA GFDL

NOAA Geophysical Fluid
Dynamics Laboratory 2.50◦ × 2.0◦

7 GFDL-ESM2M

8 MIROC5 MIPOC

Atmosphere and Ocean Research
Institute (The University of

Tokyo), National Institute for
Environmental Studies, and Japan
Agency for Marine-Earth Science

and Technology

1.40◦ × 1.40◦

9 MRI-CGCM3
MRI Meteorological Research Institute 1.10◦ × 1.10◦

10 MRI-ESM1 1.13◦ × 1.13◦

3. Methodology

The proposed bias correction method is a two-stage hybrid method combining the
quantile-mapping (QM) method with the first-order two-state Markov chain. The first stage involves
correcting the distribution of precipitation amounts on wet days and the wet-day frequency of the
projected GCM-simulated precipitation using the QM-based method by Chen et al. [5]. This bias

http://data.cma.cn/data/index/0b9164954813c573.html
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correction method is conceptually simple and widely used [10,21,29,43,44]. The second stage involves
generating the temporal sequence of precipitation occurrence using the first-order two-state Markov
chain based on the first stage corrected monthly precipitation amounts. More details of this method
are described as follows.

3.1. Quantile Mapping Bias Correction Method

The QM method used in this study is the DBC method [10], which is a combination of the daily
translation (DT) [45] and local intensity scaling (LOCI) methods [27]. The DBC method inherits the
merit of the LOCI method in correcting the wet-day frequency of precipitation occurrence and that of
the DT method in correcting the frequency distribution of precipitation amounts. Specifically, for each
calendar month, the LOCI method first determines a threshold for the GCM-simulated precipitation
time series so that the wet-day frequency of simulated precipitation series for the calibration period
is equal to that of the observed precipitation. Then, different scaling factors, which are the ratios
in percentiles between the observed and climate model-simulated precipitation in the calibration
period, are applied to the corresponding percentiles in the validation period. One hundred percentiles
are used to represent the frequency distribution of the precipitation amounts. All bias correction
methods assume that the biases of climate model simulations are stationary over time, which means
that the biases of climate model simulations at the calibration period do not change at the validation
period. Even though the distribution of precipitation at the validation period may differ from that at
the calibration period, the same biases can be removed. The formulation of DBC for correcting the
distribution of precipitation is presented as follow:

Pcor,cali,m,p =
Pobs,m,p

Pcali,m,p
∗ Pcali,m,p, (1a)

Pcor,vali,m,p =
Pobs,m,p

Pcali,m,p
∗ Pvali,m,p, (1b)

The subscripts obs, cali, and vali denote the observation, calibration period, and validation periods;
and m and P denote the months and percentile, respectively, while cor denotes corrected data.

3.2. The First-Order Two-State Markov Chain

The first-order two-state Markov chain is widely used to simulate the sequence of precipitation,
and its consistent performance has been demonstrated in many studies [6,34,46,47]. When using this
method, the probability of precipitation on a given day is determined based on the precipitation status
(dry or wet) of a previous day. The transition probability P11 is the probability of a wet day following a
wet day, and P01 is the probability of a wet day following a dry day, as shown in the following formulas:

P01 = Pr {precipitation on day t | no precipitation on day t − 1} (2a)

P11 = Pr {precipitation on day t | precipitation on day t − 1} (2b)

Given the status of a previous day, for example, a dry day, if a random number derived from a
standard uniform distribution is less than P01, a wet day is generated; and otherwise, a dry day is
generated. A similar process can also be used with P11.

3.3. Hybrid Bias Correction Method

When using the first-order, two-state Markov chain to simulate the temporal sequence of
precipitation occurrence, P01 and P11 must be adjusted according to the climate change signal
simulated by the climate models. Previous studies showed that there are strong linear relationships
between the mean monthly precipitation and the two conditional transition probabilities [16,19,30].
The linear relationship can be fitted using the observed precipitation time series. In other words,



Atmosphere 2020, 11, 109 6 of 17

if we know the mean monthly precipitation of the validation period, two conditional transition
probabilities for this period can be obtained based on the linear relationship established in the
calibration period. As mentioned earlier, the QM method can provide an accurate simulation of the
monthly precipitation amounts.

A linear relationship between the transition probabilities of precipitation occurrence and the mean
monthly precipitation is first established using the four-point regression method of Zhang et al. [16].
The method is based on the observed precipitation time series, as in the following three steps.

(a) Taking January as an example, the total precipitation of this month over the whole period is
sorted in ascending order and then separated into dry and wet groups. Then the mean monthly
precipitation is calculated from each group. The daily series corresponded to the months in each
group are gathered and used to calculate P01 and P11. With this step, a set of P01, P11, and the
mean monthly precipitation is calculated for each group.

(b) The total precipitation of this month each year is also divided into two, even periods in
chronological order. A set of parameters is also calculated for each period.

(c) A linear equation is established for P01 (and P11) and the mean monthly precipitation based on
the four samples calculated from step-(a) and step-(b).

The use of two extreme cases (the sorted dry and wet conditions) of precipitation occurrence versus
the amounts is done to ensure that the fitted relationship can hold for the changing climate. In other
words, including the two extreme cases in establishing the linear relationship implicitly incorporates
non-stationary climate conditions when estimating the transition probabilities of precipitation
occurrence for any climatic conditions within the entire range. With the bias-corrected mean monthly
precipitation for the validation period, the transition probabilities P01 and P11 can be regressed using
the established linear relationships for each calendar month. The first-order, two-state Markov chain is
used to generate the sequence of precipitation occurrence. For a predicted wet day, the precipitation
amount is generated by realigning the DBC-corrected precipitation amounts. Specifically, a set of
random numbers is first generated for wet days simulated by the first-order, two-state Markov chain.
The random numbers are then replaced by DBC-corrected precipitation amounts, according to the
numerical value of the random number. In other words, the larger precipitation amount is given to
the larger random number, and vice versa. If the first-order, two-state Markov chain is perfect for
simulating the sequence of precipitation occurrence, then the simulated wet- and dry-day frequencies
should be equal to the frequencies generated by the DBC. However, this may not be the case. Scaling the
realigned daily precipitation for each month may be necessary to correct or offset the generation error of
the first-order, two-state Markov chain. This is done by multiplying the ratio of the DBC-corrected mean
monthly precipitation and MCBC-corrected mean monthly precipitation by the daily precipitation
series of the MCBC-sampled for each specific month.

3.4. Analysis Procedure And Statistics

The performance of the proposed hybrid method was validated based on the observed and
GCM-simulated precipitation time series from 1961 to 2005. Before evaluating the MCBC method, its
baseline model is demonstrated using 10 stations in China, i.e., the performance of the DBC method
and the linear relationships between the mean monthly precipitation and conditional probabilities
of precipitation occurrence. A split-sample cross-validation method was conducted to evaluate
the performance of the DBC method [8]. Specifically, the time series of the observation and GCM
simulations for the 1961–2005 period is divided into five equal sub-periods (1961–1969, 1970–1978,
1979–1987, 1988–1996, and 1997–2005). Four sub-periods are used to calibrate the DBC method and the
remaining sub-period is used for validation. The above processes are conducted five times to get five
validation sub-periods. The five validation sub-periods are then combined to get a 45-year validation
period. The data length used in the calibration of the linear relationships between the mean monthly
precipitation and the conditional probabilities of precipitation occurrence was more than 90 years in
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prior studies by Zhang et al. [16,19]. Owing to the limited data length, we conducted this process with
the total observations from 1961–2014.

The Markov chain-based bias correction (MCBC) method was applied to correct the daily
precipitation series simulated by the climate models for each station. The nonparametric two-sample
Kolmogorov–Smirnov (K-S) test was used to test whether the bias-corrected and observed precipitations
were from the same distribution. The same method has been used in many other studies [16,19,30,35].
The statistical test D was calculated from the length of the two tested samples and the null hypothesis
was that the two samples were from the same distribution. When the maximum deviation between the
cumulative frequency distribution of two samples was larger than D at the 0.05 significance level, the
null hypothesis was rejected, and vice versa.

4. Results

4.1. Validation of the Daily Bias Correction

The performance of the DBC method for bias correcting GCM precipitation has been verified in
many studies [21,29]. Since the premise of the MCBC method is to obtain the well-corrected mean
monthly precipitation used to interpolate the conditional transition probabilities, only the performance
of the DBC method in correcting the mean monthly precipitation is demonstrated in Figure 2.Atmosphere 2018, 9, x FOR PEER REVIEW  8 of 17 

 

 

Figure 2. Relative errors (REs) of the mean monthly precipitation for all 12 calendar months at all ten 

stations. The red boxplots present the ensemble of the raw GCM simulations, and the yellow boxplots 

present the DBC corrected results. 

4.2. Validation of the Linear Relationships 

The data points of P01, P11, and mean monthly precipitation, which were calculated from the dry 

group, wet group, and two even groups of the calibration period, are plotted in Figures 3 and 4 for 

January and July, respectively for the ten stations. The linear curves that were regressed using the 

four data points were used to interpolate the conditional transition probabilities in the validation 

period. For comparison, P01, P11, and the mean monthly precipitation were also calculated for the 

validation period and plotted in Figures 3 and 4 as solid points. The names of the legend ‘cali’ and 

‘vali’ represent calibration and validation, respectively.  

Overall, the regression lines fitted the data points very well for all months and stations, 

indicating a strong linear relationship between the mean monthly precipitation and conditional 

transition probabilities. In particular, the data points of P01 from both the calibration and validation 

periods were fairly close to the regression lines. The correlation coefficient between mean monthly 

precipitation and transition probabilities was greater than 0.9 for 91 out of 120 cases (12 months × 10 

Figure 2. Relative errors (REs) of the mean monthly precipitation for all 12 calendar months at all ten
stations. The red boxplots present the ensemble of the raw GCM simulations, and the yellow boxplots
present the DBC corrected results.



Atmosphere 2020, 11, 109 8 of 17

The raw GCMs considerably overestimated the mean monthly precipitation, with the medians of
the relative errors (REs) ranging between 50% and 300% for most stations and months. In terms of the
RE, the simulated mean monthly precipitations in July, August, and September are slightly better than
in other months for most stations. The result was because most stations had higher precipitation in
these three months than in other months. The biases of the mean monthly precipitation simulated
by the GCMs were largely reduced by the DBC method. For example, the medians of REs across all
GCMs ranged between 0.01% and 14.7%, and these errors were due to cross-validation. Although the
performance of the DBC method partly depends on a specific month and location, it generally corrects
the mean monthly precipitation for all GCMs accurately.

4.2. Validation of the Linear Relationships

The data points of P01, P11, and mean monthly precipitation, which were calculated from the dry
group, wet group, and two even groups of the calibration period, are plotted in Figures 3 and 4 for
January and July, respectively for the ten stations. The linear curves that were regressed using the four
data points were used to interpolate the conditional transition probabilities in the validation period.
For comparison, P01, P11, and the mean monthly precipitation were also calculated for the validation
period and plotted in Figures 3 and 4 as solid points. The names of the legend ‘cali’ and ‘vali’ represent
calibration and validation, respectively.
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Figure 4. Relationships between the conditional precipitation occurrence probabilities of
wet-following-wet (P11) and wet-following-dry (P01) and mean monthly precipitation amounts in July
for all stations.

Overall, the regression lines fitted the data points very well for all months and stations, indicating
a strong linear relationship between the mean monthly precipitation and conditional transition
probabilities. In particular, the data points of P01 from both the calibration and validation periods were
fairly close to the regression lines. The correlation coefficient between mean monthly precipitation and
transition probabilities was greater than 0.9 for 91 out of 120 cases (12 months × 10 stations) for P01,
and for 75 out of 120 cases for P11. The reason why there was a stronger relationship for P01 than P11

may be because the occurrence of wet-following-wet events is lesser than that of wet-following-dry
events, which contributed to greater variability and less reliability when estimating P11. As Zhang
et al. (2012) presented in their study that a longer period should be used to obtain large samples of
wet-following-wet events to improve the accuracy of the estimated P11.

4.3. Performance of the MCBC Method

The performance of the MCBC method was first evaluated with respect to reproducing the
cumulative frequencies of the observed wet- and dry-spell lengths. Figures 5 and 6 present the
cumulative frequencies of the wet- and dry-spell lengths generated by the DBC and MCBC methods
(for one series), respectively. The cumulative frequencies of the observed wet- and dry-spell lengths were
also used for comparison. Since similar results were obtained for all stations, only four stations from
different climate zones were presented for illustrations. Generally, the DBC method underestimated the
cumulative frequency of the wet- and dry-spells, except for the wet-spell of the first station (Figure 5).
A significant uncertainty related to the choice of a GCM simulation was observed. However, the
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MCBC method largely reduced the biases of the cumulative frequency for the wet and dry spells. The
uncertainty related to the GCMs was considerably corrected.

The K-S test showed that about 70% of the stations and GCM combinations (n = 10 stations ×
10 GCMs) could not reject the null hypothesis for the cumulative frequencies of the wet- and dry-spells
at the p = 0.05 significance level when using the proposed MCBC method. In other words, about 70% of
cases were observed, and the bias-corrected cumulative frequencies may be from the same distribution.
However, this value was only 20% when using the DBC method.Atmosphere 2018, 9, x FOR PEER REVIEW  11 of 17 
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Consecutive wet days are an essential factor for high-impact flooding [33] and consecutive dry
days for an extended period are one of the causes of droughts [48]. Accurately predicting the long wet-
and dry-spell is vital for dealing with extreme hydrological events. Figure 7 shows the performances
of the DBC (red bars) and MCBC (blue bars) methods in simulating the frequency of the spell lengths
with more than or equal to 3, 5, and 7 consecutive dry days and wet days. The ratio of bias-corrected
frequency to observed frequency was used as a metric to evaluate the performance of two bias correction
methods. The closer the ratio was to 1, the more accurate the simulation. The results showed that the
DBC method overestimated the frequencies of dry and wet spells for most stations. The result was
expected, as the temporal structure was not specifically corrected by the DBC method. The MCBC
method simulated the frequencies of dry and wet spells much better than the DBC method, indicated
by the fact that the blue bars were shorter and closer to the baseline. Specifically, for the DBC method,
the mean ratios across all stations with consecutive wet days being more than or equal to 3 days, 5 days,
and 7 days ranged between 0.875 and 1.438, 0.938 and 2.471, 1.086 and 8.796, respectively. In contrast,
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the mean ratios for the MCBC method ranged between 0.909 and 1.074, 0.853 and 1.354, 0.772 and
1.434. Similar results were also observed for consecutive dry days.

Figure 8 shows the RE of the mean (Figure 8a,b), standard deviation (Figure 8c,d), and the longest
length (Figure 8e,f) of wet- and dry-spells generated by the DBC and MCBC methods. The mean
spell length simulated by the DBC method was considerably biased, with the median of REs ranging
between −0.45% and 21.7% for the wet spell and between 8.62% and 27.44% for the dry spell. The
MCBC method largely reduced the biases of the simulated mean spell length, with the median of
REs ranging from −4.36% to −1.24% for the wet spell and ranging from −4.16% to −0.64% for the dry
spell. More importantly, the uncertainty related to climate models was largely reduced. Similar results
were also observed for the standard deviation of spell lengths (Figure 8c,d). The MCBC method also
performed slightly better than the DBC method with respect to reproducing the longest wet and dry
spell lengths, with the median of RE of 10-simulation medians ranging from −33.3% to 11.1% for the
wet spell and ranging from −50.8% to −2.2% for the dry spell. For the DBC method, the median of RE
ranged from −23.3% to 61.1% for the wet spell and from −31.0% to 27.2% for the dry spell. Although
the benefits of the MCBC method are limited, the uncertainty related to climate model is reduced, with
the interquartile ranges varying from 3.3% to 17.6% for the wet spell and ranging from 3.2% to 13.6%
for the dry spell. In contrast, the interquartile ranges for the RE of the longest spell length simulated by
the DBC method ranged from 26.6% to 77.8% for the wet spell and ranged from 20% to 36.6% for the
dry spell.
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Figure 7. The bias on the frequency of spell lengths with (a) ≥3, (b) ≥5, and (c) ≥consecutive wet days.
The bias on the frequency of spell lengths with (d) ≥3, (e) ≥5, and (f) ≥7 consecutive dry days. The bias
is represented as the ratio of the simulated series to observations. The range of the color represents the
ensemble of 10 simulations. M1-M10 represents 10 GCMs corresponding to the order in Table 2.
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Figure 8. RE statistics of the wet- and dry spell lengths generated by the two bias correction methods for
all ten stations. (a) Mean wet spell, (b) mean dry spell, (c) standard deviation of wet spell, (d) standard
deviation of dry spell, (e) longest wet spell, and (f) longest dry spell.

5. Discussions and Conclusions

Accurately predicting the temporal sequence of precipitation occurrence at field or site-specific
scales is critical in assessing climate change impacts on food security [42]. Daily soil water dynamics
that are influenced mainly by daily precipitation sequences significantly affect crop growth and
production, especially at the critical reproductive stages. More importantly, prolonged drought or wet
spells can be detrimental to crop production. Thus, adequate simulation of wet- and dry-spell lengths is
essential for adequately simulating the impacts of climate change on crop production and food security.
Although bias correction methods, especially QM-based methods, can correct the precipitation amount
simulated by climate models, the temporal sequence of precipitation occurrence is usually not explicitly
considered. This study proposed a hybrid bias correction method to address the above problem. The
MCBC method can be considered as a hybrid method combining QM bias correction and the stochastic
Markov chain-based model. It not only has the advantage of the commonly used bias correction
method in correcting the distributional attributes of precipitation amounts but it also takes advantage
of the Markov chain in simulating the temporal sequence of precipitation occurrence. An evaluation
of the proposed method showed that the temporal sequence of the precipitation occurrence was
well corrected, and the proposed method consistently performed better than the traditional QM bias
correction method. Specifically, the distribution of MCBC corrected wet- and dry-spell lengths fitted
that of the observations very well, with the K-S test showing that more than 70% of the corrected series
were likely from the same distribution of the observation at the p = 0.05 significance level. The MCBC
method also reasonably reproduces the observed statistics of spell length, such as the frequency of
spell length, mean, standard deviation, and the longest extreme spell length.
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In addition, the Markov chain-based method used in this study is conceptually simple, easy to
use, and requires less computation, because its parameters can be adjusted based on QM corrected
results with a linear relationship of observed data. Even though the DBC model is applied as a baseline
model in this study, the Markov chain-based model can be used with any other bias correction method.
Moreover, this study uses the linear relationship between the observed mean monthly precipitation
and the transition probabilities to adjust Markov chain parameters. Meanwhile, other methods can
also be used, such as the analytical relationship between monthly mean precipitation, probability
of rainfall occurrence, and daily mean precipitation as proposed by Wilks [49], and also the delta
change method by Chen et al. [36]. Moreover, higher-order Markov chains may perform better than
the first-order model in simulating precipitation sequence, especially for simulating dry spell length
for long-durations over the dry regions [30,36,39,50]. However, as the order increases, the number of
parameters also increases exponentially, and the parameter adjustment becomes more complicated [39].
By contrast, the first-order two-state Markov chain only has two parameters, and it is easy to operate
and adequate in simulating wet and dry spells for various climates [30,39,49,51].

Since the main objective of this study was to propose a new bias correction method to deal with
the biased temporal sequence of climate model simulated precipitation for field and site-specific food
security studies, the inter-variable correlations and the inter-site correlation of precipitation time
series were not considered. While the correlation between precipitation and temperature, as well as
solar radiation, is an essential input to crop and hydrological models, for some other studies, such as
hydrological impact studies, the precipitation time series over multiple sites within a watershed may
be needed to study the spatial variability of climate change impacts. However, the inter-variable and
inter-site correlation can be easily induced using a post-processing method, such as the distribution-free
shuffle approach [52–54] and the copula-based method [55,56]. The post-processing method can be an
avenue for future studies.
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