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Abstract: Lake Baikal—a unique ecosystem on a global scale—is undoubtedly of great interest for
a comprehensive study of its ecosystem. In recent years, one of the most significant sources of
atmospheric pollution in the Baikal region was the emission of smoke aerosol and trace gases from
forest fires, the number of which is increasing in the region. The transport and accumulation of
aerosol and small gas impurities over water area of Lake Baikal is observed every summer due to
forest fires occurring in the boreal forests of Siberia. The atmosphere above the lake covers a huge
area (31,500 km2) and is still a little-studied object. This article presents the results of experimental
studies of ground-level ozone, sulfur dioxide, and nitrogen oxides in the atmosphere over Lake
Baikal, carried out on a research vessel during the boreal forest fires in Siberia in the summer of 2019.

Keywords: Lake Baikal; ground-level ozone; nitrogen oxides; sulfur dioxide; forest fires; research
vessel “Academik V.A. Koptyug”

1. Introduction

All fresh-water ecosystems are exposed to the stress inherent in a complicated sys-
tem of changes in the climate of the planet [1]. Lake Baikal—a unique ecosystem on a
global scale—is undoubtedly of great interest for a comprehensive study of its ecosystem.
The principal reasons for choosing Baikal as a natural laboratory to study global climate
change are determined by the unique properties of the Baikal ecosystem.

The atmosphere over Lake Baikal covers a vast area (31,500 km2) and has more signifi-
cant differences in the composition and variability of gaseous and aerosol components in
atmospheric air than in coastal continental areas and is still a poorly studied object. In the
zone of atmospheric influence of Lake Baikal are large industrial centers and settlements of
the Baikal and Trans-Baikal, which are distributed very unevenly along the coastal zone.
The spatial and temporal variability of anthropogenic impurities over the Baikal is largely
formed under the influence of outflows from these territories, i.e., it is determined by the
geographical distribution of continental sources and the prevailing circulation of air masses
in a particular area [2–5].

With increasing anthropogenic and natural impact on the atmosphere of the lake the
study of the background characteristics of atmospheric pollutants is becoming relevant
and becomes important. In the atmosphere of the Baikal basin, there are many factors that
affect natural complexes, but the most significant in recent years have been forest fires,
which cause damage not only to nature, but also to the economy of the region. Assessment
of environmental damage to the ecosystem of Lake Baikal is still an unsolved problem
due to the increasing anthropogenic load and extreme natural events, such as forest fires,
because of insufficient data on the composition of chemically active gas components,
aerosols, considering various factors that affect the composition and quality of atmospheric
air. In this regard, the study of spatial and temporal variability of the composition and
properties of the atmosphere, assessment of the transboundary contribution of pollutants,
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their forecast, as well as a clear definition of their possible consequences for the environment
of Lake Baikal, is currently an urgent scientific problem.

In contrast to the Baikal region, there is a lot of research that has been done to study
the quantitative and qualitative composition of atmospheric air in North America and
Europe, including the European part of Russia [6–13]. In the Baikal region, there are few
such studies, and they are different because there is no integral program for monitoring air
pollution that meets modern requirements. At present, the experimental research of quanti-
tative and qualitative composition of atmospheric impurities are mostly episodic. Basically,
research is carried out in an expedition in the summer with the participation of scientific
teams of the Siberian Branch, Russian Academy of Sciences (Institute of Physical Materials,
V.E. Zuev Institute of Atmospheric Optics, Limnological Institute). The most complete
studies have been conducted on the chemical composition of atmospheric precipitation
in the Baikal region in the seventies of the last century [14,15]. It is established that in the
last decade, the chemical composition of atmospheric precipitation in the Baikal region
has undergone qualitative changes: the total salt content has decreased, and the acidity
of precipitation has increased. Currently, the physical and chemical properties of atmo-
spheric aerosol are being studied [16–18]. Since 1999, the program of long-term continuous
monitoring of atmospheric precipitation under the EANET international program has been
operating at three stations in the Baikal region [19]. The results of experimental studies of
the distribution of small gas impurities and aerosols in the lake area show that the southern
part of Lake Baikal is most susceptible to pollution [20–24]. The important role of breeze
circulations in daily variations of ozone and other small gas impurities near the coastal
zone of Lake Baikal is revealed. Breeze circulations significantly affect the transport and
dispersion of atmospheric impurities in the region [25].

According to experts, about 20% of annual emissions from biomass burning in the
world are accounted for by forest fires occurring in the boreal regions of Russia, Canada,
and Alaska [26]. According to satellite observations, fires occur annually on an area of
10–14 million hectares and in the forest and forest-steppe zones of Siberia [27]. Air quality
impacts from forest fires are not only due to emissions of primary pollutants such as
greenhouse gases, photochemically active compounds, and small and large particulate
matter, but also due to secondary pollutants (e.g., ground-level ozone O3, secondary
organic aerosol (SOA)). These emissions significantly affect the chemical composition of the
atmosphere and the Earth’s climate system. Fires are a major source of ozone precursors,
such as nitrogen oxides and non-methane organic compounds [28].

The transfer and accumulation of aerosol-gas impurities in the water area of Lake
Baikal is observed every summer due to forest fires occurring in the boreal forests of Siberia.
In the summer of 2019 in Eastern Siberia, there were extreme fire-weather conditions with
the most large-scale forest fires in the last 20 years, which lasted from June to Septem-
ber [29]. So, in July 2019, the scale of the catastrophe from forest fires in Siberia amounted
to about 3 million hectares, the main centers were located in the Krasnoyarsk region,
Irkutsk region and the Republic of Sakha (Yakutia). According to the FBU Avialesohrana,
as of 31 July 2019, there were 140 forest fires in the Irkutsk region on an area of about
709 thousand hectares, in the Krasnoyarsk territory—110 seats of fire on an area of about
1.06 million hectares, in Yakutia—139 forest fires on about 1.14 million hectares of land [30].
By mid-August, the area of forest fires reached a record 5 million hectares. With the prevail-
ing east wind direction, air smoke was observed in Western Siberia, Kazakhstan, and the
Arctic. Despite the significant number and scale of annual forest fires in Siberia, scientific
publications on studies of their emissions and estimates are extremely limited [31].



Atmosphere 2021, 12, 20 3 of 14

Nature conservation of Lake Baikal, as a World Heritage Site, has received more and
more attention in recent years. One of the important channels for the entry of pollution into
the lake basin is the atmosphere. The real-time observation monitoring can provide the
most complete information for assessing the current state of the air basin [32]. However,
observations of individual components of the aerosol and gas composition of the atmo-
sphere are currently conducted only at coastal “continental” stations and only occasionally
from a ship [2,23,24].

In the summer of 2018, for the first time, we carried out targeted studies of gaseous
impurities in the drive layer of Lake Baikal on the science research vessel (SRV) “Academik
V.A. Koptyug” during the forest fires in Siberia. The highest concentrations of gaseous
impurities were found in the near-water atmosphere of the river Selenga River delta,
Barguzinsky Bay, Peschanaya Bay. A sharp increase of sulfur dioxide concentration (SO2)
up to 40 µg m−3 and concentration of nitrogen dioxide (NO2) up to 30 µg m−3 was noted
when approaching Peschanaya Bay, to places of rest for tourists, and the maximum values
of SO2 (60 µg m−3) were observed during anchorage in the bay [33,34]. During the period
of the ship expedition (15–26 July 2018), continuous synchronous observations of the
concentration of ground-level ozone (O3), sulfur dioxide, meteorological parameters of the
atmosphere were carried out at the Boyarsky scientific station located on the southeastern
coast of Lake Baikal. When comparing the concentrations of ground-level ozone as a
secondary pollutant, measured simultaneously under similar meteorological and weather
conditions at the Boyarsky station and in the water area of Lake Baikal, good agreement
was noted in the behavior of ozone in the time interval as a whole, including its short-term
variations, despite the fact that ground-based and route measurements of the temporal
variability of ozone are separated in space. We can also note a good coincidence of daily
maxima in the ozone distribution, both in concentration levels and in the observation time.
In general, judging by the O3 distribution in Boyarsk and in the water area of Lake Baikal,
it can be concluded that the air flows on Lake Baikal are well mixed.

In 2019, our investigations were continued on the lake’s water area with the help of a
research vessel, aimed at analyzing and assessing atmospheric pollution over Lake Baikal
during a fire hazardous summer period.

2. Methods and Materials

The route of the science research vessel “Academik V.A. Koptyug” took place along
the entire perimeter of Lake Baikal from 24 July to 4 August, 2019 (Figure 1a). The Circum-
Baikal map of the expedition route 2019 on the science research vessel is shown in Figure 1b.
The beginning and end of the route was the port of Listvyanka. Initially, the vessel headed
north along the perimeter of Lake Baikal. The vessel moved along the coast at a distance
from 30 m to 5 km. The total length of the route was ~1700 km. In the Figure 1b, arrows
indicate the vessel’s route. The coordinates of the measurement points were determined by
the ship’s GPS system.
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Figure 1. The scientific research vessel “Akademik V.A. Koptyug” (a); schematic map of the vessel’s route (b).

The set of equipment for measuring the gas composition of the Baikal drive layer was
installed in the lower deck of the vessel to exclude the influence of the ship’s emissions,
the acoustic meteorological complex “AMK-03” [35] was installed on the upper deck of the
vessel. Air samples for gas-aerosol instrumentation were taken using Teflon pipes at an
altitude of 6 m above the water surface. The 3.02 P-A, P-310A, C-310A chemiluminescent
gas analyzers (OPTEK Inc., St. Petersburg, Russia) were used to measure the small gas
impurities such as the concentrations of ozone, nitrogen oxides, and sulfur dioxide. The P-
310A and C-310A gas analyzers measured the concentrations in the range from 0 to 1000 µg
m−3 with an error of ±25%, and the 3.02 P-A gas analyzers in the range from 0 to 500 µg
m−3 with an error of±20%. Calibration and zeroing were performed automatically with the
help of built-in microflux sources according to commands from gas analyzers’ processor.
The gas analyzer measurement accuracy is controlled using Mod. 8500 Monitor Labs
calibrator (Monitor Labs. Inc., United States).

General synoptic processes over the region were analyzed on the basis of surface
weather maps from Arctic and Antarctic Research Institute [36]. To analyze the transport
of smoke aerosol and its spatial distribution on a regional scale, the data obtained from the
MODIS (Moderate Resolution Imaging Spectroradiometer) [37] and CALIPSO (The Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation) [38] satellites were used,
and the paths for the transfer of air masses trajectory were calculated at three altitude
levels: 100, 500, and 1000 m using the HYSPLIT (The Hybrid Single-Particle Lagrangian
Integrated Trajectory model) trajectory reanalysis model and archival meteorological data
of the National Oceanic and Atmospheric Administration (USA) [39].

3. Results and Discussion

In the summer of 2019, large-scale forest fires were observed in the Irkutsk Region,
Krasnoyarsk Region and Yakutia. According to MODIS satellite observations, the smog
from forest fires since the end of July has spread throughout the water area and the coast
of Lake Baikal. Figure 2 shows images of atmospheric smoke in the Baikal region from
forest fires on 13 July and 7 August 2019. The vertical movements arising from fires raise
significant masses of warm air in convective structures to high altitudes. It makes it possible
for them to spread in the upper layers over large areas.
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Figure 2. Satellite images of atmospheric smoke over Lake Baikal, July–August 2019 (MODIS): (a) 13 July 2019; (b) 7
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In order to study the distribution of the dominant aerosol components over the Baikal
region in the summer of 2019, the results of measurements of vertical profiles of the
parameters of suspended particles by the space-based CALIOP lidar on the CALIPSO
satellite were analyzed. A spatial section of the vertical atmospheric depth in units of
weakened aerosol backscattering showed that in July–August 2019 over Lake Baikal,
on some days, a homogeneous filling of the atmospheric layer with smoke aerosol up to
3–4 km was observed (Figure 3).
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Figure 4 shows the experimental data on the spatial–temporal distribution of the
concentration of ozone, sulfur dioxide, nitrogen oxides, meteorological parameters (tem-
perature, pressure) along the route of the vessel over water area of Lake Baikal in a 10-min
measurement interval. The spatial–temporal variability of O3 and small gas impurities
(NO2, SO2) is extremely heterogeneous over the lake’s water area. Both extended areas
with an increased content of O3, SO2, NO2, and separate local outbreaks are distinguished.
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At the beginning of the route measurements on 24 July, the region of South Baikal was
under the influence of a low-gradient low-pressure baric field. The direction of air flows
was predominantly southeast according to the data of the State Scientific Center of the Rus-
sian Federation the Arctic and Antarctic Research Institute [36]. From the next day, 25 July,
a displacement of the formed cyclone center to the southeast was observed, which contin-
ued in the following days until 28 July due to its displacement by the southwestern branch
of the anticyclone. Under the conditions of the formation of a stable air mass in the warm
sector of the cyclone, high daytime air temperatures were observed up to 25 ◦C and higher.
At the same time, high concentrations of ground-level ozone were noted up to 120 µg m−3.
During this period, increased concentrations of sulfur dioxide were also observed with
maximum daily concentrations up to 30 µg m−3, but the concentrations of nitrogen oxides
(NO, NO2) did not exceed the background values. During the measurement period from
24 July to 29 July, when high levels of sulfur dioxide were noted, the direction of air flows
to the lake’s water area was east, south-east, and north-east. An analysis of the backwards
trajectories of air masses according to the HYSPLIT model shows that the drift of air masses
into the area of the ship passage occurred from the territories where large settlements and
industrial centers of the Republic of Buryatia are located, such as Ulan-Ude, Gusinoozersk,
Kamensk, Selenginsk, Timlyui, Kabansk.

In Figure 5 shows the backwards trajectories of air mass transfer for the periods
corresponding to the passage of the vessel near the settlements Bolshaya Goloustnaya
(Figure 5a) and Buguldeika (Figure 5b), located on the southwestern coast of Lake Baikal.
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In the Lake Baikal region, one of the major sources of sulfur dioxide emissions is
the Selenginsky pulp and cardboard mill, where the production of sulphate unbleached
cellulose is accompanied by emissions of both basic and specific pollutants containing
sulfur (dimethyl sulfide, methyl mercaptan, sodium sulfate, carbon disulfide). Although the
main inputs of sulfur compounds into the troposphere are associated with anthropogenic
sources, there are also natural sources of sulfur dioxide input into the atmosphere. So,
in the area of the Selenga delta there are vast swamps, which are a source of hydrogen
sulfide. With the participation of free radicals, hydrogen sulfide in the atmosphere, as well
as dimethyl sulfide, is oxidized sequentially in several stages to sulfur dioxide:

H2S + OH− → HS + H2O (1)

HS + O2 → OH− + SO (2)

SO + HO2 → SO2 + OH− (3)

As is known, in the zone of pine forest contamination with industrial emissions
containing sulfur dioxide, in two-year-old pine needles, an increased sulfur content is
accumulated due to the absorption of SO2 from the atmospheric air in comparison with the
control samples, namely, up to 0.137% based on dry matter weight [40]. Sulfur-containing
compounds accumulated in forest and soil vegetation enter the atmospheric air during
fires in the form of sulfur dioxide, the lifetime of which is 2–5 days [41]. The distance
of its transfer from the source can be more than 500 km, with an average wind speed of
3–4 m/s and the lifetime by SO2 in the atmosphere for 2 days [42]. Most of the sulfur
dioxide is concentrated in the lower near-surface layer of the atmosphere, since it is about
twice as heavy as air. Consequently, in the water area of Baikal, the accumulation of sulfur
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dioxide is possible due to temperature inversions when the lower temperature of the water
surface in comparison with the surrounding air and the poor solubility of sulfur dioxide in
water are observed. Usually the concentration of SO2 changes much more slowly than the
concentration of water vapor [43].

Despite the observed high concentrations of SO2 along the Listvyanka-Khuzhir route
(Olkhon Island), the concentrations of nitrogen oxides (NO, NO2) remained at the back-
ground level (3–7 µg m−3) (Figure 4a), although their concentrations usually increase
synchronously with SO2 concentrations. It is known that the rate of NO2 oxidation is
five times higher than that of SO2, that is gaseous nitrogen oxides are transformed into
nitrates faster than sulfur dioxide into sulfates [44]. Therefore, the absence of nitrogen
dioxide at high concentrations of SO2 may mean that, possibly, the detected plume of SO2
pollution near the southwestern coast accumulated for a rather long time (up to several
hours), and gaseous nitrogen oxides had time to oxidize to nitrates. Due to the higher
oxidation rate of NO2 as compared to SO2, lower concentrations of nitrogen oxides or their
complete absence are recorded (Figure 4a). Similar results were noted in [45] during the
period of experiments on Lake Baikal.

An increase in the concentration of sulfur dioxide SO2 up to 28 µg m−3 was noted as
the research vessel approached the settlement of Khuzhir in the Maloe More on 26 July,
which significantly exceeded the background concentrations (Figure 6a). On average,
the concentration remained high, right up to the exit from the Maloe More. In the behavior
of sulfur dioxide there was noted no noticeable changes during the passage of the ship
in the immediate vicinity. Figure 6b shows the results of calculating the backwards tra-
jectories of air mass transfer (HYSPLIT), maps of the pyrogenic situation [31] in this area
(Figure 6c), which indicate the drift of smoke gases from the nearest forest fires center
in the Barguzinsky Nature Reserve on the northeastern coast of Baikal and in the north
of the Irkutsk region. After the research vessel left the Maloe More for the open Baikal,
the concentration decreased by 12 µg m−3 (Figure 6a).
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Furthermore, during the passage and anchorage of the research vessel near Cape
Muzhinay, when the wind direction changed to the south, from the southeast, a sharp
increase in the content of sulfur dioxide was observed up to 32 µg m−3 (Figure 7a). Analysis
of backwards trajectories of air mass transfer trajectories (HYSPLIT) during this period
indicates that the main contribution to the increase in SO2 content was made by the forest
fires in the area of Sosnovka on the northeastern coast of Lake Baikal (Figure 7c). In the
north of Baikal, the main contribution to the increase in the SO2 content in the atmosphere
was also made by closely located forest fires center in the Sosnovka area. The presence
of smoke aerosol over Lake Baikal during this period was also observed visually, a high
content of sulfur dioxide and ozone in the water layer persisted throughout the day along
the vessel’s route in the north of lake (Figure 4a).
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When the research vessel passed near the Sosnovka Bay on 29 July, the highest concen-
trations of SO2 along the entire route were observed up to 47 µg m−3 due to the proximity
of forest fires (Figure 8). Under the conditions of smoke outflow, the ozone concentration
significantly decreased to 20 µg m−3, nitrogen oxides are below the detection limit due to
the fact that smoke can completely absorb NOx [46], ozone sink in such conditions mainly
occurs on aerosol particles [47]. We also selected aerosol samples along the route using
a high-volume sampler for filters, and then carried out a chemical analysis for the ionic
composition. It was found that under the influence of nearby fires, the concentration of
sulfate ions increases to 4.7 µg m−3 against 0.14 µg m−3, the concentration of potassium
ions up to 0.32 µg m−3 against 0.069 µg m−3.
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Under the conditions of smoke exposure during the passage of the vessel along the
eastern coast of Middle Baikal, an additional anthropogenic influence of enterprises and
the residential sector of the settlement of Ust-Barguzin on the general pollution of the
Baikal atmosphere was observed. So, when the ship approached the Svyatoi Nos Peninsula,
a significant increase in ozone concentration was observed up to 73 µg m−3, sulfur dioxide
concentration up to 15 µg m−3, nitrogen dioxide up to 5–7 µg m−3 with a sharp change in
the wind direction to the south from a large settlement Ust-Barguzin due to the screening
effect of the mountain range of the Svyatoi Nos Peninsula. Anthropogenic emissions from
the territories where large settlements and industrial facilities are located have a significant
impact on the formation of the spatial and temporal distribution of gas impurities over the
lake’s water area.

When the research vessel enters the bay of Bezymyanka in the Middle Baikal, the influ-
ence of the coastal settlements of Goryachinsk and Turka begins to manifest itself noticeably.
Upon arrival at the parking lot in Turka, an increase in sulfur dioxide concentration is
observed from background values of 4–5 µg m−3 to 30 µg m−3 (Figure 9a). An increase in
SO2 concentration was found at the mouths of the river Selenga near the village Kharauz,
where a stable high level of sulfur dioxide is observed even at night, right up to the ship’s
exit from this area (Figure 9b).
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When the vessel moves near the coastal zone of the southeastern coast of Lake Baikal,
the influence of settlements is clearly visible (Figure 10). This figure shows the largest
settlements on the southeastern coast of Lake Baikal. The lowest concentrations are ob-
served, as a rule, far from settlements, but nevertheless, under the conditions of the night
breeze, the influence of anthropogenic outflows is noticeably manifested in the water area
of Lake Baikal at a distance of 7–8 km from the coastal settlements of Tankhoy and Vidrino.
This confirms that anthropogenic emissions from the territories where large settlements are
located. Industrial facilities have a significant impact on the formation of the spatial and
temporal distribution of gas impurities in the Lake’s water area.
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4. Conclusions

Complex experimental studies of spatial–temporal variability of small gas impurities
(in the near-surface layer over the lake, using research vessel “Academik V.A. Koptyug”,
were performed from 24 July to 4 August 2019, in order to analyze and estimate the
pollution of the atmosphere over Baikal in the firehazardous summer period with the
purpose of creating the physical models of formation and transport of trace gas admixtures
and aerosol fields of the atmosphere, taking into account the specific physical-geographic
features of the Baikal region.

From the results of on-ship observations of air pollutants, we found significant dif-
ferences in the composition and nature of the variability of gas and aerosol components
in the atmospheric air than in the continental regions near Lake Baikal. Anthropogenic
emission from the territories where large settlements and industrial facilities are located
have a more significant impact on the formation of the spatial and temporal distribution of
gas impurities over the Lake Baikal. One of the major sources of sulfur dioxide emissions
is the Selenginsky pulp and cardboard mill. We suggest that the absence of nitrogen diox-
ide and high concentrations of SO2 may mean that, possibly, the detected plume of SO2
pollution near the southwestern coast accumulated for a rather long time (up to several
hours), and gaseous nitrogen oxides had time to oxidize to nitrates. Over the water area
of Lake Baikal, the content of nitrogen dioxide is significantly lower than that of sulfur
dioxide. A comparative analysis of the results of measurements of trace gases SO2, NO2
over the Lake’s water area and at the coastal station showed that during long-distance
transport of anthropogenic impurities, gaseous nitrogen oxides are usually transformed
into nitrates due to a higher oxidation rate of NO2 than SO2. At coastal stations (Boyarsk
station, Listvyanka station) NO2 concentrations, as a rule, increase synchronously with
SO2 concentrations.
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High concentrations of ground-level ozone were noted up to 120 µg m−3 under the
conditions of the formation of a stable air mass in the warm sector of the cyclone.

With the MODIS satellite observations, the HYSPLIT model and on-ship observations,
we established that the spatial–temporal variability of gas impurities over the water area
of Lake Baikal is largely formed under the influence of transport from anthropogenic
sources, including flue gases from forest fires, that is, it depends on the geographical
distribution of their sources and the prevailing circulation of air masses in a particular
area. Despite the spatial heterogeneity of the SO2 field distribution over the water area of
Lake Baikal, in general, a stable daily variation of SO2 is observed with a maximum in the
daytime and a minimum in the morning hours.
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