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Abstract: Nonstationarity is one major issue in hydrological models, especially in design rainfall
analysis. Design rainfalls are typically estimated by annual maximum rainfalls (AMRs) of observa-
tions below 50 years in many parts of the world, including South Korea. However, due to the lack of
data, the time-dependent nature may not be sufficiently identified by this classic approach. Here,
this study aims to explore design rainfall with nonstationary condition using century-long reanalysis
products that help one to go back to the early 20th century. Despite its useful representation of
the past climate, the reanalysis products via observational data assimilation schemes and models
have never been tested in representing the nonstationary behavior in extreme rainfall events. We
used daily precipitations of two century-long reanalysis datasets as the ERA-20c by the European
Centre for Medium-Range Weather Forecasts (ECMWF) and the 20th century reanalysis (20CR) by
the National Oceanic and Atmospheric Administration (NOAA). The AMRs from 1900 to 2010 were
derived from the grids over South Korea. The systematic errors were downgraded through quantile
delta mapping (QDM), as well as conventional stationary quantile mapping (SQM). The evaluation
result of the bias-corrected AMRs indicated the significant reduction of the errors. Furthermore, the
AMRs present obvious increasing trends from 1900 to 2010. With the bias-corrected values, we carried
out nonstationary frequency analysis based on the time-varying location parameters of generalized
extreme value (GEV) distribution. Design rainfalls with certain return periods were estimated based
on the expected number of exceedance (ENE) interpretation. Although there is a significant range of
uncertainty, the design quantiles by the median parameters showed the significant relative difference,
from −30.8% to 42.8% for QDM, compared with the quantiles by the multi-decadal observations.
Even though the AMRs from the reanalysis products are challenged by various errors such as quantile
mapping (QM) and systematic errors, the results from the current study imply that the proposed
scheme with employing the reanalysis product might be beneficial to predict the future evolution of
extreme precipitation and to estimate the design rainfall accordingly.

Keywords: Bayesian approach; nonstationarity; reanalysis products; quantile delta mapping

1. Introduction

Design rainfall plays an essential role in planning a water-related infrastructure and it
has been commonly estimated from the precipitation intensity–duration–frequency (IDF)
relationship based on the historical records with the stationary assumption [1,2]. However,
recent research has indicated that many regions over the world have experienced the
pattern change of climatic extremes, especially for heavy rainfall [3,4]. Recalling that
a water-related project is designed under stationary condition in practice, the temporal
change of extreme rainfalls, so-called ‘nonstationarity’, may significantly affect the safety of
the infrastructure. In other words, an increasing trend in heavy rainfall can underestimate
the estimated future risk when an obvious trend exists in a target region. Note that the
hypothesis of a non-stationary model can be altered by the presence of outliers with
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assuming parameters as random variables, while preserving the hypothesis of a stationary
process [5].

The other major issue in rainfall frequency analysis is the lack of the gauge data
resulting in significant errors in hydrological modellings. In a block maxima (BM) approach
typically used in practical application, one generally collects annual maximum rainfalls
(AMRs) from historical records to derive IDF relationships. However, in many regions
including South Korea, the long-term meteorological record for a given catchment is largely
limited to create the reliable IDF relationships. For instance, South Korea, with an area
of approximately 100,032 km2, has over hundreds of weather stations, but the number of
stations with daily rainfalls over 40 years was at most a few dozen by the Korean War.
Consequently, the rainfall quantiles are derived from less than 40-year data and necessarily
contain significant uncertainties, which are associated with the sampling errors [6–10].

Furthermore, the use of external source is also critical to respect the ergodicity [11,12],
since the properties of a stochastic process might be estimated only by limited observations.
When the process is nonstationary, the ergodicity cannot hold and possible trends should
be derived from external sources, different from observed time series.

Subsequently, the future risk in a region like South Korea can be relabily estimated by
considering the nonstationary and extending the data length is critical. However, existing
studies have explored individual aspects, but there have been no studies to combine two
factors, nonstationarity and lack of data, at the same time. Thus, this study aims to reliably
extend the data series, and then to explore the future risk change (i.e., nonstationarity) with
the extended time series, which may depend on time, in South Korea.

To address the lack of data, we introduce long-term reanalysis datasets as substi-
tutes of the observed. With their own assimilation techniques, reanalysis products have
been globally provided with daily or sub-daily resolution and they have been applied
in the global-, continental- and country-scale climate change analyses [13–18]. However,
most reanalysis products provide the climate variables after the 1950s, and a few datasets
assimilated by two representative institutes, the National Oceanic and Atmospheric Ad-
ministration (NOAA) and the European Centre for Medium-Range Weather Forecasts
(ECMWF), can cover the whole 20th century; the 20th century reanalysis (20CR) by the
NOAA, and ERA-20c and ERA-20 cm by the ECMWF [15,18,19]. For ERA-20c and ERA-
20cm by the ECMWF, they are based on the same simulation model, but ERA-20 cm does
not consider observations in the assimilation process, unlike ERA-20c. For this reason,
ERA-20c has a limitation in representing the actual synoptic situation [15–18]. Thus, we
use two reanalysis datasets, 20CR and ERA-20c, produced by two different institutes as
substitutes of the observed.

Like other model data, long-term reanalysis datasets include the systematic errors
which vary with space [17,20]. Thus, the bias correction of reanalysis products, especially
for regional-scale studies, should be performed before hydrologic applications. Numerous
studies have suggested various bias correction methods from a delta change to a quantile
mapping (QM) or multivariate scheme using a copula-based principle [17,21–24]. Each
method has its pros and cons, but a QM method has been commonly used for precipitation
due to its good performance [21,25–27]. We also improve the biases in the modelled by
using a QM approach. In the BM principle, estimating IDFs are based on the AMRs of the
data. Thus, the purpose of bias correction in this study is to collect the improved AMRs,
and there are two main approaches for it; (1) to improve the whole rainfall distribution and
derive the AMRs and (2) to directly correct the AMRs of the modelled. Compared with
the former approach, the direct correction approach does not need to consider ‘drizzling
effect’, which can impair the bias corrected values, and the errors in IDFs were less than
that by improving whole wet-day data [2]. In this context, we collect the AMRs directly
from the reanalysis products and then improve them with the QM approach.

To perform a nonstationary frequency analysis, it is essential to detect the significant
long-term trends of the data. Previous studies for South Korea have documented that
rainfalls have increased over time, especially during summer [28–34]. However, if we
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only focus on the ‘AMRs’, it is also true that there is no clear evidence for the trend in the
AMRs of the observed [35]. Nadarajah and Choi [35] explored the trends of the AMRs
for the observed in five stations over South Korea from 1961 to 2001, but there were no
significant trends. For this reason, we assess the long-term trend of the AMRs for the
bias-corrected from 1900 to 2010 as well as for the observed during the reference period
(1974 to 2010). After detecting the significant trend, we estimate the design quantiles with
the nonstationary return period.

To consider nonstationarity for rainfall or flood frequency analysis, numerous studies
have commonly adopted a time-varying parameter scheme [36–41]. Conceptually, this
approach assumes that a climate variable like daily rainfall has the same distribution
function type, typically generalized extreme value (GEV) distribution, but the parameters
are dependent on time. In this concept, a return period (Tt = 1/(1− Fz

(
zq0, θt

)
) with a

certain design quantile (zq0) at time t can be easily derived from a cumulative distribution
(Fz) with the time-varying parameters (θt) [42]. However, as estimating a quantile with a
target period, for example 100-year, varies by time, the use of a “return period” concept
can be meaningless under nonstationary condition [37,42,43].

However, as the notion of return period can still provide intuitive information to
engineers, numerous studies have handled this issue and two different approaches have
been proposed; the expected waiting time (EWT) approach and the expected number of
exceedance (ENE) approach [42,44–47]. The former scheme, EWT, focuses on the ‘expected
waiting time’ for the first occurrence exceeding the design rainfall (zq0). On the other hand,
the ENE approach obtains the target value by setting the expected number of exceedances
over the design life T. Both concepts should be numerically solved to estimate the design
quantile with a target return period under nonstationary condition. However, conceptually,
the EWT method has a drawback that this concept needs infinite (or as long as possible)
future exceedance probabilities, which can cause uncertainty [42,47]. For this reason, the
ENE interpretation is considered for the nonstationary analysis in this study.

As aforementioned, the primary goal of this study is to explore design rainfall with
non-stationary condition using the bias-corrected reanalysis products covering from 1900
to 2010. For this purpose, this study performs a three-step approach. First, we reduce
the biases in ERA-20c and 20CR, especially for the AMRs, by using a QM approach.
Secondly, we evaluate long-term trends of the AMRs for the observed and the reanalysis
products to detect the nonstationarity. The final step in this study is to evaluate the design
rainfalls under nonstationary condition and to compare them with the results by the
classic observation-based estimation. This three-step analysis is based on the mainland of
South Korea, and the detailed information on the study site and data used in this study
is described in Section 2. The theoretical background for the methodology is introduced
in Section 3. The results and discussion are summarized in Sections 4 and 5, respectively.
Finally, the summary and conclusions are provided in Section 6.

2. Study Site and Data
2.1. Study Site and Local Gauge Data

This study is based on the mainland of South Korea, which lies between latitudes
34◦–38.5◦ N and longitudes 126◦–129.5◦ E, excluding all the islands including Jeju. The
local gauge records are typically used for hydrologic applications, including frequency
analysis. For South Korea, only dozens of weather stations can provide historical records
for more than 40 years among hundreds of gauging stations. Thus, we obtained 48
in situ daily precipitation data, covering from 1974 to 2017, in the mainland of South
Korea. After collecting the daily data from the Korea Meteorological Administration (http:
//www.kma.go.kr), we derived the annual maximum rainfalls (AMRs) for bias correction
in all 48 stations. Note that, for St. 14 Andong, we ignored the AMRs from 1978 to 1982 due
to the absence of records during the period. The daily AMR sequences were collected and
compiled from the Korea Meteorological Administration (KMA). The coverage of the study

http://www.kma.go.kr
http://www.kma.go.kr
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area and the weather stations chosen in this study is shown in Figure 1, and the information
for the stations is described in Table 1.
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Figure 1. A map showing the study area, local gauging stations, grid points of ERA-20c and 20CR.
The grey shading on the map indicates elevations.

Table 1. Station information employed in the study.

Station No. Name Latitude (◦N) Longitude (◦E) Elevation
(m. asl)

St. 1 Sokcho 38.2508 128.5644 19.5

St. 2 Daegwallyeong 37.6769 128.7181 774.0

St. 3 Chuncheon 37.9025 127.7356 79.1

St. 4 Gangneung 37.7514 128.8908 27.4

St. 5 Seoul 37.5714 126.9656 11.1

St. 6 Incheon 37.4775 126.6247 69.6

St. 7 Wonju 37.3375 127.9464 150.0

St. 8 Suwon 37.2700 126.9875 38.3

St. 9 Chungju 36.9700 127.9525 116.5

St. 10 Seosan 36.7736 126.4958 30.3

St. 11 Cheongju 36.6361 127.4428 58.6

St. 12 Daejeon 36.3689 127.3742 70.3

St. 13 Chupungyeong 36.2197 127.9944 246.1
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Table 1. Cont.

Station No. Name Latitude (◦N) Longitude (◦E) Elevation
(m. asl)

St. 14 Andong 36.5728 128.7072 141.5

St. 15 Pohang 36.0325 129.3794 3.7

St. 16 Gunsan 36.0019 126.7631 24.6

St. 17 Daegu 35.8850 128.6189 65.5

St. 18 Jeonju 35.8214 127.1547 54.8

St. 19 Ulsan 35.5600 129.3200 36.0

St. 20 Gwangju 35.1728 126.8914 73.8

St. 21 Busan 35.1044 129.0319 71.0

St. 22 Mokpo 34.8167 126.3811 39.4

St. 23 Yeosu 34.7392 127.7406 66.0

St. 24 Jinju 35.1636 128.0400 31.6

St. 25 Yangpyeong 37.4886 127.4944 49.4

St. 26 Icheon 37.2639 127.4842 79.4

St. 27 Inje 38.0600 128.1669 201.6

St. 28 Hongcheon 37.6833 127.8803 142.3

St. 29 Jecheon 37.1592 128.1942 265.0

St. 30 Boeun 36.4875 127.7339 176.4

St. 31 Cheonan 36.7794 127.1211 24.0

St. 32 Boryeong 36.3269 126.5572 16.9

St. 33 Buyeo 36.2722 126.9206 12.7

St. 34 Geumsan 36.1056 127.4817 171.7

St. 35 Buan 35.7294 126.7164 13.4

St. 36 Imsil 35.6122 127.2853 249.3

St. 37 Jeongeup 35.5631 126.8658 46.0

St. 38 Namwon 35.4053 127.3328 91.7

St. 39 Jangheung 34.6886 126.9194 46.4

St. 40 Haenam 34.5533 126.5689 14.4

St. 41 Goheung 34.6181 127.2756 54.5

St. 42 Yeongju 36.8717 128.5167 212.2

St. 43 Mungyeong 36.6272 128.1486 172.0

St. 44 Uiseong 36.3558 128.6883 83.2

St. 45 Gumi 36.1306 128.3206 50.3

St. 46 Yeongcheon 35.9772 128.9514 95.0

St. 47 Geochang 35.6711 127.9108 222.4

St. 48 Sancheong 35.4128 127.8789 0.8

2.2. Reanalysis Products

In this study, we apply two representative century-long reanalysis products as ERA-
20c by the ECMWF and 20CR by the NOAA. The ERA-20c was produced by assimilation
technique using observations of surface pressure and surface marine winds only, and the
product can globally cover the period from 1900 to 2010 with the spatio-temporally various
resolutions [18]. On the other hand, 20CR, the first century-long reanalysis products by
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the NOAA, was assimilated with the ensemble Kalman filter technique using only surface
pressure observations [19] and its latest version 2c could span the period from 1851 to
2014 with a spatial resolution of 1.875◦ × 1.9◦. As the long-term climate records play an
important role in the nonstationary analysis, we collect daily rainfall data from these two
century-long reanalysis products in this study. More specifically, we extracted the daily
precipitation records from 1900 to 2010, with the finest spatial resolution, 0.125◦ × 0.125◦

for ERA-20c and 1.875◦ × 1.9◦ for 20CR, respectively. From these daily rainfall series, this
study derived the AMRs at grids in the mainland of South Korea from 1900 to 2010. The
grid points over the sea were ignored in this analysis. The specific grid-scale points for
ERA-20c and 20CR are shown in Figure 1. Note that only two grid points of 20CR covered
the entire study region due to its low spatial resolution.

These reanalysis products are employed in a number of climatological studies [48–51].
Diro et al. [49] evaluated the spatial pattern of rainfall estimates for the reanalysis product
of ERA-40 and noted that the product captures well the annual cycle over most of the
country. Berntell et al. [48] investigated the strong multidecadal variability of the summer
rainfall during the 20th century with reanalysis products and reported that the reanalysis
product ERA-20CM shows the best representation of the multidecadal rainfall variability.
Hua, et al. [51] assessed reanalysis products with quality-controlled radisonde observations
and observed datasets to understand the rainfall climatology and variability over Central
Equatorial Africa.

3. Methodology
3.1. Bias Correction

Although the century-long reanalysis precipitation data adopt the observed data
when modeling, the modeled data still include the substantial biases. The bias correction
approach should preliminarily be applied to the model values before further hydrologic
applications. In the current study, we first carried out the bias correction by a quantile
mapping (QM) approach, typically adopted in the bias correction studies [31,33,52,53].
Conceptually, the QM method reduces the errors by fitting a cumulative distribution of the
modelled into that of the observed via a transfer function [21,53–55] (see Supplementary
Material for detail).

For estimating the design rainfalls, BM approach using the AMRs is commonly
adopted. To implement a reanalysis products-based BM approach, the bias-corrected
AMRs should be collected and there are two approaches to collect them. Firstly, we can
correct all wet-day precipitation data by QM methods and then, take the AMRs from the
bias-corrected daily values. The other option is to directly improve the uncorrected AMRs
by QM methods without considering the other rainfall data. If they are interested not
only in the AMRs but also in all daily rainfalls, it would be better to apply the first op-
tion. However, as this study only focuses on exploring the non-stationary design rainfalls
based on the BM, we utilize the latter option, which can reduce the error more efficiently
than correcting the entire rainfall series [2]. To find out the most fitted transfer function,
we applied three representative distributions, gamma, Gumbel, and GEV, for the bias
correction of the AMRs, which are commonly employed in hydrologic application and
extreme study [22,53,56,57]. As a QM approach is based on a one-to-one relationship, we
matched 48 weather stations with the closest grid points of the ERA-20c and 20CR, and the
bias-corrected values were collected at each station. Here, we assumed that the difference
of spatial resolution between datasets can be ignored. One major issue in bias correction
for a climate model data is how to correct the model values beyond the time range of the
observation. The conventional approach of the QM algorithm was implemented with the
assumption that the climate records are stationary for the whole projected period [18,28].
More specifically, the CDFs of the observed and the modeled are estimated using records
for a reference period (i.e., historical period or calibration period), and the model data for
the whole projected period are applied to this correction factor.
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In this concept, the years from 1974 to 2010 were set as the reference period, while the
whole period from 1900 to 2010 was considered as the projected period. For the stationary
quantile mapping (SQM) scheme, there exist some extreme values beyond the range of the
reference period, which may overestimate the bias-correction results, so an appropriate
extrapolation scheme should be considered for them [2,25,33]. In the current study, we
applied a constant extrapolation, which uses the correction values at the lowest and highest
quantiles of the calibration range, suggested by Themeßl, Gobiet and Heinrich [25] to
the events beyond the range of reference data, while the AMRs within the range were
corrected by parametric approaches based on three different distributions, GEV, gamma,
and Gumbel. Note that the SQM approaches with the GEV, gamma, and Gumbel were
abbreviated as gevSQM and gamSQM and gumSQM, respectively.

One major problem in SQM approach is to ignore time-dependent characteristic such
as a long-term trend. To handle this issue, several approaches have been tested, such as
detrended quantile mapping and quantile delta approach [58,59]. Among these approaches,
we applied the quantile delta mapping (QDM) method suggested by Cannon, Sobie and
Murdock [31], because this approach can preserve the changes, not only in mean but
also in extremes for the modelled data. In QDM, long-term trends in data are preserved
by superimposing the relative change of quantiles between the reference period and the
projected period, which are set to the same length. Thus, we first set the reference period
to 1974–2010 as in SQM, and then divided the past projected period (1900–1973) into two
periods, 1900–1936 and 1937–1973, to make the intervals equal to the reference period.
Consequently, reanalysis daily precipitations were divided into three time periods with the
same length (1900–1936, 1937–1973, 1974–2010) and the raw models in each time period
were improved by the QDM principle [31,33] (see Supplementary Material for detail).

In this analysis, we compared the bias-corrected AMRs by QM approaches with
the observations in 48 stations for the reference period (1974–2010). As the results by
QDM approaches are identical to those by SQM schemes for the reference period, the
QDM results were used to evaluate the performances of three different curves for the bias
correction scheme.

3.2. Detecting Nonstationarity: Long-Term Trend Test

As aforementioned in the introduction section, the conventional approach for bias
correction is based on the stationary condition for climate model records, but the real
climate may follow the non-stationary feature in terms of century-long trend. To find out
the significance of the AMR trend over South Korea, we evaluated the long-term trends of
the observation and the bias corrected reanalysis data. For the trend test, a non-parametric
method, the Mann–Kendall test was applied in this study. The significance of trends
was evaluated by comparing the test statistic Z with the standard normal variate at the
desired significance [60]. When |Z| > Z1−α/2 for the standard normal deviate Z1−α/2
with the significance level α (=0.05 in the current study), the null hypothesis is rejected and
a significant trend in a time series. For the slope, the Theil–Sen approach [61–64] defined
by the median among the ranked slope estimates is applied (see Supplementary Material
for detail).

We first analyzed the trends of the AMRs taken from both the observation and the bias-
corrected reanalysis data for the reference period (1974–2010). To estimate nonstationarity
over the 20th century, the century-long trends of the bias-corrected AMRs from 1900 to
2010 were also detected.

3.3. Rainfall Frequency Analysis with Nonstationary Condition

In hydrological models, time-varying parameter schemes have been commonly adopted
for non-stationarity analysis in hydrometeorological applications [38,40–42,44,65]. As GEV
family is typically applied for estimating IDFs in practice, we applied a GEV distribution
with the time-varying location parameter (µt), while scale (σ) and shape (ξ) parameters
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were set as constant. The location parameter is assumed as a time-depending linear
function, and under the nonstationary condition.

To quantify the parameters for the GEV curve under nonstationary condition, we
apply the Bayesian principle suggested by Cheng and AghaKouchak [1]. In this scheme,
numerous parameter sets are estimated from the joint posterior distribution using the
differential evolution Markov chain (DE-MC), which is based on the genetic algorithm
differential evolution for global optimization with the Markov chain Monte Carlo (MCMC)
principle [1].

With the time-varying parameter chains, the next step is to estimate the return period
for a given design quantile under nonstationary condition. Numerous studies have dealt
with the non-stationary interpretation, and there were two main approaches to handle it as
(1) the expected waiting time (EWT) method and (2) the expected number of exceedance
(ENE) method [42,44,45,47,66].

Both EWT and ENE are applicable for nonstationary events. However, as stated in the
Introduction section, the EWT approach has a drawback of requiring infinite (or as long as
possible) future exceedance probabilities in order to numerically solve the problem [42,47].
For this reason, we applied the ENE interpretation for estimating the design quantile with
the return period from 10-year to 200-year (see Supplementary Material for more detail)
(Figure 2).
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4. Results
4.1. Bias Correction

To improve the uncorrected AMRs of ERA-20c and 20CR, we applied QM approaches
based on three different distributions, gamma, Gumbel and GEV. The overall bias-corrected
values over 48 stations for the reference period (1974–2010) were assessed by RMSE (mm)
and NSE, as illustrated in Figure 3 and Table 2. Conceptually, the bias-corrected values by
QDM and SQM methods with the same distribution are identical for the reference period.
Thus, the outputs by three different distributions were denoted as gevQM, gamQM and
gumQM. The overall comparison between the observed and the modelled indicated the
significant reduction of errors in all QM schemes. The result showed that GEV distribution
performed the best in both ERA-20c and 20CR. The bias-corrected ERA-20c by gevQM
had 17.56 mm for RMSE and 0.924 for NSE, while the values by gamQM and gumQM
were from 22.34 mm to 26.08 mm for RMSE and from 0.831 to 0.876 for NSE. For 20CR, the
model efficiency by gevQM with 20.63 mm for RMSE and 0.894 for NSE dominated those
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by gamQM and gumQM with from 22.46 mm to 26.86 mm for RMSE and from 0.821 to
0.875 for NSE.
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Figure 3. Scatter plots between the annual maximum rainfalls (AMRs) of the observation and the
model data (the raw reanalyses (RAW(ERA-20c) and RAW (20CR)) and the bias-corrected reanalyses
(i.e., ERA-20c and 20CR) by the quantile mapping (QM) approaches with generalized extreme value
(GEV), gamma and Gumbel distributions (gevQM, gamQM and gumQM)) over 48 stations, from
1974 to 2010.

Table 2. Error estimation results of RMSE (mm) and NSE for the uncorrected (RAW) ERA-20c and
20CR, and the bias-corrected reanalyses (i.e., ERA-20c and 20CR) by the QM approaches with GEV,
gamma and Gumbel distributions (gevQM, gamQM and gumQM) over 48 stations from 1974 to 2010.

Method
ERA-20c 20CR

RMSE (mm) NSE RMSE (mm) NSE

RAW 79.81 −0.579 95.40 −1.256

gevQM 17.56 0.924 20.63 0.894

gamQM 22.34 0.876 22.46 0.875

gumQM 26.08 0.831 26.86 0.821

To spatially evaluate the performance, we also implemented the error estimation in
individual stations, as shown in Figures 4 and 5 for NSE and RMSE, respectively. Figure 4
illustrates NSE values for the AMRs of the bias-corrected ERA-20c and 20CR based on QM
approaches (i.e., gevQM, gamQM and gumQM) in 48 stations, whereas Figure 5 indicates
RMSE values. The model efficiencies were generally over 0.8 for NSE, in all model values
except a few stations. For RMSE, the most error estimates were less than 30 mm, which
indicates the significant reduction of the bias. To clearly analyze the range of the model
values, we used a boxplot scheme based on the individual error estimates in 48 stations,
as illustrated in Figure 6, and compared the mean values of the error estimation results in
individual stations as described in Table 3. The boxplot for NSE in Figure 6a indicated that
the median values were over 0.9 in all QM approaches and most values were within the
range from 0.6 to 1. Especially, gevQM for ERA-20c showed the best efficiencies among
three QM schemes, whereas for 20CR, gevQM and gamQM had a better performance than
gumQM. The analysis on RMSE also showed the similar result (Figure 6b). The median
values were generally within 10 to 15 mm in all bias-corrected values and gevQM for
ERA-20c performed the best and gevQM for 20CR and gamQM for ERA-20c and 20CR
closely followed. In terms of the mean, gevQM for ERA-20c showed the best efficiencies,
with 14.30 mm for RMSE and 0.933 for NSE as described in Table 3. For 20CR, NSE values
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for gevQM and gamQM were similar but RMSE for gevQM, 16.69 mm, was slightly smaller
than that of gamQM, 17.48 mm. These results suggest that the applied QM approaches
can significantly reduce the error in the AMRs of reanalyses (i.e., ERA-20c and 20CR), and
among three different transfer functions, GEV distribution could be the best option for bias
correction of the AMRs, especially for ERA-20c.
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Table 3. Mean of error estimation results (RMSE (mm) and NSE) for the AMRs of the bias-corrected
ERA-20c and 20CR by the QM approaches with GEV, gamma and Gumbel distributions (gevQM,
gamQM and gumQM) in 48 stations from 1974 to 2010.

Method
ERA-20c 20CR

RMSE (mm) NSE RMSE (mm) NSE

gevQM 14.30 0.933 16.69 0.905

gamQM 17.29 0.909 17.48 0.907

gumQM 20.31 0.871 21.09 0.864



Atmosphere 2021, 12, 191 11 of 22
Atmosphere 2021, 12, x FOR PEER REVIEW  12 of 24 
 

 

 

Figure 5. Root mean square error (RMSE) for the AMRs of the bias corrected ERA‐20c (above) and 20CR (bottom) by QM 

approach (gevQM) in 48 stations for the reference period (1974–2010). 

   

Figure 5. Root mean square error (RMSE) for the AMRs of the bias corrected ERA-20c (above) and
20CR (bottom) by QM approach (gevQM) in 48 stations for the reference period (1974–2010).

Atmosphere 2021, 12, x FOR PEER REVIEW  13 of 24 
 

 

   

(a)  (b) 

Figure 6. Boxplots of (a) NSE and (b) RMSE (mm) results for the AMRs of the bias corrected ERA‐20c (ERA) and 20CR by 

QM approaches using three different distributions, GEV (gev), gamma (gam), and Gumbel (gum) in 48 stations. 

Table 3. Mean of error estimation results (RMSE (mm) and NSE) for the AMRs of the bias‐cor‐

rected ERA‐20c and 20CR by the QM approaches with GEV, gamma and Gumbel distributions 

(gevQM, gamQM and gumQM) in 48 stations from 1974 to 2010. 

Method 
ERA‐20c  20CR 

RMSE (mm)  NSE  RMSE (mm)  NSE 

gevQM  14.30  0.933  16.69  0.905 

gamQM  17.29  0.909  17.48  0.907 

gumQM  20.31  0.871  21.09  0.864 

4.2. Long‐Term Trend 

To consider the nonstationary condition in rainfall frequency analysis, the long‐term 

trend of the AMRs should be necessarily detected. For this purpose, we analyzed the long‐

term trend of AMRs for the observed (Obs) and the bias corrected for the reference period 

(i.e., 1974–2010) using a non‐parametric method, Mann–Kendall test as shown in Figure 

7. To  further  evaluate  the observed  trend, we  additionally  analyzed  the AMRs of  the 

observation for the extended period, from 1974 to 2017 (Obs0). The results  in both Obs 

and Obs0 had no significant trend at the 0.05 significant level except a few stations. More 

specifically, among 48 stations, only 5 stations for Obs and 2 stations for Obs0 presented 

significant trend, respectively. The performances for the bias‐corrected reanalyses showed 

similar results. The AMRs of the bias‐corrected reanalysis data (ERA‐20c and 20CR) by 

QM approaches as well as  the raw values  (RAW) had no significant  trends at  the 0.05 

significance level in all comparisons. Note that the recent 40 years’ data do not illustrate 

any significant data in the observation, as well as in the reanalysis data. 
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4.2. Long-Term Trend

To consider the nonstationary condition in rainfall frequency analysis, the long-term
trend of the AMRs should be necessarily detected. For this purpose, we analyzed the
long-term trend of AMRs for the observed (Obs) and the bias corrected for the reference
period (i.e., 1974–2010) using a non-parametric method, Mann–Kendall test as shown in
Figure 7. To further evaluate the observed trend, we additionally analyzed the AMRs of
the observation for the extended period, from 1974 to 2017 (Obs0). The results in both Obs
and Obs0 had no significant trend at the 0.05 significant level except a few stations. More
specifically, among 48 stations, only 5 stations for Obs and 2 stations for Obs0 presented
significant trend, respectively. The performances for the bias-corrected reanalyses showed
similar results. The AMRs of the bias-corrected reanalysis data (ERA-20c and 20CR) by
QM approaches as well as the raw values (RAW) had no significant trends at the 0.05
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significance level in all comparisons. Note that the recent 40 years’ data do not illustrate
any significant data in the observation, as well as in the reanalysis data.
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tively, and the AMRs of the raw reanalyses (RAW) and the bias-corrected values by the QM approach
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pointing indicate increasing slope and decreasing slope, respectively, whereas the size of triangle
represents the magnitude of trends.

To estimate nonstationarity over the 20th century, we also checked a century-long
trend using the bias corrected AMRs of ERA-20c and 20CR from 1900 to 2010, instead
of the observation periods Obs and Obs0. Figure 8 illustrates the trend test results for
the AMRs of the bias corrected reanalyses in 48 stations from 1900 to 2010. For ERA-
20c, the corrected values by SQM approaches (gevSQM, gamSQM and gumSQM) had
obvious increasing trends in all stations, and the QDM algorithms (gevQDM, gamQDM
and gumQDM) also indicated the significant increasing trends at 0.05 significance level,
except a few points. The results for 20CR were similar to those for ERA-20c. The bias-
corrected values demonstrated the obvious increasing trends for both SQM and QDM
schemes of the whole 20th century. These results imply that the AMRs in South Korea may
have an increasing trend over the 20th century, although the AMRs in recent decades are
not able to clarify the nonstationary characteristic.
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Figure 8. The trends in the AMRs of the bias corrected ERA-20c and 20CR by QM approaches as in
Figure 7, but the data period is covered from 1900 to 2010.

To evaluate the magnitude of the trends, inter-annual variabilities over 48 stations
from 1900 to 2010 were also analyzed as illustrated in Figure 9. Individual values for each
station are presented with thin weak blue and red lines for ERA-20c and 20CR, respectively,
while the means of 48 stations are presented with thick strong blue and red lines. Although
there was the difference in specific movements between ERA-20c and 20CR, the trends of
the overall means for 48 stations represented by bold blue color for ERA-20c and bold red
color for 20CR illustrate the significant increasing trends for both cases.

The slopes for ERA-20c were within the range from 0.40 mm/year to 0.55 mm/year,
whereas 20CR had fewer slopes from 0.34 to 0.45 mm/year as described in Table 4. In
comparison between SQM and QDM approaches, the trends by QDM schemes were lower
than those by the corresponding SQM methods in both ERA-20c and 20CR. With the
assumption that two reanalyses, ERA-20c and 20CR, could substantially reproduce the
long-term trend, these temporal patterns imply the clear non-stationarity of the AMRs in
South Korea from 1900 to 2010.
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Figure 9. Inter-annual change of the AMRs of the bias corrected ERA-20c and 20CR by QM approaches ((a) gevSQM, (b)
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the movements of individual AMRs for ERA-20c and 20CR, respectively. The straight lines represent the linear fit to AMRs
from 1900 to 2010.

Table 4. Mann–Kendall test results for the mean of the AMRs of the bias corrected ERA-20c and
20CR by QM approaches from 1900 to 2010 as illustrated in Figure 9. Note that z and b (mm/year)
values represent the standardized test statistics and the slope of the trend, respectively, and z values
over 1.96 indicate a significant trend at the 0.05 significance level in this test.

Method
ERA-20c 20CR

z b z b

gevSQM 5.51 0.50 3.43 0.38

gevQDM 4.21 0.40 2.67 0.34

gamSQM 5.56 0.55 3.53 0.45

gamQDM 4.06 0.41 2.71 0.37

gumSQM 5.50 0.52 3.59 0.42

gumQDM 4.30 0.40 2.91 0.36

It is surprising that the slopes of all stations based on the two different reanalysis
products present a similar increasing trend. This result implies that the extreme data
over South Korea might have a significant increasing trend that the current observed data
with the limited period such as 1974–2010 and 1974–2017 cannot capture. Therefore, the
abstraction of these trends might be beneficial in estimating the future extreme design
rainfall over South Korea with nonstationary frequency analysis. The following study was
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conducted accordingly to employ the derived overall trend that might be more feasible to
occur in nature, even though a certain degree of uncertainties is included.

4.3. Design Rainfalls with Nonstationary Condition

To explore design rainfalls with the nonstationary condition by using the bias-corrected
AMRs from 1900 to 2010, we estimated time-varying parameters of GEV distribution.
Nonstationary design rainfalls were estimated by the BM approach based on the GEV
parameters (µs,m, µi,m, σm and ξm) derived from the bias-corrected AMRs. Here, the bias-
corrected AMRs were collected from QM approaches with GEV distribution (gevSQM and
gevQDM), which showed the best performance in Section 4.1.

To find out the impact of nonstationary condition, we representatively illustrated
design rainfall comparisons in the selected 4 stations, St.5, St.18, St.21, and St.27 in Figure 10.
In the comparisons, design quantiles showed the significant range of uncertainties, which
had an upper-bound of approximately 1.3 to 2.0 times higher than the design rainfalls by
the observed and a lower bound of about 7–45% lower. For example, for St.5 Seoul, the
precipitation quantiles with 100-year return period derived from ERA-20C varied from
about 327 mm to 815 mm for gevSQM, and from 346 mm to 852 mm for gevQDM, while
the classic quantile by the observation was 483 mm. This characteristic is also shown in the
other stations.

For the median values, the design quantiles of the reanalyses with long return periods
such as 100-year and 200-year were generally higher than those by the observations except
st.21 Busan, while the design rainfalls with short return periods, i.e., 10-year and 20-year,
have little difference from the observed. For instance, St.18 Jeonju had a small gap in
10-year design quantiles between the observation and the reanalyses, but the longer the
return period, the more gap there exists, especially for ERA-20c. St.5 Seoul and St.27 Inje
also showed a similar characteristic, with the design rainfall for the reanalyses exceeding
those for the observed as the return period became longer. On the other hand, St.21 Busan
had no clear feature compared with the other stations, and even the design rainfall for the
observed exceeded those by the bias-corrected reanalyses for gevSQM. Although reanalysis
products-based design rainfall estimation includes a certain degree of uncertainty, these
results imply that the nonstationary design rainfall would influence on estimating the
future risk of extreme precipitation and the strength of the impact depends on the target
return period and location.

To find out the spatial influence of non-stationarity in design rainfall, we estimated
the relative change (%) of design rainfall with 100-year return period based on the median
values of the generated parameter chains in 48 stations. The relative change in 48 stations
varied from −38.1% to 58.4% for gevSQM, and from −30.8% to 42.8% for gevQDM, re-
spectively, but the spatial comparisons in Figure 11 illustrated the increase of the relative
change (%) in many regions over South Korea.

Furthermore, the spatial area presenting lower or higher than the observed quantiles
is more similar in case of the QDM for ERA-20c and 20CR than SQM. The results of the
gevQDM relative change shown at the bottom panels of Figure 11 present that the southern
and middle regions have higher design rainfall estimation than the observed one, while the
northern region and the edge of the southeast and southwest present lower design rainfall
from the gevQDM than from the observed one.
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St.18 Jeonju, (c) St.21 Busan and (d) St.27 Inje.
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condition and nonstationary condition. (a) indicates the relative change for the bias corrected AMRs
by gevSQM, while (b) means the results for the bias corrected AMRs by gevQDM.

Despite the uncertainty range, this result suggests that the conventional stationary
approach based on the multi-decadal observation may lead to significant underestimation
of future risk in some regions. For example, southwest parts within 35–36◦ N and 126.5–
127.5◦ E had relative change within approximately 10% to 50% in all comparisons. It is
obvious that there still exists a certain degree of errors in design rainfall taken from the
bias-corrected reanalyses. Nevertheless, if practitioners want to design a project but only
have a limited observation, this result can provide meaningful information for a project
plan with long-term life span.

5. Discussion

Despite the meaningful information, the proposed method inevitably contains er-
rors from various reasons. Basically, long-term reanalyses for daily precipitation have
the systematic errors that spatio-temporally vary [17,20,67–69]. Previous studies have
documented that century-long reanalyses like ERA-20c and 20CR are able to mislead
long-term trends and the bias may considerably exist for the first half of the twentieth
century [16,70–73]. The proposed bias correction methods, SQM and QDM, also have a
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limitation. As a QM approach cannot exactly correct the climate change trend [23], the
potential error in the long-term trend of the raw data may propagate the bias into the bias
corrected value. Moreover, a QM approach based on a certain distribution such as gamma
can underestimate highly extreme rainfalls, which are mainly described by the upper tail of
the distribution [55,74–76]. Thus, some studied have introduced a combination or mixture
distribution like gamma-Pareto to better reproduce the heavy tail [24,55,77,78]. The scale
gap between the observed and the modelled can result in the biases [79]. In other words, as
the proposed QM approaches matched the transfer function between the observation with
point-scale and the model data with grid-scale, the bias-corrected value may include errors.

In design rainfall estimation with nonstationary condition, how to define time-varying
parameters is also one major issue. We assume a linearly time-dependent location parameter,
which is commonly adopted in nonstationary studies, but several studies have also suggested
non-linear location parameter or time-varying scale parameter [1,35,38,40,41,43,46,59,66].

Likewise, various causes may result in substantial errors for the design rainfall inter-
pretation in this study. Nevertheless, the proposed analysis suggests meaningful infor-
mation to help to forecast future risk under the climate change environment. As rainfall
intensity is expected to increase in the future, the conventional approach with stationary
assumption may underestimate future risk. Several studies and authorities have suggested
the guideline for design rainfall and design flood considering the potential impact [80–82].
However, these guidelines typically suggest adding a correction factor into design rainfall
or design flood estimated under stationary condition [81]. For instance, the agency [82]
recommended increasing the peak rainfall intensity from 5% to 40% for the future period
(2015–2115), compared with the data for the baseline period (1961–1990). However, those
suggestions are generally based on the analysis of future climate change scenarios which
also include significant biases, and the nonstationary analysis based on the observation is
constrained by lack of data. Thus, despite the substantial errors, the proposed approach in
this study can be a considerable option to achieve additional information for estimating
future risk in rainfall.

6. Summary and Conclusions

In this study, we aimed to explore design rainfalls under nonstationary condition by
using century-long reanalyses, ERA-20 and 20CR, over South Korea. For this purpose, we
first improved the AMRs of the reanalyses from 1900 to 2010 by using a trend-preserving
method, QDM, compared with the conventional stationary QM scheme, SQM. After bias
correction, we assessed the long-term trend of the bias-corrected AMRs for the whole 20th
century to confirm the nonstationarity. With the improved values of ERA-20c and 20CR,
we estimated design rainfalls under nonstationary condition based on the ENE approach
in 48 stations. Finally, we also explored the spatial change in design rainfalls between the
applied nonstationary approach in the current study and the conventional approach. The
major results obtained in this study are summarized as follows:

1. The applied QM approaches (gevQM, gamQM and gumQM) significantly improved
the AMRs of ERA-20c and 20CR for the reference period. Among three QM schemes,
gevQM performed the best in terms of RMSE and NSE.

2. For long-term trend, no significant trend for the AMRs of the observed and the
reanalyses can be found during the observational period. However, the century-long
AMRs of the bias corrected ERA-20c and 20CR indicated the increasing trends. This
result implies that the AMRs might have time-dependent characteristics and the
trend in the long-term reanalysis datasets could be beneficial in estimating the future
extreme design rainfall over South Korea with nonstationary frequency analysis.

3. The design rainfalls estimated under nonstationary condition were influenced in
estimating the future risk of extreme precipitation and the strength of the impact
depends on the target return period and location. More specifically, the nonstationary
design rainfalls in some parts of South Korea exceeded the classic design rainfalls by
the observed. This result implies that the nonstationarity in the AMRs that the short-
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term observation often fails to detect could deteriorate the confidence of a project
based on the observed data for the future risk in South Korea.

The findings obtained in this study provide a meaningful perspective on the applica-
bility of century-long reanalysis products, especially for nonstationary rainfall frequency
analysis in a region with a limited observation network. Despite a certain degree of errors,
the proposed scheme with employing the reanalysis products can be beneficial to predict
the future evolution of extreme precipitation and to estimate the design rainfall accordingly.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
433/12/2/191/s1. Figure S1. A flow chart for estimating design rainfall under the conditions of
nonstationarity and stationarity.
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