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Abstract: The effects of charged solar particles hitting the Earth’s magnetosphere are often harmful
and can be dangerous to the human organism. The aim of this study was to analyze the associations
of geomagnetic storms (GSs) and other space weather events (solar proton events (SPEs), solar flares
(SFs), high-speed solar wind (HSSW), interplanetary coronal mass ejections (ICMEs) and stream
interaction regions (SIRs)) with morbidity from acute myocardial infarction (AMI) and mortality
from ischemic heart diseases (IHDs) during the period 2000–2015 in Kaunas (Lithuania). In 2000–
2015, 12,330 AMI events (men/women n = 6942/5388) and 3742 deaths from IHD (men/women
n = 2480/1262) were registered. The results showed that a higher risk of AMI and deaths from IHD
were related to the period of 3 days before GS—a day after GS, and a stronger effect was observed
during the spring–autumn period. The strongest effect of HSSW was observed on the day of the
event. We found significant associations between the risk of AMI and death from IHD and the
occurrence of SFs during GSs. We also found a statistically significant increase in rate ratios (RRs) for
all AMIs and deaths from IHD between the second and fourth days of the period of ICMEs.

Keywords: solar wind; geomagnetic storm; ischemic heart disease; solar flares; solar proton event;
acute myocardial infarction; ischemic heart disease

1. Introduction

Intense solar activity results in solar flares, coronal mass ejections (CMEs), and high-
speed solar wind (HSSW) streams. These events can generate geomagnetic storms (GSs). A
number of studies have shown that solar and geomagnetic activities (GMAs) affect a wide
range of human behavioral and health outcomes, with the nervous and cardiovascular sys-
tems being the most clearly impacted. However, the specifics of the biological mechanisms
in animals and humans are not yet completely understood [1–3].

The effects of charged solar particles hitting the Earth’s magnetosphere are often
harmful and can be dangerous to the human organism. Electromagnetic radiation has
an effect on the specific acute conditions of the patients’ brain, nerves, or heart. Most
studies linked to the space weather–human health associations focused on the effects
of GSs on the cardiovascular system [4–6]. On days when GSs occur, changes in blood
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clotting, sedimentation rates, and the human pulse have been observed [7,8]. Studies have
shown that GS increased the risk of acute myocardial infarction (AMI) and stroke [9–12].
Apart from this, the effects on human cardiovascular system were detected 2–3 days before
GS and during the recovery GS phase [13–18]. Some weather pattern or stratospheric
conditions such as quasi-biennial oscillation (QBO) may be influenced by GSs. The risk of
AMI was positively associated with the GS due to stream interaction regions with a lag
of 0–2 days during the east QBO phase and was negatively associated with them during
the west QBO phase [19]. The correlations of blood pressure and heart rate with GMAs in
young and healthy populations were stronger during special weather conditions [20].

Statistically significant associations were found between other space weather events
such as the solar proton events (SPEs), HSSW, solar flares (SFs), and the solar wind interac-
tion area (stream interaction regions (SIRs)) and human health. According to J. Venclovienė
et al., SPEs increase the risk of emergency admission for AMIs, and the effect of GSs on the
risk of AMI is stronger if a GS occurs in conjunction with SPEs [21]. The risk of ventricular
fibrillation during hospital admission due to acute coronary syndrome was associated with
stream interaction regions (SIRs) and a lag of 0–3 days [22]. The days of the arrivals of
high-speed plasma streams during stronger SIRs and 1–2 days before–after were associated
with a higher rate of AMI [19]. Statistically significant correlations between the daily
number of C-class SFs, ≥M-class SF, and CMEs and arrhythmias were found [23].

During GSs, blood clotting increases because of the activated platelet function, and
this results in the increased number of patients with ischemic heart disease (IHD). AMI
events occurring during magnetic storms and greater solar activity are characterized by a
more severe course of IHD, complications, and more frequent cases of death [19]. There
are no studies about the effect of HSSWs and SIRs on the risk of IHD.

There have been few comparisons of the results of studies on the possible effects of
the main constituents of space weather related to changes in geomagnetic activity and the
occurrence of geomagnetic storms (interplanetary coronal mass ejections (ICMEs), SPEs,
SFs, HSSW, and SIRs) on humans (especially by sex). Knowledge about the relationship
between the aforementioned factors and human health would allow for better preparedness
for any future space weather events and their impacts. The success of these measures
depends on the understanding of the basic processes of space weather impacts on the Earth
and humans.

The easiest approach for studying correlations between GMAs and some other process
requires access to parameter measurements recorded over long time periods (for instance,
statistical data from medical institutions, long-term sociological data, dynamics of stock
market indices, etc.). To establish correlations, these series of observations can be juxtaposed
with indices of GMAs, which can be found from open access sources. The relative simplicity
of such studies has led to the production of a vast number of publications.

The aim of this study was to analyze the associations of GSs and other space weather
events that cause GSs (interplanetary coronal mass ejections (ICMEs) and SIRs) or are
associated with the strength of GSs (SPEs, SFs, and HSSW) with morbidity from AMIs and
mortality from IHD during the period 2000–2015.

2. Material and Methods

This study was conducted in Kaunas city, which has a population of about 286,000 and
is located in Central Lithuania (geographic coordinates: 54◦53′ N; 23◦58′ E). In the present
study, we focused on the period 2000–2015. This study was carried out based on the data
of the IHD register (from 1983) in Kaunas city, which were gathered in compliance with
the recommendations of the project MONICA (Monitoring of Trends and Determinants
in Cardiovascular Disease) [24]. The IHD register is run by a group of scientists at the
Laboratory of Population Studies, Institute of Cardiology, the Lithuanian University of
Health Sciences. The IHD register included Kaunas inhabitants aged 25–64 years, whose
data were verified based on the MONICA project protocol recommendations, and those
aged ≥65 years, whose data were not verified. The main data sources were as follows: hos-
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pital statistical forms of discharged patients, hospital records, outpatient records, medical
death certificates, and protocols of path anatomical and forensic investigation [24]. The
study population comprised all Kaunas populations aged 25 years and more, who were
diagnosed with AMI or who died due to IHD (patients who did not survive up to 28 days
with a diagnosis of AMI) (ICD-10 codes I20–I25). The term “AMI” covers all non-fatal
initial and repeated AMI events. While performing data analysis, AMI and deaths from
IHD (fatal AMI) were evaluated in subject groups by sex and age. The study population
was stratified into two age categories: 25–64 and ≥65 years. During the period 2000–2015,
12,330 AMI events (excluding deaths events) (male/female n = 6942/5388) and 3742 deaths
events from IHD (male/female n = 2480/1262) were registered. Total indicates mean AMI
and deaths from IHD together. Table 1 depicts the distribution of events of AMI and deaths
from IHD by sex and age.

Table 1. Distribution of events of acute myocardial infarction (AMI) and deaths from ischemic heart
disease (IHD) by sex and age.

Sex/Age (Years) Total Non-Fatal AMI Deaths from IHD
(Fatal AMI)

All, n (%) 16,072 (100.0/100.0) 12,330 (76.7) 3742 (23.3)

Male, n (%) 9422 (58.6/100.0) 6942 (73.7) 2480 (26.3)

A
ge

gr
ou

p 25–64 5894 (62.6) 4037 (58.2) 1857(74.9)

≥65 3528 (37.4) 2905 (41.8) 623 (25.1)

Female, n (%) 6650 (41.4/100.0) 5388 (81.0) 1262 (19.0)

A
ge

gr
ou

p 25–64 1907 (28.7) 1552 (28.8) 355 (28.1)

≥65 4743 (71.3) 3836 (71.2) 907 (71.9)

The Solar Cycle and Space Weather Events

One of the main solar activity cycles lasts about 11 years. During this cycle, the number
of sunspots, related GMA, and the quantity of high-energy protons are changing. The most
common and the longest available index of solar activity is the sunspot number, which is a
synthetic index and is useful for the quantitative representation of the overall solar activity
outside the grand minimum. During the grand Maunder minimum, however, it may
give only a clue about solar activity whose level may drop below the sunspot formation
threshold. [25].

In the present study, we focused on the period that coincided with solar cycle No. 23
and a part of No. 24. The figure below shows the monthly variation in the daily mean
sunspot number, solar wind speed, and the Ap index (Ap-index provides a daily average
level for geomagnetic activity) (Figure 1A), and the annual rate of the days of ICMEs, SPEs,
X-class SFs, and high-speed plasma streams (HSPSs) (Figure 1B).
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Figure 1. (A) The monthly variation in the daily mean sunspot number, solar wind speed, and the Ap index; (B) the annual
rate of the days of interplanetary coronal mass ejections (ICMEs), solar proton events (SPEs), X-class solar flares (SFs), and
high-speed plasma streams (HSPSs).

In this study, the X-class SFs, SPEs, GSs, HSSW, and the arrivals of high-speed plasma
streams (HSPSs) during SIRs with maximal solar wind speed (SWS) >500 km/s were
employed as space weather events. In our study, SPEs were defined as the daily flux of
solar proton >10 MeV energy over 10 proton flux units (pfu). GSs were defined as the
Ap index (the daily mean value of 3 h Ap indices) ≥30 nT [26]; this definition is used by
the National Oceanic and Atmospheric Administration Space Weather Prediction Center.
The Ap index characterizes how intense the planetary magnetic activity is, especially at
sub-auroral mid-latitudes [27,28]. The Ap index is defined by using the 3 h standardized
K indices from 13 observatories at corrected geomagnetic latitudes between 44◦ and 60◦.
The standardization of the K indices is performed to account for the time-of-year and UT
response; the Niemengk station (52.04◦ N) is chosen as the reference station (as its latitude
is close to that of Kaunas city (52.38◦ N). In this study, HSSW was defined as the daily
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mean SWS over 530 km/s. The cut-off 530 km/s was detected by using the classification
tree method. The space weather data were downloaded from websites (Table 2).

Table 2. Description of space weather data.

Space Weather Parameters Source

X-class solar flares National Center for Environmental Information database [29]

Solar proton events The National Geophysical Data Center OMNIWEB database [30]

Interplanetary coronal mass ejections Space Radiation Lab at California Institute of Technology [31]

Geomagnetic storm British Geological Survey [32]

Solar wind data (solar wind speed and solar wind
dynamic pressure) The National Geophysical Data Center OMNIWEB database [30]

High-speed plasma streams (arrivals of high-speed
plasma streams with maximal solar wind speed

>500 km/s during the stream interaction regions)

Institute of Geophysics and Planetary Physics (data for 2000–2007) [33]
and Solar-Terrestrial Relations Observatory (data since 2008) [34]

In our previous work [19], the daily AMI rate was negatively associated with air
temperature and the QBO phase, and was positively associated with a high atmospheric
pressure, a higher wind speed, a higher North Atlantic Oscillation (NAO) index, SW
dynamic pressure with a lag of 4 days, and the mean SWS with a lag of 3–7 days. These
environmental variables were included in the multivariate models. The values of daily
NAO indices were obtained from the National Oceanic and Atmospheric Administration
database [35]. Monthly QBO indices were downloaded from the database of the Climate
Data Center [36].

3. Statistical Analysis

Statistical data analysis was carried out by using SPSS 20 software (IBM Corp. Armonk,
NY, USA). Correlations between continuous predictors were assessed by using Spearman’s
correlation coefficient. As the daily numbers of medical records Yt are a non-negative count
variable, we suppose that Yt followed the Poisson distribution with mean λt, depending on
predictor variables. The associations between the daily space weather conditions and the
risk of AMI morbidity and mortality from IHD were evaluated by using the multivariate
Poisson regression model, which was specified as [19]

ln(λt) = β0 + β1X(1)
t + β2X(2)

t + . . . + βkX(k)
t ,

where X(1), X(2), . . . , X(k) are predictors, and β1, β2, . . . , βk are regression coefficients. In
Poisson regression, the exp(βi) is defined as the adjusted (for the remaining predictors) rate
ratio (RR), i = 1, 2, . . . ,k.

We analyzed the impact of X-class SFs, ICMEs, GSs, SPEs, HSSW, and HSPSs by
including them as binary variables (1—the day of the event, and 0—the day without of the
event) in the multivariate model with covariates: the quadratic trend of the long-term time,
the month and the day of the week (categorical predictors with the categories Monday,
. . . , Sunday, and holidays not coinciding with weekends), air temperature, both low and
high atmospheric pressure (respectively, >1021 hPa and <1007 hPa), high wind speed
(>5.85 m/s), the NAO index over the 75th percentile, the QBO phase, solar wind dynamic
pressure with a lag of 4 days, and the mean solar wind speed with a lag of 3–7 days (in the
models without HSSW). These variables of solar wind and the aforementioned weather
variables were statistically significant in the model for all AMIs conceived during the
period 2000–2012. The effects of meteorological variables were presented in an earlier
publication [19].

We also analyzed how the rate ratios (RRs) of AMI and death from IHD varied
1–3 days after the event (lag 1–3 days). For this purpose, the variable reflecting the lag
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(from 0 to 3) of the event was included in the model for total AMI and death from IHD as
a categorical variable; other days were used as the reference category. If the time period
between two successive ICMEs was less than 3 days, then we analyzed these ICMEs and
days between them as a single event. Additionally, we analyzed the effect of 1–3 days
before (lags −3; −2; and −1) high-speed plasma streams, SPEs, the period of ICMEs, and
the effect of 1–3 days before the stormy period, defined as the duration of GS and the
period between two successive GS if this period lasted 1–3 days. Based on the regression
coefficients and their p-values for each lag, we created new binary variables as the presence
of a space weather event during the period of the selected lags without gaps. The optimal
delay was selected using the Akaike information criterion.

As the effect of geomagnetic activity on some weather variables was stronger in winter,
and the number of days of GS had a stronger seasonal variation, to assess the effect of
GS, we performed the analysis during different seasons. Apart from this, we evaluated
the combined effects (the combination of two factors) of the space weather variables. The
effects of the selected space weather variables were analyzed separately for males and
females as well as for younger and elderly subjects.

To confirm the statistical associations between space weather and acute health events,
we performed a set of superposed epoch analyses for the response of the daily rates and
RRs of AMI and death from IHD on the key days defined by the categories of the selected
space weather variables. The superposed epoch analysis was performed for GS, ICME,
HSPS, and SPE events.

For testing statistical hypotheses, the significance level 0.05 was used. If p-value
(the probability that we would observe a more extreme test statistic in the direction of
the alternative hypothesis, if the null hypothesis is true) was <0.05, we rejected a null
hypothesis. For testing multiple hypotheses, the results of Simes (1986) [37] can be used.
Suppose there are n hypotheses (H1, H2, . . . , Hn), and the overall rate of type I error is α.
We can reject all Hi, when pi ≤ iα/n for i = 1, 2, . . . , n, where pi is the p-value of the test
statistics of Hi, i = 1, 2, . . . , n, and pi is the ith smallest of the p-values.

To assess the impact of environmental variables, we used adjusted rate ratios (RRs),
their 95% confidence intervals (CI), and p-value of coefficients in the multivariate Poisson
regression model. We did not present p if p >0.5 and did not present the RRs for those
outcomes (all AMI, non-fatal AMI, or deaths from IHD) for which p-values in all groups
were >0.5.

4. Results

During the period 2000–2015, GSs occurred on 310 (5.3%) days. Most commonly,
GSs were observed in autumn and least commonly in winter (2.9%) (Table 3). SPEs were
observed on 195 (3.3%) days. SPEs were also most commonly observed in autumn, and
least commonly, in winter (Table 3). The rate of ICME days was lower in winter. During
the studied period, one or more X-class SFs were observed on 129 days. The days when the
most powerful X-class SF (>X10 intensities) were registered were 3 April, 2001, 15 April
2001, 28–29 October 2003, 4 November 2003, and 7 September 2005. HSSWs were observed
on 1003 days (Table 3).

During the studied period, low positive correlations of the Ap index and SWS and
air temperature and the NAO index were observed. Higher correlations between these
variables were observed during winter (Table 4).
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Table 3. Number and percentage of the days with space weather events by different seasons.

GSs (N/%) SPEs
(N/%)

HSSW
(N/%)

ICMEs
(N/%)

HSPSs
(N/%)

X-Class SF
(N/%)

Spring 84 (5.7) 48 (3.3) 269 (18.3) 186 (12.6) 104 (7.1) 26 (1.8)

Summer 76 (5.2) 41 (2.8) 262 (17.8) 174 (11.8) 117 (7.9) 32 (2.2)

Autumn 108 (7.4) 67 (4.6) 220 (15.1) 196 (13.5) 83 (5.7) 51 (3.5)

Winter 42 (2.9) 39 (2.7) 252 (17.2) 151 (10.5) 98 (6.8) 20 (1.4)

All 310 (5.3) 195 (3.3) 1003 (17.2) 707 (12.1) 402 (6.9) 129 (2.2)

p-value p < 0.001 p = 0.015 p = 0.107 p = 0.082 p = 0.107 p = 0.001

Table 4. Correlations between weather and space weather variables during all the study period and in winter.

Factors Season Air Temperature Atmospheric
Pressure Wind Speed NAO Ap SWS

Atmospheric
pressure

All seasons −0.095 ** - - - - -

Winter −0.381 ** - - - - -

Wind speed
All seasons −0.175 ** −0.323 ** - - - -

Winter 0.335 ** −0.418 ** - - - -

NAO index
All seasons −0.111 ** 0.153 ** 0.054 ** - - -

Winter 0.359 ** −0.018 0.130 ** - - -

Ap index
All seasons 0.038 ** 0.014 −0.022 0.085 ** - -

Winter 0.068 ** −0.009 0.030 0.168 ** - -

Solar wind speed
All seasons 0.043 ** 0.011 −0.019 0.073 ** 0.666 ** -

Winter 0.105 ** 0.035 0.055 * 0.172 ** 0.726 ** -

Solar wind
dynamic pressure All seasons −0.041 ** 0.021 −0.021 0.069 ** 0.668 ** 0.272 **

* p < 0.05; ** p < 0.01.

A higher daily rate of AMIs and deaths from IHD (but non-significantly) was observed
three days before the period of successive GSs and on days of GS and 1 day after the period
of GSs. This period was statistically significantly associated with an increase in RR for all
AMI (RR = 1.06, 95% CI 1.01–1.11), p = 0.01 and non-fatal AMI (RR = 1.06, 95% CI 1.01–1.12),
p = 0.014, all AMI in females (RR = 1.08, 95% CI 1.01–1.15), p = 0.024, and for deaths from
IHD in females aged ≥65 years (RR = 1.23, 95% CI 1.03–1.47), p = 0.02.The analysis of the
RRs of AMI performed during different seasons showed a stronger effect of GSs with a
lag of 0–1 day during summer. The analysis also showed the effect of GSs with a lag of
−3–1 day on non-fatal AMI, especially during summer and spring. An increase in the risk
of AMI was not related to the time of 3 days before GS, days of GS, and the day after GS
during winter (Figure 2).

During spring–autumn, the periods of 3 days before GS, days of GS, and 1 day after
GS were associated with an increase in RR for all AMI and non-fatal AMI in the total
subgroup, for all AMI in females aged ≥65 years, for non-fatal AMI in males and males
aged 25–64 years, and for deaths from IHD in females aged ≥65 years (Table 5). Apart
from this, during spring–autumn, the effects of both “3 days before GS” and “the days of
GS and 1 day after GS” on the risk of AMI were found (RRs were, respectively, 1.09 (95%
CI 1.02–1.16, p = 0.012) and 1.07 (95% CI 1.00–1.14, p = 0.037). We analyzed the interaction
between the winter period and the variable reflecting the effect of GS. For total AMI, AMI
in males, and non-fatal AMI in males, the RRs for the interaction term was lower than
0.90, and the p-values fluctuated between 0.065 and 0.070. No statistical significance was
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found in females for AMI or for death from IHD. Only in males aged ≥65 years, the RR
was statistically significant (RR = 0.72, p = 0.014)
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Figure 2. The effect of geomagnetic storm (the period of 3 days before GS, days of GS, and 1 day after GS) on the risk of
AMI by different seasons. * p < 0.05.

Table 5. The effect of geomagnetic storm (the periods of 3 days before GS, days of GS, and 1 day after GS) on the risk of
AMI and death from IHD during spring–autumn by sex and age group.

Sex/Age Group (Years)
All AMIs Non-Fatal AMIs Deaths from IHD

RR 95% CI p RR 95% CI p RR 95% CI p

Total 1.08 1.03–1.13 0.003 1.08 1.02–1.14 0.007 1.03 0.93–1.13 -

Male 1.06 0.99–1.12 0.092 1.08 1.01–1.16 0.031 0.99 0.88–1.12 -

Age
25–64 1.05 0.98–1.14 0.189 1.10 1.00–1.21 0.047 0.98 0.85–1.12 -

≥65 1.05 0.95–1.16 0.365 1.07 0.95–1.19 0.269 1.01 0.80–1.30 -

Female 1.08 1.00–1.16 0.039 1.07 0.99–1.16 0.100 1.12 0.95–1.33 0.174

Age
25–64 1.02 0.89–1.16 - 1.06 0.91–1.24 - 0.86 0.62–1.21 -

≥65 1.11 1.02–1.21 0.022 1.08 0.98–1.19 0.127 1.23 1.02–1.50 0.035

We found significant associations between the risk of AMI and death from IHD and
the occurrence of SFs during GSs. The evaluation of the impact of the days of SFs with a
lag of 0–1 day occurring during GSs and SFs occurring 1 day after the period of Ap ≥ 30
on the risk of all and non-fatal AMIs showed an increase in RR for all AMI in males aged
25–64 years. On days of SF with a lag of 0–2 coincident with days of GS with a lag of 1
day, RR increased for deaths from IHD in all patients and in males (Table 6). In case of GS
lasting several days, a stronger effect of SF occurring during GS (especially in its initial
phase, before the peak) was found.
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Table 6. The effect of X-class solar flares (days of SFs with a lag of 0–1 day during GSs or SFs 1 day after the period of GSs)
on the risk of AMI and the effect of SFs with a lag of 0–2 coincident with days of GSs with a lag of 1 day on deaths from IHD
during the whole studied period by sex and age group.

Sex/Age Group
All AMIs Non-Fatal AMIs Deaths from IHD

RR 95% CI p RR 95% CI p RR 95% CI p

Total 1.16 1.00–1.35 0.048 1.15 0.97–1.36 0.103 1.34 1.00–1.80 0.047

Male 1.21 1.00–1.46 0.047 1.23 0.99–1.52 0.064 1.48 1.05–2.09 0.024

Age
25–64 1.38 1.11–1.72 0.004 1.41 1.09–1.83 0.010 1.44 0.97–2.14 0.074

≥65 0.91 0.63–1.30 - 0.95 0.64–1.40 - 1.61 0.82–3.13 0.160

Female 1.05 0.83–1.34 - 1.05 0.81–1.37 - 1.08 0.62–1.88 0.778

Age
25–64 0.92 0.58–1.44 - 0.94 0.57–1.55 - 0.54 0.13–2.19 -

≥65 1.12 0.84–1.47 0.444 1.10 0.81–1.50 - 1.32 0.72–2.40 0.369

We found a statistically significant increase in RRs for all AMI and deaths from
IHD between the second and fourth days of the period of ICMEs (successive ICMEs and
1–2 days between them). The effect was stronger for females, especially for those aged
≥65 years (Table 7).

Table 7. The effect of ICMEs (the period of days 2–4 of ICMEs) on the risk of AMIs and deaths from IHD by sex and age group.

Sex/Age Group
All AMIs Non-Fatal AMIs Deaths from IHD

RR 95% CI p RR 95% CI p RR 95% CI p

Total 1.09 1.03–1.17 0.005 1.08 1.00–1.16 0.051 1.17 1.03–1.33 0.017

Male 1.07 0.98–1.16 0.123 1.07 0.97–1.18 0.183 1.07 0.91–1.26 -

Age
25–64 1.13 1.02–1.25 0.023 1.17 1.04–1.32 0.011 1.03 0.85–1.25 -

≥65 0.97 0.84–1.12 - 0.92 0.79–1.08 0.335 1.18 0.87–1.60 0.290

Female 1.14 1.03–1.25 0.009 1.18 0.97–1.21 0.151 1.38 1.12–1.69 0.002

Age
25–64 1.08 0.90–1.30 - 1.06 0.86–1.30 - 1.18 0.78–1.77 -

≥65 1.16 1.04–1.30 0.010 1.10 0.96–1.25 0.169 1.46 1.15–1.86 0.002

The strongest effect of HSSW was found on the day of the event. The effect of HSSW
was associated with an increase in RR for all AMI. AMI in all males and males aged
≥65 years, for non-fatal AMI in all males and males aged ≥65 years, and in females aged
25–64 years (Table 8).

Table 8. The effect of HSSW (daily solar wind speed >530 km/s) on the risk of AMIs and deaths from IHD by sex and age
group.

Sex/Age Group
All AMIs Non-Fatal AMIs Deaths from IHD

RR 95% CI p RR 95% CI p RR 95% CI p

Total 1.04 1.00–1.09 0.043 1.05 1.00–1.10 0.040 1.04 0.95–1.13 0.394

Male 1.07 1.01–1.13 0.013 1.08 1.01–1.15 0.019 1.04 0.93–1.15 -

Age
25–64 1.02 0.95–1.09 - 1.02 0.94–1.11 - 1.01 0.89–1.14 -

≥65 1.14 1.05–1.24 0.003 1.14 1.04–1.25 0.007 1.14 0.92–1.40 0.229

Female 1.02 0.96–1.09 - 1.02 0.95–1.09 - 1.04 0.90–1.21 -

Age
25–64 1.12 0.99–1.26 0.062 1.13 1.00–1.29 0.049 1.06 0.80–1.40 -

≥65 0.98 0.91–1.06 - 0.97 0.89–1.05 - 1.03 0.86–1.23 -

After the quadratic trend was included in the model, no significant effect of HSPS on
an increase in RR for AMI was found (for all subgroups, p > 0.5). The effect of HSPS with a
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lag of −3 to 3 days was associated with an increase in RR for all IHD and IHD in all males
and males aged 25–64 years (Table 9).

Table 9. The effects of HSPSs (lag −3 to 3 days) and SPEs (lag 1–3 days) on the risk of death from IHD during the whole
period by sex and age group.

Sex/Age Group
HSPSs (Lag −3–3 Days) SPEs (Lag 1–3 Days)

RR 95% CI P RR 95% CI p

Total 1.09 1.02–1.17 0.012 1.16 1.01–1.32 0.034

Male 1.11 1.02–1.21 0.012 1.06 0.90–1.26 -

Age
25–64 1.11 1.01–1.22 0.031 1.02 0.84–1.25 -

≥65 1.12 0.95–1.32 0.191 1.19 0.86–1.64 0.303

Female 1.05 0.93–1.18 0.436 1.35 1.08–1.67 0.007

Age
25–64 0.98 0.80–1.22 - 1.40 0.95–2.09 0.092

≥65 1.08 0.94–1.23 0.290 1.32 1.02–1.71 0.037

No significant effect of SPEs on the RRs for AMIs was found (all p > 0.5). The effect of
SPEs was associated with an increase in RR for death from IHD in all patients, in females,
and in females aged≥65 years (Table 8). The effect of SPEs with a lag of 1–3 days confirmed
the results of the superposed epoch analyses (Figure 3B).

The results of the superposed epoch analyses (Figure 3) confirmed the observed effects
of the period of three days before GS—the onset of GS and the effect of days 2–4 of ICMEs
on the risk of AMI and deaths from IHD. An increase in RRs for death from IHD was
found on days 1–4 after the onset of SPEs (Figure 3B) and on the third day before HSPS
(Figure 3D). There is another peak (increase) on the third day before the onset of the ICMEs
period (Figure 3C). This is the time of the onset of CMEs, and it is associated with a small
peak on day ‘−3’ in Figure 3A, presenting the effect of GS. Consequently, the result that
“the risk was increased” from day −3 to day 1 of GS suggests a relation between this
time period and the time of the start of the solar events and the time of their propagation
from the Sun to the Earth. We note that, in most cases, these strong CMEs and ICMEs
were accompanied by simultaneous flare emissions. Thus, radiations (e.g., X-rays, UV),
energetic particles (e.g., electrons) and electromagnetic waves (e.g., radio) arrive on Earth
very quickly. It is probable that these emissions had some influence on the risk of death
from IHD, albeit no significant effect was found.
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Figure 3. The superposed epoch analyses of the rate ratios for AMI and death from IHD with the key days being the GSs
(A), SPEs (B), ICMEs (C), and HSPSs (D) (RRs with 95% CI in the multivariate model). Zero corresponds to the day of the
onset of the stormy period, the period of ICME, HSPS, and SPE. * p < 0.05.

The multivariate models created with several significant weather variables showed a
statistically significant effect of HSSW on AMIs and non-fatal AMIs in men, a significant
effect of GS on non-fatal AMIs, and a significant effect of ICME on the risk of AMI and
death from IHD in females aged ≥65. The results of the combined effect of space weather
variables are presented in Table 10. Both GSs with a lag of (−3–1) days and the period
between the second and fourth days of the period of ICMEs were associated with the risk
of total AMI (according to Simes’ theorem [37] with n = 2 and cut-off for p-values 0.05
and 0.025). Both ICMEs, SPEs, and HSPS were associated with the risk of death from IHD
(according to Simes’ theorem [37] with n = 3 and cut-off for p-values 0.05, 0.0333, and
0.01667). The risk of death from IHD was associated with both SF occurring during GS and
HSPS in males, and with both ICMEs and SPEs in females (Table 10).
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Table 10. Multivariate associations between the occurrence of AMI and death from IHD and space weather variables.

GS a SF and GS b ICME c HSPS d SPE e

RR (95% CI), p RR (95% CI), p RR (95% CI), p RR (95% CI), p RR (95% CI), p

Total AMIs 1.05 (1.01–1.10),
0.023 - 1.08 (1.01–1.15),

0.025 - -

Death from IHD

Total - - 1.15 (1.01–1.31),
0.033

1.10 (1.03–1.17),
0.007

1.15 (1.00–1.31),
0.049

Male - 1.48 (1.05–2.09),
0.024 - 1.11 (1.03–1.21),

0.010 -

Female - - 1.33 (1.08–1.64),
0.007 - 1.30 (1.04–1.62),

0.019
a Three days before the stormy period, during the GS, and 1 day after GS; b X-class SF or two days during the GS; c second to fourth days of
the period of ICMEs; d HSPS with a lag of (−3; 3); e SPE with a lag of 1–3 days.

5. Discussion

The results obtained in our research suggest that a higher risk of AMI morbidity and
mortality from IHD often coincided with the most expressed space weather variations.
Depending on the different models used, many statistically significant relationships were
found in different subgroups between some space weather events such as GS, ICMEs,
X-class SF occurring during GS, SPE, HSSW, and the arrivals of high-speed plasma streams
during SIRs, and AMI morbidity and mortality from IHD in Kaunas region during the
period 2000–2015. In each case, the statistically significant relationship was different, and is
described in more detail in the Results and Discussion parts. The current study revealed
that the risk of AMI morbidity and mortality from IHD was significantly increased on
the days around the days of impact over the threshold of space weather, but the effects
depended on age and sex.

Our results showed that the periods of 3 days before the stormy period, days of GS,
and 1 day after GS were associated with an increase in RRs. The effects on humans before
GS could be explained by solar heliospheric disturbances before the onset of GS. During
the studied period, the three days before the stormy period, a higher mean value of solar
wind density and a higher rate of X-class SF, SPEs, and ICMEs was observed. The cause of
the pre-stormy effect was more widely discussed in [21].

Comparing our current results with those of our previous study [18] with a similar
methodology but a different period, we found that trends in many cases remained similar.
In both studies, the highest GS-related risk of non-fatal AMI was observed in younger
males, while females ≥65 years of age had the highest risk of death from IHD.

Meanwhile, in a similar study, J. Venclovienė et al. (2020) determined that a higher
risk of AMI was positively associated with active-stormy local GMA. The risk of AMI
positively associated with the GS due to stream interaction regions with a lag of 0–2 days
during the east QBO phase (RR = 1.10, p = 0.046) and was negatively associated with them
during the west QBO phase (RR = 0.82, p = 0.024) [19].

We found a stronger effect during the period spring–autumn. The results of the
associations between humans’ physiological variables and GMAs in young and healthy
population showed that if the air temperature was below 6 ◦C, there were significant
correlations of Kp indices with diastolic blood pressure (negative) and with heart rate
(positive); for the whole studied period, the correlations were non-significant [20]. Accord-
ing to previous authors’ results, we can presume, that during the cold period, the human
cardiovascular system is more responsive to higher GMA, and this is one of the reasons
why patients seek early contacts with medical professionals. Therefore, AMI and deaths
from IHD during GS occurred less frequently in winter. However, the results obtained by
Kleimenova et al. (2008) showed that more than 95% of the winter storms were associated
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with an increase in hospital admissions due to AMI, but only about 3% of the summer
magnetic storms showed the same association. The results of Kleimenova et al. (2008) are
not in line with our results. However, they were obtained during the period 1979–1981,
during the maximum of the 21st solar cycle [38]. During the 20th and the 21st solar cycles,
the rates of days of GSs were similar in winter and non-winter periods, and only during
both the 23rd and the 24th solar cycles, was the rate of days of GSs statistical significantly
lower in winter as compared to the non-winter period. It is probable that a lower rate of
days of GS during winter resulted in a weaker effect of GSs during winter.

We found that there was an effect of GS on the risk of deaths from IHD only in females
aged ≥65 years. In a study performed in 263 USA cities, a significant association was
found between daily geomagnetic disturbances (GMD) assessed by Kp indices and total
mortality from cardiovascular diseases (CVDs) and deaths from myocardial infarction
(MI) [39]. In winter, the effects were even stronger when the authors adjusted the models
for 24 h particulate matter (PM2.5). We had no data of PM2.5 for the whole studied period,
but the inclusion of the daily NO2 concentration which strongly correlated with PM2.5
did not show any changes in the effects of GS [39]. However, adjusting for the effect of
ICME, the effect of GS on the risk of deaths from IHD was observed only in females aged
≥65 years.

When acute vascular events were excluded, the main cause of death in most patients
was related to electrical heart instability and heart rhythm disturbances (ventricular tachy-
cardia, fibrillation, complete atrioventricular block, and electromechanical dissociation) [4].
Some of the mechanisms whereby GMA influences human health are associated with
a decrease in heart rate variability [12,40], an increase in blood pressure [41,42], and a
decrease in melatonin levels [43,44]. According to Dimitrova et al., GMA levels and sex did
not reveal a statistically significant difference in the reaction of arterial blood pressure (BP)
of men and women to local and global GMA changes. Nevertheless, the post hoc analysis
indicated that women possibly had a higher sensitivity. The arterial BP of men did not
differ significantly, even within the combinations of separate global GMA levels, whereas
the arterial BP of women for GMA levels 4 and 5 differed significantly from that observed
for levels 1–3. For the SBP, there was also a significant difference for levels 4 and 5 [42].
These factors increased the risk of myocardial ischemia and other CVDs [45]. Among the
mechanisms whereby GMA influences human health, the one mentioned most frequently
is that involving melatonin and the Schumann resonance [5,46]. In addition, GS sharply
disturbs the rhythm of the external synchronizer of biological rhythms [47] and is therefore
accompanied by an adaptation stress reaction of the organism [48]. Melatonin plays a
central role in the regulation of diurnal variation of many human systems. Many cardio-
vascular variables associated with prognosis after acute coronary syndromes (ACS)—such
as heart rate, blood pressure, and platelet endothelial function—exhibit diurnal variation; a
circadian clock also exists in cardiomyocytes [49,50]. Specific links between melatonin and
CVD have been indicated [50]. Human melatonin production decreases in the presence of
coronary artery disease [51] and during AMI [50]. Melatonin acts as a potent antioxidant
agent, reducing myocardial damage induced by ischemia reperfusion [50]. It has been
found that greater reductions in melatonin production are observed in patients with a
higher risk of AMI or sudden death [52].

Meanwhile, we should not forget that the differences that can be observed between
different studies could be explained by the fact that GSs have different origins. It is quite
probable that physiological reactions are not directly related to GMAs and, respectively, to
the intensity of the storms, but also depend on the sources of solar events [15].

We detected significant effects of SF occurring during GS on all AMI and on deaths
from IHD, especially among males. For deaths from IHD in males, this effect was sta-
tistically significant, adjusting for other space weather variables. The effect of SF can
be explained by their effect on the first modes of the Schumann resonance (SR). During
high-energy solar proton events, the solar X-ray burst preceding proton precipitation was
accompanied by an increase in first-mode frequency [53]. X-class SF affect the ionosphere.
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The change in ionospheric parameters is related to changes in the parameters of the Schu-
mann resonance and the changes in the atmospheric electricity, and thus may explain a
greater part of the variability in the number of deaths from AMI [54].

In our study, the strongest effect of HSSW was found on the day of the event. This
effect of HSSW was associated with an increase in RRs for all AMIs and AMIs in males aged
≥65 years, and for non-fatal AMI in males aged≥65 years and in females aged 25–64 years.
In the previous studies performed during the period of maximum solar or GMA during
the 23rd solar cycle, the days of HSSW defined as SWS > 600 km/s were associated with a
deterioration in cardiovascular health. During days of HSSW, the risk of ACS in patients
with diabetes was increased by 1.95 times (p < 0.001), and in patients with the metabolic
syndrome—by 1.86 (p = 0.001) times, as compared to days without either of these events or
2 days prior to or after them [55]. The risk of ACS in patients with chronic atrial fibrillation
was associated with HSSW (lag 0–3 days, OR = 1.39, p = 0.03). In our study, some effects of
the days of SWS > 600 km/s were non-significant, and only on the days of SWS > 530 km/s
was there a statistically significant increase in RR. However, our study covered the period
of 16 years and included a long period of low GMA.

The effect of SPEs was associated with an increase in RRs for death from IHD in all
patients and in females, and was significant, adjusting for other space weather variables.
The effect of HSPS with a lag of −3 to 3 days was associated with an increase in RR for
death from IHD in all patients and in males, and was significant, adjusting for other space
weather variables. A higher hazard ratio (HR) for cardiovascular death in females with
ACS on days of SPE and on the second day after SPE was found [45].

High-speed solar wind, ICMEs, SPEs, SIRs, and GS are the main sources of energetic
particles—protons, electrons, and heavier ions precipitating into the atmosphere [56,57].
Thus, these space weather events are related to the modulation of both the conductivity
of the atmospheric column and the ionospheric potential and affect global electric circuit
(GEC) and atmospheric electricity [58]. The effects of SPE, SWS, and HSPS on the risk of
AMI and deaths from IHD may be explained by their effect on the flow of the downward
current density (Jz) in GEC, affecting meteorology via changes in cloud microphysics [58]
because these predictors were positively associated with the energetic particle flux. More
discussions about the effect of SWS and SIR on weather and on the risk of AMI are presented
in [19]. The direct impact of environmental electric and magnetic fields produced during
GMD or other space weather events [59] on the human autonomic nervous system (ANS)
may explain their effects on the total CVD and AMI deaths found in our study.

Interactions between GMD with ANS are likely to induce some reactions in the
body’s electrophysiology that leads to damage to organ functions and death. Studies have
described the mechanisms by which GMD may regulate ANS and body systems via a
magneto-reception system [60].

A close alignment between the GMA rhythms and the electrophysiology of the human
body has been observed in ultrasound waves from heart structures by echocardiogram, in
brain waves by electroencephalogram, and peripheral nerve activity that is controlled by
the ANS [45,61].

Resistance of a body to space weather events depends on their effect and intensity.
It is especially important at an initial stage of the disease; later, the influence decreases
gradually [62] as the human body is capable of adapting to the environmental impact.
The impact of the aforementioned factors on human health also depends on sex, age, and
general health status [63].

The results obtained in our study showed that the risk of AMI was associated with
HSSW in males, especially in those aged ≥65 years, and with ICMEs in females, especially
in those aged ≥65 years. The results of the multivariate model showed that the risk of
death from IHD was associated with more space weather events: HSPS and SF occurring
during GS had an impact in males, and ICME and SPE affected females.

Our results may help in the understanding of the population’s sensitivity under
different space weather conditions. The prognostic monitoring of geomagnetic and other



Atmosphere 2021, 12, 306 15 of 18

space weather variations in hospitals may help to detect the period of a higher risk in
patients with cardiovascular problems.

6. Limitations and Strengths

One limitation of this study was that the cases were identified in retrospect, and it is
possible that some cases of AMI occurring in Kaunas during the period 2000–2015 were
overlooked. However, given the extensive data collection protocol, this number is likely
not significant, and should not influence our results.

It is possible that some cases identified and recorded as AMI represented in fact some
other pathology rather than an acute myocardial syndrome. This is more likely in the
elderly group aged 65 or more, in which both survivors and non-survivors were recorded
according to clinical diagnosis, without subsequent verification.

This is less likely in the younger age group (25 to 64 years) because both incident and
mortality data were assessed by a combination of symptoms, ECG changes, serum enzyme
activity, and autopsy findings.

In our study, we did not adjust for other confounding factors, including physical daily
activity, smoking and other behavioral factors, and the effects of other pre-existing diseases
(hypertension, diabetes, or previous AMI), air pollution, or medication use. The method
of the registration of deaths from IHD strictly followed the protocol and quality control
procedures according to the WHO MONICA project criteria.

7. Conclusions

The present study showed that a higher risk of AMI and death from IHD in females
aged ≥65 years was related to the period of three days before GS—a day after GS, and a
stronger effect was observed during the period spring–autumn. An increase in the risk
of all AMIs and deaths from IHD was associated with days of X-class SFs and 1 day after
occurring during GS, and a stronger effect was found in men. A higher risk of AMIs was
found on days of HSSW (daily solar wind speed >530 km/s). A statistically significant
increase in RRs for all AMI and deaths from IHD was found between the second and fourth
days of the period of ICMEs (successive ICMEs and 1–2 days between them). The effect
was stronger for females, especially for those aged ≥65 years. An increase in the risk of
death from IHD was associated with SPEs with a lag of 1–3 days and with the period of
3 days before HSPS—3 days after them.

The effects of GSs, ICMEs, and SPEs was stronger in females, and the effect of H-class
SF, HSSW, and HSPS was stronger in males. According to the results of the complex effect
of space weather variables, we found that both GS had a lag of −3–1 days and the period
between the second and fourth days of ICMEs were associated with the risk of total AMI.
The risk of death from IHD was associated with both SFs occurring during GS (X-class SF
on or two days after GS) and HSPS (with a lag of −3 to 3 days) in males and with both
ICMEs (between the second and fourth days of the period of ICMEs) and SPEs (with a lag
of 1–3 days) in females.
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