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Abstract: Long-term hurricane predictions have been of acute interest in order to protect the com-
munity from the loss of lives, and environmental damage. Such predictions help by providing
an early warning guidance for any proper precaution and planning. In this paper, we present a
machine learning model capable of making good preseason-prediction of Atlantic hurricane activity.
The development of this model entails a judicious and non-linear fusion of various data modalities
such as sea-level pressure (SLP), sea surface temperature (SST), and wind. A Convolutional Neural
Network (CNN) was utilized as a feature extractor for each data modality. This is followed by a
feature level fusion to achieve a proper inference. This highly non-linear model was further shown to
have the potential to make skillful predictions up to 18 months in advance.

Keywords: hurricanes; tropical cyclones; fusion networks; weather forecast

1. Introduction

A tropical cyclone (TC) is a rotating storm system over the tropical ocean. Its strength
and location earn it different names. The strength of a cyclone is categorized by maximum
wind-speed at a given time. A TC can be either a Depression, a Tropical Storm (TS),
a Hurricane or a Major Hurricane as its strength increases. Within the Northern Atlantic
and Eastern Pacific basins, a tropical cyclone with wind speeds of over 65 knots is called a
hurricane. Our focus in this work is on the hurricanes in the North Atlantic basin, where
the season starts on 1 June each year and ends on 30 November. Although TCs may occur
outside the hurricane season, such occurences are rare.

Each year TCs wreak havoc on coastal regions around the world. Before the advent of
powerful satellites to observe TC tracks from up in space, very few tools were available
to monitor them in real-time, let alone forecast their occurrences in advance. As data
collection and assimilation methods in weather science have matured, detailed short-term
track and intensity predictions now can be made up to a week in advance. This has
helped to bring down casualty rates by planning rapid evacuation efforts. The short
prediction window, however, can only moderately mitigate the often entailing severe
economic damage. If accurate and substantially earlier predictions of the level of TC
activities such as storm counts and accumulated cyclone energy (ACE) levels are done,
the various organizations can as a result, make a well thought out and proper long term
economic and urban plan to further mitigate losses of lives and property.

A number of mathematical models, commonly referred to as Numerical Weather
Prediction(NWP) models, have been developed and refined in the last few decades [1].
They often simulate various complex oceanic and atmospheric interactions to make short
term predictions of a few hours to days in advance, and less detailed climate predictions of
months to years in advance. Statistical regression models have also been developed to make
long term predictions [2–4]. However, the immense complexity, size and dynamic nature
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of weather systems collectively pose a significant challenge to achieving high accuracy and
precision. NWP methods are computationally intensive and regression-based methods
require discovery of hand-crafted predictors. Given the vast amount of high resolution
raw data available due to advances in weather science, machine learning (ML) based
techniques also provide powerful methods for weather prediction. ML has been applied in
recent years to make short term predictions on TCs with comparable performance to NWP
systems. Application of ML methods to make long term forecasts remains, however, more
challenging on account of paucity of ground truth data.

The problem of TC prediction can be broadly classified into two classes:

1. Short term predictions: These are generally made 6 h to 7 days in advance. The pre-
dictands are spatio-temporal quantities, such as track and intensity of an individual
cyclone.

2. Long term predictions: These are seasonal forecasts generally made at least a month
in advance. The predictands are one-dimensional time series like the total number of
cyclones and Accumulated Cyclone Energy (ACE) in a basin (see Section 4 for details).
Generally, certain handcrafted climatological indices are used as predictors.

While we have a vastly rich amount of modality data (related to pressure, temperature,
wind speed etc) at our disposal, the ground truth data, such as the number of cyclones
in each month or year, or their intensity is very sparse. As a result, ML methods which
generally require large amount of data for training, suffer. ML based models project data
into high dimensional spaces. As the dimensionality of the space increases the sparsity of
projected data also increases exponentially, reducing the predictive power of the model [5].
We address this challenge by oversampling our ground truth data (see Section 4 for details).

We propose, in this sequel, a Fused CNN architecture which uses the data from
various modalities like sea level pressure, sea surface temperature, wind speed etc to
capture long term predictions on some well-known one-dimensional indices which are
well correlated with hurricane activity. Roheda et al. [6] have developed a multi-modality
feature fusion based model to detect faulty sensors in an environment embedded with
multiple heterogeneous sensors. Robust decision-level fusion has also been demonstrated
earlier [7]. Our model was shown to achieve a comparable prediction accuracy as other
state of the art statistical methods at longer lead times. Making long term predictions with
assimilated modality data instead of climatological indices will allow weather scientists to
learn direct long term physical relationships between various modality spatio-temporal
patterns and TC intensities.

The balance of this paper is organized as follows. Section 2 provides a review of
existing relevant prediction models (based on traditional statistics as well as ML). Section 3
gives a brief overview of the basic physics of TCs. The dynamics between various modali-
ties discussed herein will help justify our prediction model architecture in later sections.
Section 4 elaborates on the type of predictors as well as predictands. Sections 5 and 6 pro-
vide details on the architecture of the proposed Fusion-CNN, and explains how modality
data is properly filtered for dimensionality reduction. Section 7 provides details about the
experiments performed. Section 8 presents the results and observations. Section 9 presents
the conclusion.

2. Related Work

Current seasonal hurricane prediction strategies generally consider available data
up to April/May/June to make a forecast for the remaining year. Thus, the prediction
window, tp (the difference in duration between the predictand data and target month of
prediction) ranges from 1 to 6 months. Tropical Storm Risk (TSR) group recently started
issuing preseason hurricane predictions as early as preceding December, thus extending
the lead time by 4 months [8]. In this study, we will demonstrate the feasibility of further
extending the lead time.

As mentioned earlier, statistical methods have been used by weather scientists to
make long term seasonal predictions for quite some time. Most have generally used
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handcrafted features as input. Klotzbach et al. [3] have developed a Poisson regression
based model to predict hurricane yearly count and Accumulated Cyclone Energy (ACE) 2-3
months before the start of the Hurricane season. Specific hand-crafted sets of climatological
indices are fitted to develop this model which is considered as a benchmark in hurricane
prediction. As will be shown in Section 8, our model is able to achieve as much accurate
ACE predictions as compared to this model while also considering a larger prediction
window. Davis et al. [9] and Kozar et al. [10] also use a model similar to [3] albeit with a
somewhat different set of climatological indices. Statistical models generally select a set of
covariates from myriad climatological indices as predictors using evaluation techniques
like cross-validation. Keith and Xie [11] cross-correlate various climatological indices
against empirical orthogonal functions (EOFs) of the hurricane track density function
(HTDF) to select predictors. These predictors are used in a regression model for forecasting
major hurricane activity and landfalls.

Machine learning has also recently been applied to make short-term hurricane predic-
tions. Alemany et al. [12] have developed a fully connected Recurrent Neural Network
(RNN) to learn the behavior of a hurricane trajectory moving from one grid location to
another. The model trains on partial trajectories of individual cyclones. The RNN takes a
suite of features including the wind speed, latitude and latitude coordinates, direction (or
angle of travel), distance, and grid identification number. The trained model, subsequently
tries to predict the ensuing trajectory of the cyclones.

At seasonal time scales,Richman et al. [13] used monthly averaged SST global data
from January through May for each year, masked by ranked seasonal correlation heatmaps,
to generate input attributes for a Support Vector Regression based model to predict TC
count for the remaining year. This way they don’t rely on heuristics based attributes.

Convolutional Neural Network (CNN) is a tried and tested data-driven model used
for detecting and classifying patterns in multidimensional data like images and spatial
maps [14]. It involves learning small sized multidimensional convolutional kernels which
act as localized feature extractors. This also mitigates overparameterization. CNN ker-
nels can be used to efficiently search and capture localized weather patterns like regions
having low pressure, high surface temperature and high wind vorticity among many
other phenomena. However, the task at hand here is not classification, but rather re-
gression or generative. CNNs have also been used in image generative tasks like image
super-resolution [15,16] and denoising [17]. Ham et al. [18] use 3-monthly averaged SST
anomalies as input to a CNN to forecast El Nino Southern Oscillation activity.

3. Hurricane Dynamics

All cyclones are low pressure systems, with air rotating inwards to the low pressure
core, whereas anticyclonic outflow develops aloft. The kinetic energy of TC winds is
derived primarily from the release of energy in the form of latent heat as clouds are created
from the rising warm moist air of the tropics. The development of a warm-core cyclone,
begins with significant convection in a favorable atmospheric environment. There are six
main requirements for tropical cyclogenesis [19]:

1. A preexisting low-pressure disturbance
2. A sufficient Coriolis force to provide rotational force to oncoming winds.
3. Sufficiently warm sea surface temperatures.
4. High humidity in the lower to middle levels of the troposphere.
5. Atmospheric instability to sustain a vertical movement of air parcels.
6. Low vertical wind shear.

The factors explained above can be seen as local environmental conditions conducive
to the formation a specific cyclone at a given location and time. By observing the sensing
modalities related to these factors, one can assess the likelihood of TC formation or intensity
change at a specific region and time. However, due to the highly dynamic nature of
weather systems, increase in prediction window size (both in duration, i.e., the temporal
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dimension, as well as distance, i.e., the spatial dimension), causes the quality of prediction
to rapidly deteriorate.

TCs are an atmosphere-ocean coupled system. Such coupling can lead to a phe-
nomenon known as teleconnection: The modalities in one place and time can influence
phenomena thousands of kilometers away at a later time.

A significant teleconnection exists between hurricanes over North Atlantic and El Niño
Southern Oscillation (ENSO) over the tropical eastern Pacific [20]. El Niño corresponds
to anomalously warmer waters, i.e., higher SSTs in the central and east-central equatorial
Pacific Ocean. La Niña on the other hand corresponds to negative SST anomalies in
the area. The ENSO cycle is known to affect Atlantic hurricane activity, with the warm
phase resulting in a less active hurricane season, and the cold phase favors an active
season [21]. Robust forecasts of ENSO can help improve the forecast of hurricane activity
in the Atlantic Ocean.

4. Predictors and Predictands

Our predictors include various modalities, whose data has been collected by weather
scientists over many decades using various methods. The modalities used in our models
are meridional (north-south orientation) and zonal (west-east orientation) components
of wind speed (VWND and UWND, respectively) at 850 mb and 200 mb geopotential
heights, sea surface temperature (SST), sea level pressure (SLP) and relative humidity (RH)
at 700 mb. The choice of these modalities is on the basis of factors affecting cyclone genesis
and propagation as elaborated in Section 3, and discussed in [11]. Table 1 provides a brief
list of all the predictands and modalities used as predictors in our models.

As a proxy for hurricane season intensity, we have used two one-dimensional quanti-
ties as our predictands.

4.1. NINO Indices for ENSO

To measure ENSO activity, multiple indices have been defined. One subset based on
spatio-temporal averages of SSTs are called NINO indices. These averages are calculated
over specific regions of Pacific Ocean, and they quantify the ENSO variability. Specifically
(as defined in [22]) for a certain month τm, the NINO indices are calculated as:

ηreg,m(τm) =
1

Nm
∑

x,y∈reg

tm=τm+2

∑
tm=τm−2

mSST(tm, x, y) , (1)

where, mSST(tm, x, y) is the monthly average SST at location (x, y) at month tm.
The subscript ’reg’ represents specific regions in the central Pacific Ocean. They are

named as 1 + 2,3, 4 and 3.4 [23]. 3.4 region (5◦ N–5◦ S, 170◦ W–120◦ W), or 1 + 2 region
(0–10◦ S, 90–80◦ W) were our choices for prediction.

Nm is the normalizing factor and is equal to the total number of spatio-temporal
samples of mSST(tm, x, y) ∀ tm and x, y ∈ reg.
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Table 1. Descriptions of data used in the prediction model.

Model Role in the
Model

Spatial
Resolution

Original Temporal
Resolution

Temporal Resolution
Used in the Model Data Source

NINO3.4 (η34(t)) Predictand NA Monthly Bimonthly NOAA
NINO1 + 2 (η1 + 2(t)) Predictand NA Monthly Bimonthly NOAA
ACE (φ(t)) Predictand NA Annual Bimonthly HURDAT2
Sea Level Pressure (SLP(t, x, y)) Predictor 5◦ × 5◦ 4 times Daily Bimonthly NCEP-NCAR
Sea Surface Temperature (SST(t, x, y)) Predictor 5◦ × 5◦ 4 times Daily Bimonthly NCEP-NCAR
Zonal Wind Speed at 850 mb (UWND850mb(t, x, y)) Predictor 5◦ × 5◦ 4 times Daily Bimonthly NCEP-NCAR
Meridional Wind Speed at 850 mb (VWND850mb(t, x, y)) Predictor 5◦ × 5◦ 4 times Daily Bimonthly NCEP-NCAR
Zonal Wind Speed at 200 mb (UWND200mb(t, x, y)) Predictor 5◦ × 5◦ 4 times Daily Bimonthly NCEP-NCAR
Meridional Wind Speed at 200 mb (VWND200mb(t, x, y)) Predictor 5◦ × 5◦ 4 times Daily Bimonthly NCEP-NCAR
Relative Humidity at 700 mb (RH700mb(t, x, y)) Predictor 5◦ × 5◦ 4 times Daily Bimonthly NCEP-NCAR
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El Niño (La Niña) events are defined when the Niño 3.4 SSTs exceed +(−) 0.5 ◦C
over long-term average for a period of 6 months or more [22]. Monthly readings of both
indices have been made available from January, 1950 onward by National Oceanic and
Atmospheric Administration (NOAA). However, as these are monthly indices, we have
only 840 samples for each index for the period of 1950 to 2019. This very small sample set
is incompatible with machine learning methodology, especially in case of a deep learning
model. Sun et al [24] showed that for various ML models based on CNN, the performance
on computer vision detection tasks increases logarithmically with the volume of training
data size. We do have SST data available at a much higher temporal resolution. Therefore,
we can generate our own samples of oversampled ηreg. We first trained our models using
ground truth data oversampled at daily temporal resolution. In other words, we proceed
to calculate daily NINO index as shown below:

ηreg,d(τd) =
1

Nd
∑

x,y∈reg

td=τd+74

∑
td=τd−75

mSST(td, x, y) , (2)

where, now τd and td are indices for a day with τd = 0 corresponding to 1 January 1950.
mSST(td, x, y) is the daily average SST at (x, y) at day td and Nd = 30× Nm.

Comparing Equations (1) and (2), we see that assuming a 30 day month, we have

ηreg,m(τm) =
1

30

14

∑
td=−15

ηreg,d(30τm + 15 + td) . (3)

As the temporal averaging to calculate NINO indices is done over a window of
5 months (as shown in Equations (1) and (2)), the daily NINO indices would exhibit very
small change from one day to another. Consequently, on oversampling of our ground
truth data at such a high resolution, we would have high temporal correlation between
contiguous time samples. This is not desirable when training any statistical model, as highly
correlated samples wouldn’t be presenting the model with any new relevant information.
Therefore, after numerous experiments, in our final models, we used ground truth sampled
at bimonthly rate.

4.2. Accumulated Cyclone Energy (ACE)

ACE [25] is defined as:

φ(τy) = 10−4 ∑
k

v2
max(k)1(vmax(k) > 35 knots) , (4)

where, τy is a particular year. 1(.) is the indicator function, k ∈ {0, ..., K} corresponds to
storm samples observed in the year τy, and v2

max(k) is the maximum wind-speed observed
for the storm sample k. Generally, maximum wind speed is recorded 4 times daily across
the lifetime of a storm. The cardinality of K will change from year to year depending on
how many TCs were observed in that year and how long the storms lasted.

The 10−4 multiplier is to keep the calculated quantity in a manageable range. ACE
data is updated annually by NOAA. As can be conjectured, a high ACE for a year could
either mean that there were a lot of low intensity TCs in that year or there were few
TCs, but those few were very strong, or the TCs lasted for a longer period of time, or a
combination of all three.

The sparsity of samples again becomes a problem for ACE and we must generate an
over sampled ACE to produce a bimonthly index by reducing the duration of summation
to just 15 days instead of 365/366 days.
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5. Problem Formulation

Let mi(t, x, y) denote the observations from the ith modality at the location (x, y) and
time t. Modality can be any of the predictors (SLP, SST, UWND, VWND etc.) or a feature
extracted from one of them. Let i ∈ {0, 1, ..., I}. At time instance t, the size of mi(t, x, y) is
X×Y. Our aim is to develop a hierarchical non-linear model to make a prediction, ψ̂(t) of
a one-dimensional hurricane activity measure ψ(t), tp time samples in advance, i.e.

ˆψ(t) = G( f1(t− tp), f2(t− tp), ..., fi(t− tp), ...)

= G

(
f1
(
m1(t− tp − tα + 1, x, y), ..., m1(t− tp, x, y)

)
, ...,

fi
(
mi(t− tp − tα + 1, x, y), ..., mi(t− tp, x, y)

)
, ...

)
, (5)

where fi(t) = fi
(
mi(t− tα + 1, x, y), ..., mi(t, x, y)

)
. ψ(t) can be any of the one-dimensional

indices (like NINO indices or ACE) indicative of the hurricane activity
Each of the fi’s is also a non-linear function. tp is the size of the prediction window.

tα is what we would call the size of the window of focus. It dictates how far back in time
we look at a modality variable to capture its temporal dynamics. This window of focus is
kept as small as possible in comparison to tp, as we aim to forecast with a long lead time.
For bimonthly one-dimensional indices, by experiments we decided to keep tα as 1 month.

6. Proposed Solution

Figure 1 shows the general architecture of the model. The functions fi(.) ∀ i are
realized by CNNs which act as localized feature extractors while G(.) which as a function
accomplishing non-linear feature-level fusion, is realized by a fully connected neural
network (NN). Each of the measurement modalities forms a dynamical system exhibiting
non-linear spatial interactions within itself. For instance, different wind and oceanic
currents interact with each other to form complex dynamic patterns. The complexity of the
process we are seeking to model, is further illustrated by not only the non-linear information
of each of the measurement to the global objective, but by also the non-uniformity of their
respective contributions. We have modelled these self-interactions and selective weighing
of modalities by feeding the ith modality to a separate CNN pipeline, fi(.), with no shared
weights with other pipelines, and then fusing them together in later stage via the function
G(.). Separating of modalities in fi(.) prior to extracting the features is justified by the fact
that different modalities represent different heterogeneous physical processes.

Information in each of the modality data is tightly refined by dimensionality reduction
of mi to get m̃i prior to proceeding to feature extraction. This is further discussed in the
next subsection.

Let Fi,l(j, s1, s2) be the output of the jth CNN kernel, W j
i,l . In the layer li of CNN

pipeline, fi(.) corresponds to the ith modality. Let there be nli kernels in layer li. Let the

size of W j
i,l be nli−1 × pi,l1× pi,l2. We can then write

Fi,l(j, s1, s2) = ζ

(
∑

k,σ1σ2

wj
i,l(k, σ1, σ2) Fj

i,l−1(k, s1 − σ1, s2 − σ2) + bj
i,l

)
, (6)

where ζ(.) invokes a sequential application of non-linear leaky ReLU function followed by
average pooling and batch normalization. bj

i,l are bias terms. The input Fi,0(j, s1, s2) to the
first layer is such that, Fi,0(j, s1, s2) = m̃i(t− j− tp, x, y), j ∈ {0, 1, ..tα − 1}.
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Figure 1. Architecture showing feature level fusion.

Each fi(.) has Li such layers. The outputs of all the independent fi(.)’s are then
vectorized and concatenated together to obtain:

FFl,0(t) =

[
vec
(

F0,L0(0, s1, s2)
)T , ..., vec

(
F0,L0(nL0 , s1, s2)

)T , ..., vec
(

FI,LI (nLI , s1, s2)
)T
]T

, (7)

where vec() signifies the vectorization operator.
FFl,0(t) is then fed to a fully connected NN. The NN has weights wj

Fl,m applied at its
layer m to get the output, Fk

Fl,m(t) for the kth neuron as,

Fk
Fl,m(t) = R

(
wkT

Fl,mFFl,m−1(t) + bk
Fl,m
)

, (8)

where, R(.) is the non-linear leaky ReLU function, and bk
Fl,m are the bias terms.

The final layer has only one neuron which outputs the predicted value, ψ̂(t).

The training is guided by the minimization of the mean squared error between ψ̂ and
ψ. To avoid overfitting, we also regularize the weights of the model by minimizing their
L1-norm. Thus, the optimization task performed is:

min
W j

i,l ,w
k
Fl,m

1
nt

∑
t

(
ˆψ(t) − ψ(t)

)2

+ λ

(
∑
k,l,i

∣∣W j
i,l

∣∣
l1

+ ∑
k,l

∣∣wk
Fl,m
∣∣
l1

)
, (9)

where nt is the total number of samples in the training set and λ is a hyperparameter
determining the relative significance of regularization in comparison to the average mean
squared error.
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Dimensionality Reduction/Information Extraction

The data at all locations across the globe is also not always required. For example,
the weather phenomena occurring above the continental landmasses, and also in extreme
northern Arctic and southern Antarctic regions may not have any significant effect on
ENSO and tropical cyclone activity. We must come up with strategies to extract ’useful’
information from the raw modalities data.

We first tried to select specific patches of the global grid as input to the fi(.). The patches
were selected on the basis of covariance

∣∣Et[ψ(t), mi(t− tp, x, y)]
∣∣, filtering out locations

with low covariance magnitude. Richman et al. [13] used this method to make prediction on
tropical hurricane count by using rank correlation maps over SST data to select attributes
for their SVR based prediction model. However, in case of large prediction windows
(tp > 6 months), the covariance between the predictor modalities and the predictands is
very low at most geographical locations. So, a better way for information extraction is
in order. Singular Value Decomposition (SVD) analysis is a well proven method which
generalizes eigenvalue decomposition to decompose a matrix into mutually orthogonal
components. In our case, we form a predictand weighted matrix from each of the modalities
global data and perform SVD analysis on it.

We perform SVD on a predictand weighted matrix from each of the modalities
global data, i.e.,

Γi = DMi = UiSiVT
i . (10)

where Mi =
[
vec(mi(0, x, y), vec(mi(1, x, y), ..., vec(mi(n, x, y)

]T

D = diag
(
ψ(tp), ..., ψ(tp + n))

)
.

Taking the product of D and Mi is tantamount to weighting each of the global maps in
Mi at the time instant, (t− tp) with the value of ψ at at the time intant t. It can be argued,
that SVD of Γi also performs a similar projection, with the exception that now we have
two mutually coupled spaces. One space has temporal characteristics of Γi with column
vectors of U forming its basis vectors, while the other space has spatial characteristics of Γi
with column vectors of Vi forming its basis vectors.

We performed this SVD analysis over each modality separately, which led to the
unveiling of some interesting patterns. We observed that:

• Approximately 10–20 s-values hold above 5% relative significance. Most of these
s-values have relatively similar significance.

• 50–100 s-values hold above 1% relative significance.
• No single s-value holds above 15% significance.

Similar trends were observed across all modalities. Figures 2 and 3 show, as an
example, some arbitrary U and V column vectors corresponding to NINO3.4 weighted
bimonthly SLP with tp = 3 months. U vectors are plotted as 1-D time series. On the
other hand, V vectors are reshaped into 2-D matrices of the same shape as the original
SLP spatial data (i.e., X×Y). As expected the vectors corresponding to less significant
s-values are have more high frequency or noisy variations. The vectors corresponding
to most significant s-values are temporally/spatially slowly varying. Physical intuition
behind this pattern can be that components corresponding to more significant s-values
represent spatially large-scale or temporally slowly varying environmental processes,
while those corresponding to less significant s-values represent more localized phenom-
ena. As NINO indices and ACE correspond to spatially very large and slow varying
phenomena, most of the useful information is contained in components corresponding
to the significant s-values.
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Figure 2. Column vectors, u0
SLP, u1

SLP, u2
SLP and u212

SLP for ΓSLP. x-axis is the index value and y-axis is the amplitude.
The vectors are plotted as 1-D time series.The D matrix is formed by η̂3.4(t + 3 months).

Figure 3. Reshaped column vectors (in clockwise order starting from upper left), v0
SLP, v1

SLP, v2
SLP and v212

SLP for ΓSLP.
The vectors were reshaped to 2-D matrices with same shape as the original SLP map (25× 72). The W matrix is formed by
η̂3.4(t + 3 months).
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Let the subscript red subscript imply dimensionally reduced version of the matrices
involved formed by taking only first r column vectors in Ui and Vi, and taking only first r
singular values in Si. In our final models, we set r to 50 for the prediction of NINO indices
and 10 for the prediction of ACE. Higher value of r for NINO indices in comparison to ACE
was decided to account for higher temporal variation prevalent in NINO indices curves
(Compare real). Reducing r any further reduced the prediction accuracy.

Further, we can get dimensionally reduced version of the original modality matrix, Mi as,

Mi,red = W−1Γi,red . (11)

Above operations work only when we have ψ(t + tp) values readily available, which
is the case with training set samples. However, when using the already trained model to
do actual prediction, we would not have ψ(t + tp) available at all, as this is the very value
we are trying to predict. This supposed conundrum can be resolved if we observe that,

ΓiViS−1
i = Wi MiViS−1

i = UiSiVT
i ViS−1

i = Ui . (12)

Then, we have,

Mi,red = W−1Ui,redSi,redVT
i,red = (W−1Ui)redSi,redVT

i,red = (MiViS−1
i )redSi,redVT

i,red . (13)

Thus, once Vi and Si have been calculated from the training set samples of Mi and
W, new samples of Mi,red can be calculated using Equation (13). Then, we can use the row
vectors of Mi,red, reshaped into 2-D matrices m̃i(t, x, y), as input to fi(.).

7. Experiments

We used NCEP/NCAR Reanalysis Dataset [26] to gather data for above modalities.
Many different data sources were assimilated together to generate the Reanalysis dataset.
Sources include surface observations, upper-air balloon observations, aircraft observations,
and satellite observations. An assimilated dataset has the advantage that it is available
for each grid point at each time step. However, as there are multiple data sources whose
quality may not be uniform throughout spatial and temporal range, accuracy may not be
consistent over the whole range.

To decrease the number of computations while training the model, all the modalities
were spatially interpolated to a lower common resolution of 5◦ × 5◦. The temporal resolu-
tion was also changed to 15 days per time sample. All modalities were then standardized,
by subtracting long-term temporal mean and dividing by the standard deviation at each
spatial grid-point. The temporal means and standard deviations used for standardizing
are not constant throughout the temporal range (1948 to 2019) of the datasets. Instead
a running window of 10 years is used. The rationale for using 10-year averages is to
take into account the very long term change in environmental conditions due to global
climate change. NOAA’s Climate Prediction Center uses a 30-year running mean over SST
data when calculating ENSO indices [27]. We decided to use an even shorter window to
better capture the effects of recent human activities on global climate change. By using a
shorter window, we vary our running mean more frequently. A slowly varying mean can
potentially mask information related to sample to sample variation.

Training was carried out using bimonthly data for the years ranging from 1951 to
2010. In case of ACE, only the data for the months of June to November was used, as for all
other months, ACE value was almost always 0. Each fi(.) consisted of 3 layers, with each
layer consisting of convolution, ReLU activation average pooling and batch-normalization
operations in order. As stated earlier in Section 5, there are nli kernels in layer li of the

CNN pipeline fi(.). The size of kernel W j
i,l is nli−1 × pi,l1× pi,l2. The number of kernels

in successive layers of each fi(.) were 32, 64 and 128. The kernel sizes for different layers
staring from first layer were 3× 4× 8, 32× 2× 4 and 64× 2× 4, respectively. The fully
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connected part of the model had 4 layers, with the number of neurons in starting from first
layer being 32,256, 5000, 500, 30 and 1.

8. Results
8.1. Prediction Accuracy

Figure 4 shows prediction results NINO3.4 index for the period of January 2012 to
December 2017 from models trained using features extracted using SVD based dimen-
sionality reduction for tp = 3 & 12 months. Actual training was done for bimonthly
NINO3.4 index. The monthly predictions were calculated by simply averaging the two
bimonthly predictions for each month. The predictions from January 2015 till June 2017 are
particularly lower in case of tp = 12 months in comparison to the ground truth. We also
observed that using a shallower network (with just 2 convolutional layers in each fi(.))
leads to a damped result. Thus using more layers results in effectively building a higher
order system which is less damped. In our experiments changing model constraints like
number & size of convolutional filters, number of neurons in the fully-connected layers or
choosing number of singular values among myriad other things affected the over-all bias of
the predictions. Increasing the depth of the CNN’s particularly decreased damping giving
enough capacity to the model to capture high variations corresponding to extremely rare
events. Figure 5 shows prediction for monthly NINO1 + 2 index. The general architecture
is again the same as what we used for NINO3.4.

Figure 6 shows annual Atlantic ACE predictions for the period of 2012 to 2018,
with prediction windows of 3, 6, 9, 12 and 18 months. Only the months of June to Novem-
ber are considered which correspond to the annual hurricane season. Actual training
was done for bimonthly ACE. The annual ACE predictions were calculated by simply
adding together all the bimonthly ACE predictions for each year. So, although the figure
shows 7 sample points, the actual prediction generated 84 sample points (12 bimonthly
predictions for the 6 months of June to November for each year). However, another model
generating bimonthly predictions on ACE was not available to us to compare our forecasts
with. Klotzbach et al. [3] from Colorado State University (CSU) have developed a model
based on Poisson regression to predict annual ACE. They use certain climatological indices
as predictors and make prediction for each year’s ACE by compiling data from January
to August for that particular year. Hence, their prediction window is approximately 1 to
3 months. The exact climatological indices they use for prediction also change from year
to year. Thus, they use a very hands-on heuristic based approach to select their input
features. In comparison, our prediction models work reasonably well even with 12 months
to 18 months advanced prediction without relying on heuristics-based feature selection.

Table 2 shows various performance metrics for ACE prediction efficiency calculated
over years ranging from 2012 to 2018. The metrics for CSU predictions made in August
for the same years range is also included. It is evident that the accuracy (based on MAE
and RMSE) of our model forecasts is comparable or better than the CSU model even at
12–18 months lead time. The R2 score is consistently higher or comparable to CSU model.
A significantly high correlation is evident with models trained for 3, 9, and 12 months lead
time. The fourth column of the table corresponds to Mean Squared Skill Score (MSSS).
MSSS is used to define the forecast skill. MSSS is the percentage improvement in mean
square error over a climatology. For a forecast γ̂(t) of a time series γ(t), it is calculated as:

MSSS = 1− ∑t(γ̂(t)− γ)2

∑t(γ(t)− γ)2 (14)

where γ is the long-term mean of γ(t). We used 35-year mean (1984–2018) for our ACE
time-series. The original climatology is the calculated ACE provided by NOAA.
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Figure 4. Monthly NINO3.4 predictions (January 2012 to December 2017) using SVD based dimensionality reduction
compared with the original NINO3.4 index (black curve). x-axis is months starting from January, 2012.

Figure 5. Monthly NINO1.2 predictions (January 2012 to December 2017) using SVD based dimensionality reduction
compared with the original NINO1.2 index (black curve). x-axis is months starting from January, 2012.
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Figure 6. Annual Atlantic ACE predictions (2012 to 2018) using SVD based dimensionality reductions compared with the
Poisson regression based seasonal predictions done by Colorado State University in August each year (dashed blue curve)
and the original ACE curve (black curve).

Table 2. ACE pediction efficiency metrics for different prediction windows compared with CSU
seasonal predictions made in August.

Model MAE RMSE R2 MSSS

CSU August Prediction 51.71 62.26 0.0719 −9.48%
Fused CNN with tp = 3 months 41.44 46.05 0.4571 40.09%
Fused CNN with tp = 6 months 61.15 83.31 0.0800 −96.04%
Fused CNN with tp = 9 months 39.11 56.80 0.3079 8.87%
Fused CNN with tp = 12 months 37.19 48.45 0.5779 33.70%
Fused CNN with tp = 18 months 61.19 81.00 0.0656 −85.35%

Positive skill indicates that the model performs better than climatology, while a nega-
tive skill indicates that it performs worse than climatology. For 2012–2018 time duration,
the forecast skill of CSU model goes negative. However, prediction with tp = 6 months
has a higher error and poor skill score. But that is due to one extreme instance of overpre-
diction. However, the rest of our models show significantly better skill score. For further
comparison, the best skill score for the latest predictions made by TSR in [28] is also around
40%. However, this high number is for their August prediction which is just 1 month before
the start of the hurricane season. For a lead time greater than 3 months their skill-score is
below 20%. It is also to be noted is that the test set here is very small (just 7 time samples).
But we avoided increasing our test set size at the expense of decreasing our already small
training set.

8.2. Prediction Reliability

MAE, RMSE and MSSS provide metrics only on over-all prediction accuracy of a
model. However, they do not provide any indication of the statistical reliability of the
prediction. Ljung-Box Q test provides a measure of how the model fits the ground truth.
Thus, this metric measures model reliability instead of its accuracy. If a model fits the
ground truth closely, then it should be able to explain most of the trends and deterministic
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relationships between the dependent variable (i.e., ground truth) and various independent
variables (i.e., input modalities). The residual error samples in such a case would have very
little correlation among themselves and would be more like independent and identically
distributed (i.i.d.) noise samples. Thus, their autocorrelation function (ACF) for non-zero
lags will be very low.

If we have a time-series, {εt}n
t=0 of residuals with εt = ψ̂(t)−ψ(t), Ljung-Box Q

test assesses the null hypothesis H0 that residuals exhibits no autocorrelation for a fixed
number of lags L, against the alternative H1 that autocorrelation is non-zero for some of
the lags [29]. More specifically, the Ljung-Box Q test is defined by [30]:

Q = n(n + 2)
L

∑
k=1

ρ2
k

n− k
, (15)

where ρk are autocorrelation coefficients at lag-k, defined as:

ρk =
∑n−k+1

i=0 (εi − ε)(εi+k − ε)

∑n−1
i=0 (εi − ε)2

, (16)

with ε = 1
n ∑n−1

i=0 εi. As under H0, all εt are i.i.d. with finite mean and variance, for a large
n, they will be approximately iid with distribution N(0, 1/n) [31]. In this case, Q would
asymptotically follow a χ2 distribution with L degrees of freedom. The null hypothesis is
rejected if

Q > χ2
1−α,L , (17)

where χ2
1−α,L is the 1− α quantile of the χ2 distribution with L degrees of freedom. α is the

significance level of the test. Livieris et al. [29] have demonstrated the use of Ljung-Box
Q test as a reliability measure of their deep-learning model used to forecast time-series
related to financial market, energy sector and cryptocurrency.

Figure 7 shows ACF plots for the residuals from various ACE prediction models with
lags ranging from 0 to 6. The region between the dashed blue lines is the interval for
95% confidence that the residuals are i.i.d. with a Gaussian distribution. As can be seen
for all non-zero lags the ACF plots are inside this interval thus providing acceptance to
the hypothesis of i.i.d. Guassian distribution of the residuals. However, as the number
of samples in the test set is low, the confidence interval is quite wide. Even then, our
Ljung-Box Q statistics indicate that our predictions do fit the ground truth.

For our test set of ACE, n = 7 and L = n − 1 = 6. Table 3 shows the Ljung-Box
Q statistics calculated for variuos models and their corresponding p-values. The critical
value for L = 6 at % significance is 12.59. We accept null hypothesis if Q score is less than
this critical value, or p-value is higher than significance level. As can be seen p-value is
always higher than a significance level of 5%. Thus, null hypothesis is accepted which
demonstrates the goodness of fit of the models.

Table 3. Prediction reliability metrics over the Test set (2012–2018) for different prediction windows
with significance level of 0.05.

Model Ljung Box Q Score p-Value Null H0

CSU August Prediction 5.45 0.49 Accepted
Fused CNN with tp = 3 months 10.57 0.1 Accepted
Fused CNN with tp = 6 months 4.82 0.57 Accepted
Fused CNN with tp = 9 months 6.66 0.35 Accepted
Fused CNN with tp = 12 months 7.02 0.32 Accepted
Fused CNN with tp = 18 months 3.86 0.7 Accepted
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Figure 7. Autocorrelation function plots for residuals from ACE prediction models. Dashed blue lines show intervals for
95% confidence.

9. Conclusions

In this work, we developed a Fused-CNN architecture for the prediction of various
one-dimensional indices related to hurricane activity in the Atlantic ocean. Feature level
fusion provides a natural way to analyze the architecture. The model is also sufficiently
simple to modify. For addition (deletion) of any modality, we can simply add (remove)
the corresponding CNN pipeline. We also learned that increasing the number of layers
in the CNN pipelines reduces damping of the system. Future work may explore similar
architecture to make short term as well as long term predictions at a much higher spatial
resolution. In other words, instead of predicting ACE for the whole of Atlantic Ocean
predictions may be made for smaller patches. By increasing resolution further, we can aim
to predict hurricane track patterns as well. In this case, we would have to be more surgical
in our feature extraction process or increase our window of focus significantly to capture
more temporal dynamics.

We achieve competitive prediction accuracy in comparison with other state of the art
models, even for lead times as long as 18 months. However, the large number of significant
singular values (50 for NINO indices and 10 for ACE) required in the input data makes
it difficult to come up with cogent physical arguments to explain the patterns shown
by the individual SVD components. All s-values are below 15% in relative significance.
Hence, to keep enough relevant information while filtering out noise, we had to keep 10
to 50 s-values for various models. Had the number of significant s-values been below
10 (for instance 2 or 3), we might have been able to associate the variations seen in the
corresponding v-vectors with some specific weather patterns.

It is also to be noted that while doing SVD analysis, we have been separately looking
at each predictand weighted modality. We are still unable to observe the effect of one
modality/predictor over another modality/predictor. Our future goal is to enhance our
feature extraction process to include these interdependencies. Additionally, although 84
data points were used in our bimonthly test dataset, a comparison with other models could
be carried out only at annual time scale due to the unavailability of the bimonthly forecasts
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from other models used for comparison. More robust model inter-comparisons should be
made in the future when longer forecast and validation datasets become readily available.
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