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Abstract: To evaluate the effectiveness of measures to reduce the levels of volatile organic compounds
(VOCs), which are important precursors of ground-level ozone formation, the real-time monitoring
data of VOCs at the urban Zhaohui supersite (ZH), the Dianshan Lake regional supersite (DSL)
and the urban Yixing station (YX) in the Yangtze River Delta region were analyzed from 23 August
to 15 September 2016 during the G20 Hangzhou Summit. The average mole ratios of VOCs at
the three sites were 6.56, 21.33 and 19.62 ppb, respectively, which were lower than those (13.65,
27.72 and 21.38 ppb) after deregulation. The characteristics of the VOCs varied during the different
control periods. Synoptic conditions and airmass transport played an important role in the transport
and accumulation of VOCs and other pollutants, which affected the control effects. Using the
positive matrix factorization (PMF) method in source apportionment, five factors were identified,
namely, vehicle exhaust (19.66–31.47%), plants (5.59–17.07%), industrial emissions (13.14–33.82%),
fuel vaporization (12.83–26.34%) and solvent usage (17.84–28.95%) for the ZH and YX sites. Factor 4
was identified as fuel vaporization + incomplete combustion (21.69–25.35%) at the DSL site. The
Non-parametric Wind Regression (NWR) method showed that regional transport was the main factor
influencing the VOC distribution.

Keywords: VOCs; control and deregulation; positive matrix factorization (PMF); Yangtze river delta

1. Introduction

As the largest developing country in the world, China has suffered from serious
air pollution throughout the processes of rapid urbanization and motorization [1]. The
occurrence of air pollution caused by high levels of ozone and/or fine secondary aerosol
particles in megacities is very severe and complex [2–5]. As one of the key precursors
for secondary organic aerosols (SOA) and ground-level ozone formation, volatile organic
compounds (VOCs) play significant roles in our understanding of the formation mechanism
of SOA [2,6–9] and ozone [10–12].

Recent studies have mainly focused on the characteristics and sources of VOCs in
China’s megacities and city clusters, such as the Beijing–Tianjin–Hebei (BTH) region [13],
the Yangtze River Delta (YRD) region [14–16], the Pearl River Delta (PRD) region [17–20]
and the megacities of Beijing [21–23], Shanghai [24,25] and Nanjing [26]. These studies
found that vehicle emissions and solvent usage contributed most to the ambient VOCs
in urban areas. Here, the mixing ratio and chemical composition of ambient VOCs in
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the YRD region was investigated. The biogenic and anthropogenic emissions were esti-
mated. The Non-parametric Wind Regression (NWR) method was used to identify the
regional transport.

To improve the air quality when large-scale games and events are held in China,
a series of control measures are implemented [27] showed that the photochemical con-
sumption of reactive hydrocarbons (HCs) and the photochemical initial concentrations
(PICs) of seven key reactive species were reduced by 39% as a result of the control measures.
The emission strength of VOCs was estimated during the 2010 Shanghai World Expo. Ac-
cording to the study, VOCs emission in Shanghai per hour resulted in the VOCs mole ratio
increment of (5.98 ± 3.18) × 10−9, during the 2010 EXPO, which was decreased by about
1 × 10−9 compared to that in the same period of 2009 [28]. These studies mainly focused
on the measurements of VOCs in only one city. A few studies [13,29] were conducted
to evaluate the joint control of three provinces and one city. The “G20 Blue” program
provided the opportunity to investigate changes in air pollutant emissions and ambient
air concentrations at different sites. Furthermore, a regional perspective was used here to
understand the effectiveness of control measures conducted in the YRD region.

To achieve the “Environmental Quality Guarantee Scheme for Zhejiang Province
during the G20 2016 Hangzhou Summit,” the Ministry of Environmental Protection en-
forced a temporary three-phase emission control scheme in Hangzhou and the surround-
ing regions within 100 km from Hangzhou [30]. The control regions were divided into
three areas: Core area, strictly controlled area and controlled area [31]. Relying on the
platform of “G20 Summit guaranteed air quality prediction and forecast system for the
YRD region,” real-time monitoring data of VOCs from 12 stations in the YRD region were
collected. To discuss the effects of different control measures in different control areas,
the urban Zhaohui supersite (ZH) in Hangzhou City, the Dianshan Lake regional super-
site (DSL) in Shanghai City and the urban Yixing station (YX) in Yixing City during the
2016 G20 Summit in Hangzhou were chosen, since Hangzhou City was located in the
core area, and Shanghai and Yixing City were located in the controlled area. As shown
in Figure 1, Table 1 and Table S1 of Supplementary Materials, during the control period
(24 August–6 September 2016), different control schemes and different control phases have
been implemented in the three cities. After 7 September, all control schemes were stopped,
i.e., the deregulation period. According to the positive matrix factorization (PMF) model
and NWR techniques, this paper compared the source apportionment and regional trans-
port contribution during the control period and the deregulation period at the three sites.
These results could provide potential information for the implementation of emission
reduction policies for the establishment of VOC abatement measures in the YRD region.
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Figure 1. Time periods corresponding to the different control phases in Hangzhou, Shanghai
and Yixing.

Table 1. Different control periods in Hangzhou.

Period Date Control Measurement

Phase 1 24/8–27/8 Site stoppage control;
coal-fired power plant capacity reduction of 50%.

Phase 2 28/8–31/8

Motor vehicle restriction;
Formulate the pollution prevention measures focusing on particulate matter

and VOCs;
Make efforts to implement pollutant emission reduction plans and

organize personnel;
Conduct on-site supervision, control and supervise the implementation of local

rectification measures.
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Table 1. Cont.

Period Date Control Measurement

Phase 3 1/9–6/9
Strengthen joint control of regional air pollution;

Emergency measures, combination of governance, on-site supervision and law
enforcement supervision are the strongest.

2. Methods
2.1. Sampling Sites

To determine the characteristics of ambient VOCs in the YRD region during the G20
Summit, VOC sampling was conducted at three sites: The urban Zhaohui supersite (ZH),
the Dianshan Lake regional supersite (DSL) and the urban Yixing City Environmental
Protection Bureau station (YX) (Figure 2). As the venue of the G20 Summit, Hangzhou
is located on the southeast coast of China, north of Zhejiang Province, the lower reaches
of the Qiantang River and the southern end of the Beijing-Hangzhou Grand Canal. It
is a core city in the Hangzhou Bay Greater Bay Area, a central city in the Shanghai-
Jiaxing-Hangzhou G60 Science and Technology Innovation Corridor and an important
international e-commerce center. As a national central city, Shanghai is located at the
estuary of the Yangtze River. It is a leading city in the Yangtze River Economic Belt,
located to the northeast of Hangzhou. Yixing, located in the southwestern tip of Jiangsu
Province, the center of the Shanghai-Nanjing-Hangzhou triangle and the northwest of
Hangzhou, is a national ecological civilization construction model city and county. ZH
(30.29◦ N, 120.17◦ E) is the central site, located in the city of Hangzhou. The surrounding
areas are mainly residential areas, and the main sources of air pollution are traffic and
residential. DSL (31.09◦ N, 120.98◦ E) is located in Qingpu District, Shanghai City. The site
is surrounded by Dianshan Lake and is close to urban arterial roads (~2.5 km southeast
of the Shanghai-Chongqing Expressway); moreover, Dianshan Lake is surrounded by
villages. YX (31.35◦ N, 119.82◦ E) is located in Yixing City, and the surrounding area is
mainly distributed by residents, businesses and schools. DSL and YX are located in the
northeast and northwest of ZH, respectively. The three sites generally represent the air
quality of the G20 in the host and surrounding cities in the YRD region.

Atmosphere 2021, 12, x FOR PEER REVIEW 4 of 20 
 

 

  
Figure 2. Location of urban Zhaohui supersite, Dianshan Lake regional supersite and urban Yixing station. 

2.2. Observational Instrumentation 
The measurement of VOCs at the ZH site was conducted from 23 August to 10 Sep-

tember 2016, while the VOC samples at the DSL and YX sites were collected during the 
period of 24 August to 15 September 2016. Hydrocarbons (HCs), halocarbon and carbon-
yls were measured at the DSL and YX sites, but only HCs were measured at the ZH site; 
of these, the data for acetylene could not be used since the detection rate was lower than 
10%. Fifty-seven ambient VOCs, including 30 alkanes, 9 alkenes, 1 alkyne (acetylene) and 
17 aromatics, are designated as ozone precursors by the Photochemical Assessment Mon-
itoring Station (PAMS). In this study, 56 VOC (PAMS) species were selected at the three 
sites since m/p xylene was measured as a single species. The missing values were due to 
instrument power failure or maintenance and were not included in the data analysis. 

The ambient VOCs at the ZH site were collected and analyzed continuously and au-
tomatically using an online gas chromatography (GC) system with a temporal resolution 
of 0.5 h, i.e., a Syntech Spectras GC 955 analysis system (Hangzhou Focused Photonics 
Inc., Hangzhou, China). Two analyzers, GC 955-611 for high boiling point C6-C12 monitor-
ing and GC 955-811 for low boiling point C2-C5 monitoring, constitute the system. The 
ambient air sample passes through the Nafion drying tube and then directly enters the 
analysis system at atmospheric pressure. A cooling preconcentration system, where the 
VOCs were preconcentrated through carbon molecular sieves (Carbosieve S-III) at 5 °C, 
was installed in the GC 955-811. Then, thermal desorption was conducted. The C2-C5 
VOCs were separated by a two-dimensional chromatographic column with a capillary 
membrane column and a capillary porous-layer open-tabulator (PLOT) column. C6-C12 
were separated on an ATTM-1 column to achieve an optimal separation and to prevent 
interference from other unrelated compounds. The use of a photoionization detector (PID) 
and flame ionization detector (FID) ensured high sensitivity and high selectivity. 

The VOCs at the DSL site were quantified every 0.5 h by Chromatotec 655 (Shanghai 
Xiangde Environmental Protection Technology Co., Ltd., Beijing, China.). Two different 
automated GCs equipped with flame ionization detector (GC-FID) systems (Chromatotec 
GC-866 airmoVOC C2-C6 #58850712 and airmoVOC C6-C12 #283607112) were used to 
continuously measure the VOCs in ambient air. An in-depth description of the sampling 
setup, analyzer and technical information (sampling flows, preconcentration, desorption–
heating times, types of traps and columns, etc.) can be found in Gros et al. [32]. 

At the YX site, the VOCs were continuously sampled and measured using TH-300B 
(Wuhan Tianhong Instrument Co., Ltd., Wuhan, China), an online monitoring system 

Figure 2. Location of urban Zhaohui supersite, Dianshan Lake regional supersite and urban Yixing station.



Atmosphere 2021, 12, 928 4 of 19

2.2. Observational Instrumentation

The measurement of VOCs at the ZH site was conducted from 23 August to
10 September 2016, while the VOC samples at the DSL and YX sites were collected during
the period of 24 August to 15 September 2016. Hydrocarbons (HCs), halocarbon and
carbonyls were measured at the DSL and YX sites, but only HCs were measured at the ZH
site; of these, the data for acetylene could not be used since the detection rate was lower
than 10%. Fifty-seven ambient VOCs, including 30 alkanes, 9 alkenes, 1 alkyne (acetylene)
and 17 aromatics, are designated as ozone precursors by the Photochemical Assessment
Monitoring Station (PAMS). In this study, 56 VOC (PAMS) species were selected at the
three sites since m/p xylene was measured as a single species. The missing values were
due to instrument power failure or maintenance and were not included in the data analysis.

The ambient VOCs at the ZH site were collected and analyzed continuously and
automatically using an online gas chromatography (GC) system with a temporal resolution
of 0.5 h, i.e., a Syntech Spectras GC 955 analysis system (Hangzhou Focused Photonics Inc.,
Hangzhou, China). Two analyzers, GC 955-611 for high boiling point C6-C12 monitoring
and GC 955-811 for low boiling point C2-C5 monitoring, constitute the system. The
ambient air sample passes through the Nafion drying tube and then directly enters the
analysis system at atmospheric pressure. A cooling preconcentration system, where the
VOCs were preconcentrated through carbon molecular sieves (Carbosieve S-III) at 5 ◦C,
was installed in the GC 955-811. Then, thermal desorption was conducted. The C2-C5
VOCs were separated by a two-dimensional chromatographic column with a capillary
membrane column and a capillary porous-layer open-tabulator (PLOT) column. C6-C12
were separated on an ATTM-1 column to achieve an optimal separation and to prevent
interference from other unrelated compounds. The use of a photoionization detector (PID)
and flame ionization detector (FID) ensured high sensitivity and high selectivity.

The VOCs at the DSL site were quantified every 0.5 h by Chromatotec 655 (Shanghai
Xiangde Environmental Protection Technology Co., Ltd., Beijing, China). Two different
automated GCs equipped with flame ionization detector (GC-FID) systems (Chromatotec
GC-866 airmoVOC C2-C6 #58850712 and airmoVOC C6-C12 #283607112) were used to
continuously measure the VOCs in ambient air. An in-depth description of the sampling
setup, analyzer and technical information (sampling flows, preconcentration, desorption–
heating times, types of traps and columns, etc.) can be found in Gros et al. [32].

At the YX site, the VOCs were continuously sampled and measured using TH-300B
(Wuhan Tianhong Instrument Co., Ltd., Wuhan, China), an online monitoring system
with a temporal resolution of 1 h. The sampling and analysis procedures are described
only briefly here since they are described in detail elsewhere [33]. To analyze the VOCs
separately, two channels were installed. The system consists of three parts: A cryogenic
refrigeration unit, a VOC sampling and preconcentration system and a GC system with
a mass spectrometer detector (MSD, Agilent 5975) and FID (Agilent 7890). C2-C5 were
separated by a PLOT column and were quantified with a GC-FID. C5-C12 were separated
by a DB-624 column and were quantified with an MSD.

At the three sites, 56 PAMS species were calibrated by standard gas for Synspec, the
mixture of PAMS and TO15 for Chromatotec and TH-300B (The standard gas concentration
of the quality control samples is 2 ppb). The equipment calibrations and verifications
through the five-point method were conducted every 2 weeks. The correlation coefficient
usually varied from 0.991–0.999 for Synspec, 0.993 to 0.999 for Chromatotec and 0.991 to
0.998 for TH-300B. The detection limit of the instrument is 0.4 µg·m−3 (trans-2-butene) at
the ZH site, 0.064 µg·m−3 (benzene) at the DSH site and <3pgC/s (tridecane) at the YX
site. The value difference detected by standard samples every day were less than 20%. The
relative error of sampling flow rate is 0.6% for the ZH site, <5% for the DSH site and <5%
for the YX site. Moreover, the G20 Instrument Assurance Group compared the standard
samples at different sites every week to ensure that the data from different instruments
were comparable.
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2.3. Data Sources

Other datasets including the hourly meteorological parameters (temperature, T; rel-
ative humidity, RH; wind speed, WS; and wind direction, WD) were collected from the
provincial meteorological observatory, and trace gases (PM2.5, O3 and NO2) were col-
lected from the automatic air quality monitoring station at the three sites. The bound-
ary layer height (BLH) was computed every 3 h each day through NOAA’s READY
Archived Meteorology website (http://www.ready.noaa.gov/READYamet.php (accessed
on 2 February 2021)).

2.4. Modeling Methodology
2.4.1. Backward Trajectory Analysis

The 24 h backward trajectories with 2 h intervals (starting from 00:00 to 20:00 local
time, LT) were run each day at the ZH site by the TrajStat-plug-in of MeteoInfo software,
using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model [34,35].
The start height was set as 500m above ground level [36]. The FNL global analysis data
produced by the National Center for Environmental Prediction’s Global Data Assimilation
System (GDAS) wind field reanalysis were introduced into the calculation.

2.4.2. Positive Matrix Factorization (PMF)

The PMF model [37], performed with the EPA PMF 5.0 toolkit, was used to investigate
the sources of observed VOCs in the present study. The PMF approach can be explained by
the following equations:

X = G × F + E (1)

eij = Xij −
p

∑
k=1

gik fk, j (2)

Q =
n

∑
i=1

m

∑
j=1

(
eij

Sij
)2 (3)

Unc =
5
6
× MDL (4)

Unc = [(ErrorFraction × MixingRatios)2 + (0.5 × MDL)2]
1
2

(5)

In Equation (1), let sample X be an i × j matrix. The symbols i and j denote the
number of samples and components, respectively. The X matrix can be decomposed
by the G and F matrixes, where G = i × p is the emission source contribution matrix
and F = p × j is the component spectrum of the pollution source matrix. P denotes the
number of pollution sources. The matrix E denotes the difference between X and G × F,
i.e., residual matrix. Equations (2) and (3) denote the PMF receptor model method. The
basic principle is to calculate the errors of each chemical component in the particulate
matter by first using the weight. Then, the main pollution sources and their contribution
rates are determined by the least-squares method. Q is a critical parameter for PMF and
solved by an iterative minimization algorithm. The Q value is required to be as small as
possible. Two versions of Q (Qtrue and Qrobust) are displayed for the model runs. Qtrue is
the goodness-of-fit parameter calculated including all points. Qrobust is the goodness-of-fit
parameter calculated excluding points not fit by the model, defined as samples for which
the uncertainty-scaled residual is greater than 4 [38].

Missing data values were replaced by median concentrations and data values below
the method detection limit (MDL) were replaced by MDL/2 [39]. If the concentration is
equal to or less than the MDL provided, the uncertainty is calculated using Equation (4). If
the concentration is greater than the MDL provided, the calculation follows Equation (5).
Error Fraction is the average percent of uncertainty in the whole sampling and analysis
process and was set as 0.1 in our study [40].

http://www.ready.noaa.gov/READYamet.php
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Not all 56 VOC species were used into the PMF model. The species whose signal-
to-noise ratio (S/N) was less than 0.5 were set to bad, and those whose S/N ratios were
between 0.5–1.0 were set to weak [38]. Species that include more than 60% of the null
value were excluded. Meanwhile, the residual scale of species out of the range of ±3
and correlation between observed and predicted values less than 0.5 were characterized
as weak.

In optimizing the Q value, it is also necessary to take into account that the number
of sources chosen makes physical sense. In general, the selection range of the number of
factors was 3–8 [36]. The Q values are shown in Figure S1. Qexcept is equal to (number of
non-weak data values in X)-(number of elements in G and F, taken together) [38]. In theory,
if the number of factors was properly estimated, the Qtrue value would be close to the
Qexcept value. Instead, the Q value may deviate from the theoretical value [36]. The change
between the Q value due to the number of factors at the three sites is shown in Figure S1. At
the ZH and DSL sites, the Qtrue/Qexcept value decreased between 3 to 4 factors, indicating
that a substantial amount of the variability in the dataset was accounted for each additional
factor [36]; the Qtrue/Qexcept value increased when the factor number changed from 6 to 8.
Therefore, the Qtrue/Qexcept value achieved the minimum value when the factor number
was 7. However, the Qtrue/Qexcept value was close in fact when the factor number changed
from 5 to 7. Considering the PMF results at the ZH and DSL sites and from other references
at the YX site [9], a five-factor solution was chosen.

2.4.3. Nonparametric Wind Regression (NWR)

NWR techniques couple wind data (direction and speed) and pollutant concentration
to alternatively highlight wind sectors that are associated with high measured concentra-
tions. Originally developed by Henry et al. [41], NWR can be simplified as a weighted
average of the data at each predictive (θ, u) couple (representing predictive wind direc-
tion and speed), where the weighing coefficients are determined through Gaussian-like
functions; the overall idea is to give weight to concentration values associated with wind
direction and speed relatively close to (θ, u). NWR analysis was performed to investigate
the geographical origins of VOCs, associated with winds and VOC concentrations, and
was conducted with an Igor-based toolkit, named ZeFir [42].

3. Results and Discussion
3.1. Synoptic Condition and Variation in Pollutant Concentration

The G20 Summit was held on 9 April–9 May 2016, in Hangzhou. As shown in
Table 1, during the G20 Summit, the local government implemented a temporary series
of three-phase control measures. These measures effectively controlled anthropogenic
emissions. The deregulation phase was after 7 September. All control measures were
cancelled. the factory resumed production, the traffic restrictions were cancelled and the
construction sites resumed operations. They provided a unique opportunity to investigate
the possible sources of VOCs in Hangzhou. VOCs mole ratios and the MDL at the three sites
are shown in Table 2.

Table 2. VOCs mole ratios (mean ± standard deviation) during the sampling period at the ZH, DSL and YX sites.

ZH DSL YX

MDL ppb MDL ppb MDL ppb

Ethane 0.056 1.57 ± 0.79 0.18 1.97 ± 0.8 0.054 1.96 ± 0.7
Propane 0.03 0.64 ± 0.54 0.283 2.72 ± 2.53 0.05 3.82 ± 1.87
i-Butane 0.02 0.36 ± 0.26 0.102 2.4 ± 2.22 0.046 0.93 ± 0.47
n-Butane 0.062 0.4 ± 0.3 0.162 1.81 ± 1.68 0.039 1.02 ± 0.56

Cyclopentane 0.018 - 0.08 0.16 ± 0.14 0.033 0.12 ± 0.13
i-pentane 0.2 0.46 ± 0.37 0.159 0.89 ± 0.87 0.047 0.8 ± 0.54
n-Pentane 0.064 0.54 ± 0.22 0.123 0.54 ± 0.53 0.067 0.45 ± 0.26

2,2-Dimethylbutane 0.035 0.14 ± 0.1 0.115 0.06 ± 0.06 0.015 0.03 ± 0.02
2,3-Dimethylbutane 0.091 0.28 ± 0.14 0.095 0.58 ± 0.84 0.011 0.11 ± 0.12
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Table 2. Cont.

ZH DSL YX

MDL ppb MDL ppb MDL ppb

2-Methylpentane 0.054 0.29 ± 0.18 0.099 0.52 ± 0.84 0.011 0.22 ± 0.12
3-Methylpentane 0.043 0.2 ± 0.19 0.065 0.31 ± 0.34 0.006 0.14 ± 0.08

n-Hexane 0.045 0.3 ± 0.29 0.27 0.43 ± 0.45 0.005 0.2 ± 0.13
2,4-Dimethylpentane 0.043 0.04 ± 0.02 0.134 0.03 ± 0.04 0.012 0.02 ± 0.01
Methylcyclopentane 0.029 0.02 ± 0.03 0.295 0.15 ± 0.17 0.011 0.09 ± 0.05

2-Methylhexane 0.028 - 0.212 0.15 ± 0.21 0.005 0.06 ± 0.05
Cyclohexane 0.052 0.13 ± 0.2 0.081 0.17 ± 0.23 0.021 0.12 ± 0.22

2,3-Dimethylpentane 0.056 0.05 ± 0.04 0.053 0.07 ± 0.1 0.007 0.05 ± 0.03
3-Methylhexane 0.035 0.07 ± 0.07 0.159 0.15 ± 0.2 0.005 0.07 ± 0.05

2,2,4-Trimethylpentane 0.023 0.04 ± 0.02 0.326 0.04 ± 0.15 0.009 0.04 ± 0.03
n-Heptane 0.05 0.19 ± 0.68 0.189 0.19 ± 0.25 0.006 0.08 ± 0.06

Methylcyclohexane 0.024 0.03 ± 0.03 0.156 0.31 ± 0.51 0.006 0.09 ± 0.1
2,3,4-Trimethylpentane 0.027 0.06 ± 0.09 0.245 0.02 ± 0.06 0.005 0.03 ± 0.02

2-Methylheptane 0.029 0.02 ± 0.01 0.144 0.03 ± 0.04 0.013 0.03 ± 0.02
3-Methylheptane 0.027 0.04 ± 0.03 0.221 0.04 ± 0.05 0.008 0.03 ± 0.02

n-Octane 0.036 0.13 ± 0.12 0.24 0.07 ± 0.07 0.005 0.05 ± 0.03
n-Nonane 0.069 0.02 ± 0.02 0.323 0.07 ± 0.1 0.006 0.05 ± 0.04
n-Decane 0.07 0.06 ± 0.04 0.533 0.14 ± 0.2 0.006 0.11 ± 0.08

n-Undecane 0.137 0.01 ± 0.01 1.023 0.29 ± 0.51 0.006 0.25 ± 0.26
n-Dodecane 0.17 0.01 ± 0 1.865 0.48 ± 0.43 0.005 1.41 ± 1.45

Ethylene 0.078 1.65 ± 0.69 0.246 1.31 ± 1 0.046 1.37 ± 0.94
Propylene 0.026 0.23 ± 0.15 0.127 0.36 ± 0.53 0.035 0.32 ± 0.27

Trans-2-butene 0.031 0.05 ± 0.03 0.077 0.13 ± 0.07 0.031 0.11 ± 0.05
1-Butene 0.024 - 0.059 0.14 ± 0.15 0.034 0.09 ± 0.04

Cis-2-butene 0.016 0.02 ± 0 0.038 0.11 ± 0.12 0.054 0.11 ± 0.13
1-Pentene 0.08 0.06 ± 0.03 0.096 0.07 ± 0.08 0.050 0.04 ± 0.03

Trans-2-Pentene 0.039 0.06 ± 0.03 0.096 0.22 ± 0.31 0.008 0.11 ± 0.14
Isoprene 0.033 0.23 ± 0.21 0.214 0.4 ± 0.71 0.010 0.14 ± 0.17

Cis-2-Pentene 0.024 0.07 ± 0.04 0.068 0.04 ± 0.03 0.012 0.04 ± 0.02
1-Hexene 0.084 0.21 ± 0.24 0.063 0.11 ± 0.18 0.010 0.11 ± 0.11
Acetylene 0.055 0.83 ± 0.51 0.191 1.02 ± 0.55 0.007 1.31 ± 0.62
Benzene 0.045 0.39 ± 0.21 0.306 0.61 ± 0.51 0.010 0.59 ± 0.27
Toluene 0.083 0.66 ± 0.51 0.283 3.72 ± 3.79 0.008 2 ± 1.36

Ethylbenzene 0.086 0.15 ± 0.17 0.296 1.27 ± 1.53 0.006 0.8 ± 0.47
m/p-Xylene 0.088 0.21 ± 0.24 0.736 0.83 ± 1.07 0.020 0.57 ± 0.35

o-Xylene 0.091 0.06 ± 0.07 0.306 0.66 ± 0.85 0.010 0.43 ± 0.26
Styrene 0.092 0.08 ± 0.07 0.523 0.37 ± 0.48 0.011 0.59 ± 1.29

Iso-Propylbenzene 0.056 0.01 ± 0.01 0.362 0.07 ± 0.09 0.005 0.11 ± 0.36
n-Propylbenzene 0.089 0.01 ± 0 0.582 0.06 ± 0.1 0.011 0.08 ± 0.05
m-Ethyltoluene 0.079 0.07 ± 0.03 0.574 0.1 ± 0.16 0.015 0.1 ± 0.07
p-Ethyltoluene 0.091 0.03 ± 0.01 0.753 0.07 ± 0.12 0.007 0.07 ± 0.06

1,3,5-Trimethylbenzene 0.1 0.01 ± 0.01 0.673 0.07 ± 0.12 0.015 0.07 ± 0.06
o-Ethyltoluene 0.086 0.02 ± 0.01 0.554 0.06 ± 0.11 0.015 0.07 ± 0.05

1,2,4-Trimethylbenzene 0.175 0.04 ± 0.02 0.762 0.14 ± 0.26 0.015 0.14 ± 0.12
1,2,3-Trimethylbenzene 0.077 0.01 ± 0 0.746 0.11 ± 0.31 0.015 0.08 ± 0.07

m-Diethylbenzene 0.081 0.02 ± 0.01 0.764 0.11 ± 0.34 0.050 0.06 ± 0.08
p-Diethylbenzene 0.095 - 0.951 0.12 ± 0.27 0.100 0.11 ± 0.11

In addition to fluctuations in the intensity of anthropogenic activities, synoptic condi-
tions play an important role in the transport and accumulation of ozone and its precursors.
Figure 3 showed the time series of meteorological parameters (pressure, temperature, rela-
tive humidity, wind speed, wind direction and pressure) and pollutants (SO2, CO, PM2.5,
PM10, NO2, O3 and VOCs) measured at the ZH site from 23 August to 10 September in
2016. During the control period, the variation in pollutants maintained relatively low con-
centration levels. During the three control phases, the hourly average mole ratios of VOCs
were 5.78 ppb, 7.19 ppb and 6.54 ppb, respectively, which were 0.9–1.4 times lower than
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the average mole ratio after deregulation (13.65 ppb). The average concentrations of other
pollutants (SO2, CO, PM2.5, PM10 and NO2) during the control period were 0.3–1.4 times
lower than those after deregulation. However, as a product of the photochemical reaction,
the concentrations of O3 during the three control phases were completely different, with
average concentrations of 122.58 µg·m−3, 132.27 µg·m−3 and 104.73 µg·m−3. Compared
with the concentration after deregulation (81.02 µg·m−3), the concentration of O3 during
the control period was higher, especially during Phase 2. Combined with the meteoro-
logical parameters and the variation in other pollutants, this phenomenon was caused by
synoptic conditions.
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Figure 3. Time series of meteorological parameters (pressure, wind speed, wind direction, tempera-
ture and relative humidity) and pollutants (SO2, CO, PM10, PM2.5, O3, NO2 and VOCs) measured at
the ZH site.

During Phase (a), the low wind speed (1.44 ± 0.61) and BLH (422.38 ± 461.40 m)
on 24–25 August was not conducive to the diffusion of pollutants. In addition, the high
temperature (the average maximum temperature was 34 ◦C) and the fine weather both
were conducive to the generation of ozone. Therefore, the concentration of ozone and
other pollutants during 24–25 August did not decrease obviously compared with before
the control period. During 26–27 August, the wind speed increased (3.7 m·s−1), and
the dominant wind direction changed to the northwest. Coupled with the decrease in
temperature and the occurrence of precipitation at night on the 26th, the concentration of
pollutants decreased to varying degrees. Clustered trajectories (Figure 4) showed that the
airmass in Phase 1 mainly came from the Hangzhou Bay area, which was located in the core
area and the strictly controlled area. Due to the control measures on primary pollutants,
the concentration of ozone precursors, NO2 and VOCs, maintained low levels (Figure 5).
Recent studies reported that during the G20 control period, the YRD region converted to
the NOx-VOCs cooperative control region. Especially in the Hangzhou area, O3 generation
was more sensitive to NOx. Therefore, the lower concentration of NO2 promoted higher O3
production. Further, the lower BLH and more photochemical activities resulted in a higher
O3 increment in Phase (a).
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phase (a), phase (b) and phase (c).

In Phase (b), the dominant wind direction was from the northwest. The wind speed
was lower than that during Phase (a). The Hangzhou area was controlled by high pressure,
and the vertical diffusion capacity was weak. As can be seen in Figure 4, the northwest
airflow transported the upstream pollutants to the Hangzhou area, resulting in higher
concentrations of primary pollutants in Phase (b) than in Phase (a). However, the higher
BLH and less photochemical activities resulted in lower O3 increment in Phase (a).

In Phase (c), the dominant wind direction on 1–3 Sep was southwest. The warm
and humid airflow from the southwest was beneficial to the growth of particulate matter.
Therefore, the peaks of PM2.5 and PM10 concentrations appeared on 3 Sep. During 4–6 Sep,
weak precipitation appeared in the Hangzhou area, which showed an effect of wet removal
of pollutants to some extent. Due to the strict joint control of the YRD regions and the
clean airmass from the East Sea, the concentrations of all pollutants were lower than the
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first level of the air quality index (HJ633-2012). The mole ratio of VOCs reached its low
point during the observation period.

As shown in Table 3, the pollutant concentrations, except for ozone, at the ZH site
during the control period were lower than that after control. In addition, the pollutant
concentrations at the ZH site were obviously lower than those at the DSL and YX sites
during the control period. After deregulation, the concentrations of SO2, NO2, CO, PM2.5
and PM10 increased by 38.54%, 133.05%, 14.55%, 46.87% and 30.95%, respectively, compared
with the control period. Due to strict measures of “coal-fired power plant capacity reduction
and motor vehicle restriction etc.,” the emission of primary pollutants, such as SO2, NO2,
CO, PM2.5 and PM10, was effectively controlled. This result indicated that severe control
measures had favorable impacts on air quality in the Hangzhou area. In the DSL and
YX areas, the concentrations of NO2 and CO increased after deregulation, by 24.77% and
1.79% in the DSL area and 17.17% and 22.95% in the YX area, respectively. Regarding
the concentrations of SO2 and particulate matter, there was no significant increase after
deregulation. However, the concentration of O3 decreased by 31.15%. Reduced titration
by NO due to less emissions of NOx in the controlled period could be the main cause for
the lower O3 in the controlled period. Ozone, as a product of photochemical reactions,
was not only affected by the concentration of precursors; synoptic conditions also played
an important role. Therefore, at the three sites, synoptic conditions were not conducive to
the generation of ozone after deregulation. Therefore, the ozone concentration decreased
after deregulation.

Table 3. The concentrations of pollutants (SO2, NO2, CO, O3, PM2.5 and PM10) during different periods at the ZH, DSL and
YX sites.

Pollutants
Concentrations

ZH DSL YX

Control Deregualation Control Deregualation Control Deregualation

SO2 (ppb) 3.01 ± 0.9 4.17 ± 1.53 4.33 ± 1.98 3.16 ± 1.35 4.34 ± 4.36 3.42 ± 2.77
NO2 (µg·m−3) 21.62 ± 9.77 50.39 ± 20.12 32.48 ± 22.56 40.52 ± 21.54 20.27 ± 9.63 23.74 ± 15.02

CO (ppm) 0.55 ± 0.15 0.63 ± 0.13 0.56 ± 0.18 0.57 ± 0.15 0.61 ± 0.19 0.75 ± 0.17
O3 (µg·m−3) 117.68 ± 45.48 81.02 ± 60.1 126.86 ± 64.07 94.15 ± 56.84 149.8 ± 71.02 114.58 ± 73.72

PM2.5 (µg·m−3) 36.13 ± 15.33 53.06 ± 19.69 45.70 ± 25.31 53.75 ± 22.34 28.52 ± 15.89 28.43 ± 13.13
PM10 (µg·m−3) 49.82 ± 18.71 65.06 ± 25.58 58.65 ± 21.58 54.19 ± 20.12 54.25 ± 21.2 49.72 ± 25.57

3.2. Changes in Chemical Compositions of VOCs

As shown on the left side of Figure 6, the mole ratios of different VOC components at
the three sites all increased after deregulation. The mole ratios at the ZH site increased the
most, by 108.23%, 110.62%, 67.67%, and 169.54%, respectively. The mole ratio of aromatics
increased the most, followed by alkanes. As can be seen from the right side of Figure 6, the
mole ratios of aromatics and alkanes also increased after deregulation, especially aromatics.
The increased rate of mole ratios at the DSL site was greater than that at the YX site. After
deregulation, mole ratios of TVOC, alkanes, alkenes, aromatics and acetylene increased
by 31.75%, 27.15%, 8.01%, 45.13% and 18.17%, respectively, at the DSL site. The mole ratio
of aromatics increased the most, followed by alkanes. Since the increase in the mole ratio
of aromatics was higher than that of other components, it can be found in the proportion
diagram, on the right side of Figure 6b, that the proportion of the other components
reduced, except for aromatics, which increased, after deregulation. The mole ratios of the
TVOC, alkanes, alkenes, aromatics and acetylene at the YX site increased to the lowest
extent among the three sites, by 9.29%, 11.83%, 18.59%, −0.33% and 15.47%, respectively,
compared with the control period. The mole ratios of components, except aromatics,
increased after deregulation, whereas the mole ratio of aromatics decreased. Therefore, as
can be seen from the right side of Figure 6c, the proportions of VOC components showed
similar trends to their mole ratios. During the early control period (24–30 August) in the
YX area, control measures were taken to reduce the emissions of SO2, NOx, smoke and
VOCs by more than 25%. However, because the dominant wind direction in Yixing City
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was northwest, and the wind was relatively weak, accompanied by weak pressure, the
diffusion conditions were poor [43], causing the mole ratio of VOCs to remain high in the
early control period (Figure 6c).
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3.3. Control Effect Analysis during Different Control Phases

As shown in Figure 7, to distinguish the effects of the different control periods on
the mole ratios of VOCs at the three sites, we calculated the average mole ratio of VOCs
in the different control periods. With the strengthening of the control measure intensity,
the mole ratios of alkanes, alkenes, aromatics and acetylene decreased at the DSL and
YX sites. Meanwhile, the VOC mole ratios during the control period were apparently
lower than that during the deregulation period. This result confirms the effects of the
stepwise control measures. The average mole ratios of VOCs in the control periods were
46.81%, 33.54% and 19.01% lower than those during deregulation at the ZH, DSL and YX
sites, respectively, which was higher than the decrease in VOCs (16.4%) during the APEC
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meeting in Beijing [44] and that (9.83%) during the Shanghai World Expo [28]. This result
indicated that the control measures in the YRD region had very obvious effects on reducing
the emissions of VOCs, especially in Hangzhou.
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G20 summit.

As shown in Figure 7a, the mole ratio of alkenes observed at the ZH site was increased
in Phase 2 compared with that in Phase 1. This was contrary to the strengthening of the
control intensity. Figure 8 displayed the diurnal variation in alkenes, ethylene, propylene
and isoprene. The three alkene species (ethylene, propylene and isoprene) contributed over
96% of the alkene mole ratios at the ZH site. The high mole ratios of ethylene and isoprene
in Phase 2 resulted in the increasing mole ratio of alkenes. It was well acknowledged
that ethylene is a product of incomplete combustion processes, especially vehicle fuel
combustion [18,45]. A continuous decrease was observed from 08:00 to 16:00 LT, indicating
increased photochemical removal processes. A higher concentration of NOx in Phase 2
(24.51 µg·m−3) than in Phase 1 (22.63 µg·m−3) and the morning peak of ethylene both
indicated that more vehicle exhaust in Phase 2 led to the increased ethylene mole ratio.
Additionally, the lower BLH at night in Phase 2 (63.57 m) compared with that in Phase
1 (176.02 m) caused the accumulation of pollutants. The diurnal variation in isoprene
was controlled by plant emissions and showed one peak in the afternoon in Phase 1 and
Phase 3. As shown in Figure 3, the dominant wind direction in Phase 2 was S-W. The
airmass transported isoprene emitted by the forest located in the southwest of Zhejiang
Province (Figure 4), which resulted in another peak in the afternoon and the increasing
average mole ratio of isoprene in Phase 2.
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3.4. Source Apportionment of VOCs

To further understand the VOC sources, five factors were resolved for VOC measure-
ment during 23 August–15 September with PMF analysis. The number of effective samples
were 336 and 96 at the ZH site, 307 and 195 at the DSL site and 299 and 188 at the YX site
during the control and deregulation periods. These numbers met the condition that the
span of effective samples used for PMF input data should be no less than 80 groups [46].
Because of the short data span, uncertainties regarding the PMF results were inevitable.
The factor profiles of the three sites are shown in Figure S1. These factors were identified
as factor 1, vehicle exhaust; factor 2, plants; factor 3, industry emissions; factor 4, fuel
vaporization for the ZH and YX sites and fuel vaporization + incomplete combustion for
the DSL site; factor 5, solvent usage.

The high factor loadings of long chain alkanes, ethylene, acetylene and benzene
were found in factor 1. The C3-C6 alkanes usually were associated with emissions from
imperfect combustion vehicular emissions [4,40]. Cai et al. [24] reported that ethylene
and propylene were major species that were the product of internal combustion engines.
Acetylene was an incomplete combustion tracer, while benzene was also emitted with
vehicular emissions [18]. Therefore, factor 1 was attributed to vehicle exhaust.

Factor 2 exhibited a high composition of isoprene, which was mostly due to phytoncide
released from plants [47]. Thus, factor 2 was as attributed to plants.

The composition for factor 3 was characterized by ethane, ethylene, propylene, acety-
lene and aromatics (toluene, m,p,o-xylene, m,o-ethyltoluene, trimethylbenzene, styrene).
Ethylene and propylene were indicated as the raw materials or products of chemical manu-
facturing processes [18]. M,p,o-Xylene, trimethylbenzene and ethyltoluene were markers
for solvent emission such as painting, printing and surface coating. A high proportion
of styrene was detected from petroleum refining emissions. The results suggested that
factor 3 is industry emissions.

At the ZH and YX sites, factor 4 was distinguished by high percentages of n-butane,
isobutene, n-pentane and isopentane, with a certain amount of ethane and propane.
Propane and butane are the main components of LPG/NG [4]. Ethane is associated with
incomplete combustion and/or LPG/NG usage. According to a study by Sun et al. [48],
isopentane and n-pentane were used as indicators for gasoline vaporization. Thus, factor 4
was attributed to fuel vaporization.

However, for the DSL site, the profile of factor 4 (see Figure S2c,d) exhibited high
contributions from n-/iso-pentane, benzene and C2-C3 alkanes and alkenes. It is well
acknowledged that C2-C3 are the product of incomplete combustion processes [18,45]. N-
/iso-Pentane and benzene were considered as typical products of gasoline vaporization [48].
Thus, factor 4 at the DSL site was attributed to fuel vaporization + incomplete combustion.
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Factor 5 was dominated by C9-C11 alkanes and aromatics (toluene, xylene, ethylben-
zene). These compounds were commonly used as solvents or chemical intermediates
in paints, coatings, adhesives, dyes and detergents, in addition to their use in chemical
factories and fossil fuels [16,47]. Therefore, factor 5 was attributed to solvent usage.

Figure 9 showed the contribution of each source of pollution to the volume fraction of
VOCs as analyzed by the PMF models, in the two periods at the three sites. When ZH was
deregulated, the proportion of industrial emissions sources (13.47~19.35%) and solvent
usage sources (19.80~23.38%) clearly increased, which showed that the industrial emission
reduction measures were effective. The proportions of vehicle exhaust (31.47~19.66%) and
plant sources (17.07~11.26%) decreased because of the industrial resumption of production
after deregulation. The temperature during the control period (28 ± 3 ◦C) was higher than
that after deregulation (25 ± 3 ◦C), which was more conducive to for plants emissions of
isoprene. In addition, in Phase 2, the ZH region may be affected by airmass transmission
from forests in southwest Zhejiang (Figure 4). It may also be the reason for the higher
proportion of plant sources during the control period. The source ratio of YX could also
reflect the effect of the control. Industrial emissions sources (18.76~33.82%) and fuel
vaporization sources (12.83~18.43%) exhibited obvious increases, while solvent usage
(28.95~17.84%) and vehicle exhaust (27.79~21.94%) sources showed a decrease in the
proportion due to the large increase in industrial sources. Solvent usage (28.95%) was
the largest contributor during the control period, and industrial emissions (33.82%) were
the largest source after deregulation. The difference in source apportionments at the DSL
region during different periods cannot be adequately explained by the use of control
measures. After deregulation, the proportions from industrial emissions decreased, while
the proportions from plants increased.
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3.5. Geographic Origin Analysis

The possible local origins of VOCs were explored using the NWR method [42], as
illustrated in Figure 10. As shown in Figure 10c,d, the VOC hotpots at the DSL supersite
were apparently different during the control and deregulation periods. High mole ratios of
VOCs were mainly associated with high wind speeds from the north-west region during
the control period and from the northeast during the deregulation period (Figure 10c).
The high wind speed (5~9 m·s−1) showed that VOCs measured at the DSL site during
the control period were mainly from Jiangsu Province. Kunshan industrial parks were
located at about 3 km to the west and about 10 km to the north of the DSL site, including
electronics factories, clothing factories, paint factories, etc., which led to the increase in the
proportion of solvent usage sources and industrial emission sources at the DSL site during
the control period. After deregulation, the low wind speed (<3 m·s−1) illustrated that the
VOCs were mainly influenced by downtown Shanghai, where vehicle exhaust and plant
emissions were both abundant. Thus, the proportions from plants and vehicle exhaust
increased after deregulation. Figure 10a,b shows that VOC hotpots at the ZH site were
mainly in the SW-N. The corresponding wind speed (0~6 m·s−1) meant that the VOCs in
the ZH region were mainly affected by local emissions and airmass transport from SW-N
both during the control and deregulation period. Similar results were observed for the YX
site (Figure 10e,f).
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4. Conclusions

During the G20 Summit, the average mole ratios of VOCs at the ZH, DSL and YX
sites were 6.56, 21.33 and 19.62 ppb, respectively, which were lower than those (13.65, 27.72
and 21.38 ppb) after deregulation. Hangzhou implemented the most stringent control
measures and obtained the lowest mole ratios of VOCs among the three cities. The total
budgets of VOCs were determined by alkanes (53.65–56.5%) at the three sites, followed by
alkenes (22.86–28.39%) at the ZH site and aromatics (27.43–33.05%) at the DSL and YX sites.
Synoptic conditions and airmass transport played an important role in the transport and
accumulation of VOCs and other pollutants, which affected the control effects.

Five factors of VOCs, namely, vehicle exhaust, plants, industrial emissions, fuel va-
porization (+ incomplete combustion) and solvent usage, were identified using the PMF
method for the ZH and YX sites. Factor 4 was identified as fuel vaporization + incomplete
combustion at the DSL site. At the ZH site, vehicle exhaust (31.47%) and fuel vaporization
(26.34%) contributed the largest proportions during the control and deregulation peri-
ods, respectively. At the YX site, solvent usage (28.95%) and industrial emission (33.82%)
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sources had the greatest contributions during the control and deregulation periods, respec-
tively. The results of the source apportionment of VOCs in the control and deregulation
periods from the ZH and YX regions showed the positive effects of the control measures
implemented during the G20 Summit.

Additionally, NWR showed the possible geographic origins of VOCs. VOCs at the
ZH and YX regions were mainly affected by local emissions and airmass transport from
SW-N during both the control and deregulation periods. Regional transport decreased the
proportions of industrial emissions and fuel vaporization at the DSL site. Airmasses from
Jiangsu Province transported industrial emissions to the DSL region. After deregulation,
a large number of VOCs that were released by vehicle exhaust and plants in downtown
Shanghai were transferred to the DSL region, resulting in increased proportions from
vehicle exhaust and plants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12070928/s1, Figure S1: Qrobust, Qtrue and Qtrue/Qexcept plotted against the number
of factors used in the positive matrix factorization (PMF) solution at the ZH(a), DSL(b) and YX(c)
sites, Figure S2: Factor profile resolved by PMF at the ZH((a) in control, (b) deregulation), DSL((c) in
control, (d) deregulation) and YX((e) in control, (f) deregulation) sites during different periods of the
G20 summit, Table S1: Control measures during different control phases in Shanghai and Yixing.
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