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Abstract: Air pollution sources and the hazards of high particulate matter 2.5 (PM2.5) concentrations
among air pollutants have been well documented. Shipping emissions have been identified as a
source of air pollution; therefore, it is necessary to predict air pollutant concentrations to manage
seaport air quality. However, air pollution prediction models rarely consider shipping emissions.
Here, the PM2.5 concentrations of the Busan North and Busan New Ports were predicted using a
recurrent neural network and long short-term memory model by employing the shipping activity
data of Busan Port. In contrast to previous studies that employed only air quality and meteorological
data as input data, our model considered shipping activity data as an emission source. The model
was trained from 1 January 2019 to 31 January 2020 and predictions and verifications were performed
from 1–28 February 2020. Verifications revealed an index of agreements (IOA) of 0.975 and 0.970
and root mean square errors of 4.88 and 5.87 µg/m3 for Busan North Port and Busan New Port,
respectively. Regarding the results based on the activity data, a previous study reported an IOA of
0.62–0.84, with a higher predictive power of 0.970–0.975. Thus, the extended approach offers a useful
strategy to prevent PM2.5 air pollutant-induced damage in seaports.

Keywords: air quality; PM2.5; RNN; LSTM; machine learning; seaport

1. Introduction

Recently, the World Health Organization (WHO) recommended an average annual
PM2.5 concentration (i.e., concentration of particles with a diameter less than 2.5 µm) of
10 µg/m3 in South Korea. However, as of 2019, these levels exceeded those stipulated in
the guideline by 13 µg/m3, thus raising interest in PM2.5 concentrations in Korea. Some PM
sources are emitted directly from construction sites or unpaved roads. However, most PMs
are formed in the atmosphere as a result of complex reactions of chemicals such as NO2 and
SO2, which are pollutants emitted from power plants, industries, ships, and automobiles.
PM2.5 is a class 1 carcinogen designated by the WHO and can cause lung cancer if the
particles enter the lungs of the human body. There are reports of more harm to the human
body than other pollutants such as NO2 and SO2 [1–3]. Consequently, the Department
of Environment and other related government departments jointly prepared the “Special
Measures for PM Management” in August 2017 and announced the PM Management
General Plan (2020–2024) in November 2019 as an effort to reduce air pollution [4]. Such
efforts are being made across seaports. The ability to accurately predict air pollution levels
is, arguably, as important as the efforts to reduce air pollution.

Evaluations of PM emissions in the U.S. have reported much higher PM10 emission
levels in seaports (e.g., 1.8 ton/day in the port of Los Angeles) than even the power
generation sector (e.g., 0.6 ton/day) [5]. Moreover, the PM emissions in seaports were
similar to or higher than the PM emissions from 500,000 vehicles [4]. Thus, PM emissions
in seaports have been shown to account for 44% of the emissions from seaports alone [5].
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Internationally, the International Maritime Organization (IMO) has been strictly regu-
lating the sulfur content in the fuel oil of ships (i.e., 0.1%) in emission control areas (ECAs)
since 2015. Furthermore, the IMO has been regulating the sulfur content in the fuel oils of
all ships operating along international routes since 2020 in an effort to reduce air pollution
from 3.5 to 0.5% [6–8].

To satisfy the international air pollution reduction standards, the South Korean Min-
istry of Oceans and Fisheries established the Special Act on the Improvement of Air Quality
in Port Areas (Law No. 16308, enacted on 2 April 2019 and enforced on 1 January 2020). This
Special Act provided the legal basis for air pollutant reduction in seaports and surrounding
areas, and legal obligations, responsibilities, and duties for air quality improvement.

Air pollution prediction methodologies largely consist of deterministic and statistical
methods. Deterministic methods are based on weather forecasting models, and air quality
forecasting models are known to be highly uncertain. Statistical methods are based on
past data and include regression models, the autoregressive integrated moving average
(ARIMA), etc. [9].

The use of numerical analyses to predict air quality requires an abundance of resources
and time to not only prepare weather and emission datasets, but also to perform the
calculations [10]. In contrast, statistical methods based on measurement data offer quicker
alternatives to predict air quality because of the relatively shorter time required for data
preparation and computation.

The recurrent neural network (RNN) model and long short-term memory (LSTM)
model (a variant RNN model, hereafter referred to as RNN-LSTM) have been employed
to predict air quality [11,12]. LSTM models are used to process sequence data in various
fields, such as stock, voice, and natural language processing [13–15].

Previous studies have mainly used air quality data and meteorological data to predict
air quality. Joharestani et al. (2019) conducted deep learning research using aerosol optical
depth (AOD) and meteorological data and improved the PM2.5 prediction accuracy in the
Teheran urban area to an R of 0.9 and mean absolute error (MAE) of 9.9 µg/m3 [9]. A study
was also conducted to predict the PM2.5/PM10 ratio by machine learning through the LSTM
model with nine kinds of data, including AOD, planetary boundary layer height (PBLH),
relative humidity, gaseous pollutants, etc. [16]. Additionally, a model that predicts the PM
concentration by employing the LSTM model and deep autoencoder (DAE) methods was
developed, and the measurements were verified by the root mean square error (RMSE) [17].
In this previous study, the prediction was performed by setting 0.01 for 100 epochs with
a batch size of 32. PM2.5 levels have also been predicted by employing the aggregated
LSTM model with air quality monitoring data around industrial complexes and using
regional monitoring data [18]. In this previous study, the MAE, RMSE, and mean absolute
percentage error (MAPE) were evaluated for comparison with support vector machine-
based regression (SVR), gradient boosted tree regression (GBTR), and LSTM methods. This
previous study compared PM10 and PM2.5 concentration predictions in South Korea using a
3D chemistry transport model (CTM) simulation and the LSTM model based on air quality
monitoring data and meteorological data at two locations. The performance of the research
results was evaluated using the index of agreement (IOA). The 3D CTM simulation revealed
an IOA improvement of 0.36–0.78, and the LSTM model showed an IOA improvement
of 0.62–0.79 [19]. In another study, air pollutant predictions considered NO2, NO, and
CO as input data, in addition to learning with an artificial neural network (ANN) and
temperature, wind speed, humidity, and insolation variables [20]. In this study, RMSE was
used to evaluate the prediction performance (range, 12.9–28.5 µg/m3). A study predicting
PM2.5 in Xian, China, employed an ANN model and the performance was examined based
on multiple linear regression (MLR), principal component regression (PCR), the ARIMA
model, single general regression neural networks (GRNNs), and the ensemble empirical
mode decomposition–general regression neural network (EEMD-GRNN) models. Air
quality and meteorological data were used as the input data. The prediction performance
was evaluated using the MAE, MAPE, RMSE, and IOA. The results revealed that the RMSE
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was in the range of 29.41–37.42 µg/m3 and the IOA was in the range of 0.78–0.84 [21]. In the
Beijing area, air quality predictions were conducted using air quality and meteorological
data, neural network, an autoencoder, Laplace regression, ARIMA, RNN, and deep air
learning (DAL). The results were examined based on the RMSE [22]. In addition, the
LSTM fully connected (LSTM-FC) method was employed to predict PM2.5 concentrations
at specific air quality monitoring points in Beijing. The performances of the ANN, LSTM,
and LSTM-FC prediction methods were compared using the air quality monitoring data as
the input data [23].

In contrast to previous studies that have mostly predicted air quality mainly based on
air quality monitoring data (including AOD data) and meteorological data, we also consid-
ered the activity of ships (a major emission source around Busan Port) when employing
the RNN-LSTM model in the present study.

Here, we aimed to elucidate the effect of incorporating the shipping activity data in
the RNN-LSTM model on PM2.5 concentration predictions at Busan Port. To achieve this,
we modeled the PM2.5 concentrations for Busan North Port and Busan New Port using
three models for each location. These three models independently used the following data:
(1) air quality and meteorological data only; (2) air quality, meteorological data, and all
shipping activity data; and (3) air quality, meteorological, and shipping activity data for
ships larger than 2000 tons. The outputs of each of the six models were compared with the
observed data to assess the predictive power of these models.

The remainder of this paper is structured as follows. Section 2 describes a machine
learning method for predicting air pollutants such as PM2.5 and information about the
several input datasets used for machine learning. Section 3 presents the results of this
study in detail and discusses our approach to the results. Section 4 concludes this study
and presents future research directions.

2. Materials and Methods

The basic structure for predicting PM2.5 levels based on the LSTM model is shown in
Figure 1. There are two major processes of training and prediction to select hyperparameters
for (i) data preprocessing and (ii) structural design and the optimization of RNN-LSTM.
For model training and prediction, it is essential to prepare a sequential time-series dataset.
In this study, we collected air quality monitoring and meteorological data, and ship entry
and exit data from the Port Management Information System (Port-MIS), operated by the
Ministry of Ocean and Fisheries.

Hidden nodes, hidden layers, and epoch methods were used to select the hyperpa-
rameters and improve the prediction performance. In addition, air quality was predicted
only when air quality, meteorological, and shipping activity data were applied.
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Figure 1. Workflow for predicting the concentration of PM2.5 using the recurrent neural network and
long short-term memory (RNN-LSTM) model.

2.1. Monitoring Data

For air quality data, we used the monitoring data from Busan North Port and Busan
New Port. For meteorological data, we used the monitoring data of the Busan Automated
Synoptic Observing System (ASOS). The monitoring locations are shown in Figure 2.
Monitoring in Busan North Port and Busan New Port began in November 2018. The
learning period in this study was from 00:00 on 1 January 2019 to 23:00 on 31 January 2020.
The predictions were performed from 00:00 on 1 February 2020 to 23:00 on 29 February
2020, and hourly data were employed.
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Datasets were prepared for the air quality, meteorological data, and ship berths
around Busan Port. Among the 13 data dimensions in Table 1, the 6 air pollutant items
were collected from the monitoring points in Busan North Port and Busan New Port, the 5
meteorological items were collected from the Busan ASOS, and the berth information was
collected from the Shipping Port Management Information System (PORT-MIS). At this
time, the emission source of air pollutants is limited to ships, and the activity of the emission
source is defined as the number of the anchored ships. The air quality, meteorological, and
berth data for Busan North Port and New Port are summarized in Table 2.

Table 1. Data types, variables, and units of input dataset of RNN-LSTM.

Type Variables Unit

Air quality data PM2.5, PM10 µg/m3

SO2, O3, NO2, CO ppm

Meteorological data

Temperature ◦C
Dew point ◦C
Pressure hPa

Wind speed m/s
Wind Direction Degree

Rainfall mm

Shipping activity data Anchored ships ea

Table 2. Summary of the PM2.5, shipping activity, and meteorological data statistics (time period: 1 January 2019 to 29
February 2020).

Type Item Count Mean SD Min Max

Air quality data a PM2.5
1 at North Port 10,129 21.84 15.08 2.0 133.0

PM2.5 at New Port 10,034 22.04 14.57 2.0 108.0

Meteorological data b

Temperature 2 10,200 14.47 8.17 −4.9 34.8
Dew point 10,200 6.47 11.59 −24.2 26.9
Pressure 3 10,200 1015.36 7.41 986.8 1035.5

Wind speed 4 10,189 3.04 1.66 0 14.3

Shipping activity
data c

(Weight tonnage)

All at North Port 5 10,200 310.84 38.93 230 437
Over 2000 tons at North Port 10,200 70.66 9.65 42 107

All at New Port 10,200 30.59 4.94 12 49
Over 2000 tons at New Port 10,200 17.23 3.82 3 29

1 PM2.5: µg/m3; 2 temperature: ◦C; 3 pressure: hPa; 4 wind speed: m/s; 5 count: ea. a URL: https://www.airkorea.or.kr/web/last_amb_
hour_data?pMENU_NO=123 (accessed on 6 September 2021). b URL: https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=
36 (accessed on 6 September 2021). c URL: https://new.portmis.go.kr/ (accessed on 6 September 2021).

Missing values are an important issue in data processing. Most statistical methods
have incomplete values. Missing value imputation is one of the methods used to create
a complete dataset [24]. Missing value imputation methods include least squares impu-
tation techniques, random data imputation, and hot deck, regression, and model-based
methods [25–27].

Air quality and meteorological data were collected in real time. It is noteworthy to
mention here the possibility for the generation of invalid data owing to equipment faults,
maintenance, and quality assurance/quality control (QA/QC). In accordance with the
method suggested by Hair et al. (2006), we processed our missing data using the smooth
curve-fitting method [28] for cases with a missing data rate of less than 10.

Data standardization converts data to the same level in each data area and converts the
map into specific intervals. It is used to create pure dimensionless quantities or values from
data by removing the unit limitations in various data fields. Finally, index comparisons
and weights can be generated for different units or scales. Here, we used the zero-mean

https://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123
https://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123
https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36
https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36
https://new.portmis.go.kr/
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standardization method, which is the most common standardization method in the raw
data field, using the mean and standard deviation:

z =
x− µ

σ
(1)

where z is the z-score, x is the observed value, µ is the mean, and σ is the standard deviation.
The standardized data followed a standard normal distribution, with a mean value of 0
and a standard deviation of 1.

2.2. RNN-LSTM
2.2.1. Overview

The RNN can process long sequence data; however, its performance decreases with
increased sequence length. This phenomenon is termed the long-term dependency problem.
One of the variant RNN models used to overcome this problem is LSTM [29]. In this study,
we employed the LSTM model, which recognizes patterns in time-series data.

The LSTM models were set up in four layers with a recursive structure. The core
of the LSTM is the state of continuous cells that come in through the gate. The state of
continuous cells is called a conveyor belt. The information that comes in on the conveyor
belt is delivered without any change. The LSTM can add or delete information through the
input gate, forget gate, and output gate. Thus, the gate selectively delivers information
and continues to learn by removing the previous data. The mathematical formulas for the
LSTM calculated using the LSTM gate vector are as follows:

ft = σ
(

Wi f xt + Wh f ht−1 + b f

)
(2)

it = σ(Wiixt + Whiht−1 + bi) (3)

gt = tanh
(

Wigxt + Whght−1 + bg

)
(4)

ot = σ(Wioxt + Whoht−1 + bo) (5)

Wi =


Wii
Wif
Wig
Wio

, Wh =


Whi
Whf
Whg
Who

, b =


bi
bf
bg
bh

 (6)

Ct = ft ∗ Ct−1 + it ∗ gt (7)

ht = ot ∗ tanh(Ct) (8)

where ft is a forget gate vector and serves as a weight that remembers the previous state of
the cell, it is an input gate vector that serves as a weight for acquiring new information,
ot, in contrast, is an output gate vector that serves to select an output candidate, xt is an
input vector, ht is an output vector, Ct is a cell state vector, W is the weights matrix, and
b is a bias vector. Importantly, ft, it, and ot are the gate vectors. LSTM uses two types of
activation functions—σ is a sigmoid function and tanh is a hyperbolic tangent function.
Additionally, the dimension of Wi is [t × m], the dimension of Wh is [t × t], the dimension
of input xt is [m × 1], the hidden node’s dimension is [t × 1], and the dimension of b is
[t × 1]. W is initialized by the Xavier method. Bias vector b is initialized to 1 for the forget
gate while all other biases are initialized to zero [29].

2.2.2. Implementation of RNN-LSTM

The RNN-LSTM was designed based on the algorithm presented in Table 3 and
configuration settings in Table 4. The LSTM was composed of 13 input nodes of the air
quality monitoring dataset, meteorological dataset, and hourly ship berths of Busan North
Port and Busan New Port. As the ranges of the input data differed (i.e., application of the
LSTM algorithm would be limited), data normalization was performed. After the data
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were standardized and used as a network layer, the sequence was returned. The algorithm
specified the hidden node and hidden layer as variables, and the layer generated a single
prediction for the results of these variables.

Table 3. Algorithm of RNN-LSTM designed for data training and prediction.

Input Time_steps, AQM_DATA, Meteorological_data,Ship_activity_data
Output RNN-LSTM Function model
1 train_data = input (shape = (time_steps, AQM_DATA, Metorological_data,Ship_activity_data))
2 train_data = fit_transform(train_data)
3 train_lstm = mxnet.gluon.rnn.LSTM (Hidden_node, Hidden_Layer,dropout = 0.2) (train_data)
4 output = Dense(1)(train_lstm)
5 model = model(input,output)
6 return model

Table 4. Training data partition and hyperparameter settings for RNN-LSTM.

Type Configure Settings

Data partition
Training set 8760

Validation set 744
Prediction set 696

Hyperparameter

Optimizer Adam
Batch size 100

Learning rate 0.001
Drop out 0.2

Loss function L2 Loss

The prediction performance of the RNN-LSTM, and the potential to achieve optimal
prediction performance, only varies by how the learning is repeated according to the
hidden node and hidden layer set as variables in the algorithm [30]. The scenario for
predicting air quality around Busan Port in the present study is presented in Table 3. The
air pollutants emitted by ships are the result of the combustion of fuel oil. In general, ships
are known to use a large amount of fuel oil regardless of their tonnage. However, ships
that have a larger tonnage emit larger amounts of air pollutants because they use more fuel.
Of the 8880 vessels operating in the waters near South Korea, 850 vessels accounted for
more than 2000 tons (i.e., ~10% of the total tonnage of the ships). Therefore, in this study,
we constructed a scenario in which we considered the number of berths of ships weighing
2000 tons or more, and the number of berths of all ships to clarify the influence of large
ships. To determine the optimal prediction performance, among the parameters, Adam
was selected for the optimizer, 100 for the batch size, 0.001 for the learning rate, and L2
Loss for the loss function.

For the learning conditions using RNN-LSTM, we used 27 learning methods, three
hidden nodes (30, 60, 120), three hidden layers (1, 2, 3), and three epochs (10, 15, 20), which
were incorporated in each case in Table 5 to predict the air quality that represented the
highest performance.

Table 5. Air quality prediction scenarios (learning and verification period: 1 January 2019 to 31 January 2020; prediction
period: 1 February 2019 to 29 February 2020).

Scenario NO. Input Data Site

Case 1 AQMS 1 + ASOS 2

North Port in BusanCase 2 AQMS + ASOS + all anchored ships
Case 3 AQMS + ASOS + anchored ships over 2000 tons

Case 4 AQMS + ASOS
New Port in BusanCase 5 AQMS + ASOS + all anchored ships

Case 6 AQMS + ASOS + anchored ships over 2000 tons
1 AQMS: Air Quality Monitoring Station; 2 ASOS: Automated Synoptic Observing System.



Atmosphere 2021, 12, 1172 8 of 13

To evaluate the performance of the RNN-LSTM model, we employed four statistical
methods, i.e., IOA, RMSE, normalized mean bias (NMB), and mean normalized gross error
(MNGE) in the model and for the measurement values.

The IOA measures the agreement between the observed and predicted values, and
IOA values range between 0 and 1. It is appropriate if the value is 0.5 or higher, and it is
highly appropriate if the value is 1. The RMSE measures the degree of error dispersion
for the observed values and the model prediction values. An RMSE value of 0 indicates
a higher accuracy of the predicted value. The NMB measures the difference between the
model and observed values in the observed spatial and temporal patterns. An NMB value
close to 0 indicates that the model appropriately reflects the observed values. The MNGE
is a relative error that represents the absolute error as a percentage of the true value. This
determines the accuracy of the model [31–34].

IOA = 1− ∑n
i=1(Pi −Oi)

∑n
i=1
(
|Pi− Oi

∣∣+ |Oi − Oi
∣∣)2 , (9)

RMSE
(
µg/m3

)
=

√
1
n ∑n

i=0(Pi −Oi)
2, (10)

NMB (%) =
1
n ∑n

i=0
Pi −Oi

Oi
× 100, (11)

MNGE (%) =
1
n ∑n

i=0
|Pi −Oi|

Oi
× 100 (12)

Here, Oi denotes the observed value, Pi denotes the model prediction value, Oi denotes
the mean of the observed value, and n denotes the time.

3. Results and Discussion

For the learning conditions, RNN-LSTM was employed in each case to predict the
air quality that represents the highest performance. The air quality prediction results are
presented in Table 6, and Figures 3 and 4.

Table 6. Statistical analysis of RNN-LSTM-modeled and AQMS-observed PM2.5 (Case 1, 4: AQMS + ASOS; Case 2, 5:
AQMS + ASOS + all anchored ships; Case 3, 6: AQMS + ASOS + anchored ships over 2000 tons; Case 1~3: North Port; Case
4~6: New Port).

Scenario No.
Optimal Training Parameters

NMB
(%)

MNGE
(%)

RMSE
(µg/m3) IOAHidden

Node
Hidden
Layer Epochs

Case 1 120 1 20 −4.6 23.21 4.91 0.974
Case 2 120 1 10 1.2 23.99 4.91 0.974
Case 3 120 1 15 2.8 24.28 4.88 0.975
Case 4 120 1 20 −3.5 23.79 5.87 0.969
Case 5 120 1 20 −0.9 25.09 5.87 0.970
Case 6 120 1 15 4.6 27.45 5.89 0.969
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In Case 3, the IOA was 0.762–0.975, the RMSE was 4.85–10.87 µg/m3, the NMB was
−16.3–11.6%, and the MNGE was 23.16–59.93%. Among Cases 1 to 3 for predicting air
quality in Busan North Port, Case 3 showed the highest prediction performance, in which
air quality monitoring data, meteorological data, and data regarding the hourly berths of
2000 ton or larger ships were incorporated.

In Case 4, the IOA was 0.635–0.969, the RMSE was 5.87–13.86 µg/m3, the NMB was
−5.9–8.2%, and the MNGE was 23.79–76.38%. In Case 5, the IOA was 0.682–0.970, the
RMSE was 5.83–13.26 µg/m3, the NMB was −12.5–6.8%, and the MNGE was 24.97–68.68%.
In Case 6, the IOA was 0.729–0.970, the RMSE was 5.82–12.72 µg/m3, the NMB was
−9.6–8.9%, and the MNGE was 23.67–73.35%. Among Cases 1 to 6, where the PM2.5
concentrations were predicted for Busan New Port, Case 5 showed the IOA with the best
prediction performance. In Busan New Port, along with air quality monitoring data and
meteorological data, data regarding the hourly berths of ships anchored in Busan New Port
were incorporated.
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(b,e) AQMS + ASOS + all anchored ships, (c,f) AQMS + ASOS + anchored ships over 2000 tons.

In Figure 3, the time series distributions of the observed data and predicted data of
Busan North Port and Busan New Port cases indicate that the predicted values represent the
trend of the observed values well. Figure 4 shows the IOA of the observed and predicted
results. The IOA of Busan North Port was slightly higher than that of Busan New Port. In
Busan North Port, Case 3 (AQMS + ASOS + berths of 2000 tons or larger ships) was used as
input data. In Busan New Port, Case 5 (AQMS + ASOS + berths of all ships) was used as the
input data. Hence, this result suggests that the method involving the incorporation of the
activity of air pollutant emission sources can result in a higher prediction performance than
the method involving predictions using air quality and meteorological data. In the future,
the prediction performance could be improved upon by incorporating data regarding the
activity of the ground support facilities of the air pollutant emission sources in the port.

The main research direction to date has been to utilize atmospheric observation data
and meteorological data when predicting air quality through machine learning. Our re-
search method applies machine learning methods that consider the activity of the emission
source as well as atmospheric observation data and meteorological data. The prediction
considering the activity of the emission source showed an IOA of 0.969 to 0.975. This shows
that our proposed prediction method is better able to predict air quality.



Atmosphere 2021, 12, 1172 11 of 13

At the inflection point of this study, there are various emission sources other than
ships in the port, but there is a limit to considering the activity of these sources. In the
future, if the prediction is made considering the activity of heavy trucks, it will be possible
to help reduce the error and improve the prediction performance more efficiently.

4. Conclusions

In this study, we investigated a method for predicting the degree of air pollution in a
port. We aimed to predict the air quality around Busan Port using RNN-LSTM. Previous
studies employed a prediction method that uses only air quality and meteorological data
as inputs. However, the extended method proposed in this study predicts air quality by
incorporating data regarding emission sources that emit air pollutants (i.e., ship activities).
Air quality monitoring network data for Busan North Port and Busan New Port were
used to predict the air pollutants as a specific method for predicting air pollution, and
the meteorological data of the Busan ASOS were also integrated and used. With respect
to the activity input data of the emission sources, the hourly number of berths at the
port was incorporated using the entry and exit times in the PORT-MIS. Statistical analysis
methods, such as IOA, RMSE, NMB, and MNGE, were employed to evaluate the prediction
performance. In the case of Busan North Port, where the air quality, weather, and the
number of berths of ships 2000 tons or larger were analyzed, the results showed that
the highest prediction performance was found at a maximum IOA of 0.975, RMSE of
4.88 µg/m3, NMB of 2.8%, and MNGE of 24.283. As expected, large ships have a greater
impact on air pollution in Busan North Port. In the case of taking into consideration air
quality, weather, and the number of berths of all ships in Busan New Port, the IOA was
0.970, the RMSE was 5.87 µg/m3, and the NMB between −0.9% and 25%. Busan New
Port is still evolving. This conclusion was based on the geometrical conditions of the
measurement network that were affected by all ships using the new port as well as large
ships. Therefore, the extended method that employs ship activities as the emission source
is advantageous, with a higher prediction performance than other existing methods.

In the future, we plan to study ways to reduce the dimension of input data in order
to examine the major factors affecting air quality prediction. In addition, further research
will be performed to improve predictive performance in consideration of emission sources
other than ships, which are the major sources of emissions at ports. The methodology of
this study can be applied to methods of predicting air quality around airports considering
emission sources such as aircraft, or air quality in urban areas considering emission sources
such as automobiles. Furthermore, it can be used to improve the performance of numerical
models such as 3D CTM, which has limitations in predicting air pollution, by applying air
pollutant emissions in real time.
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