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Abstract: PM2.5 is one of the main pollutants that cause air pollution, and high concentrations of PM2.5

seriously threaten human health. Therefore, an accurate prediction of PM2.5 concentration has great
practical significance for air quality detection, air pollution restoration, and human health. This paper
uses the historical air quality concentration data and meteorological data of the Beijing Olympic Sports
Center as the research object. This paper establishes a long short-term memory (LSTM) model with a
time window size of 12, establishes a T-shape light gradient boosting machine (TSLightGBM) model
that uses all information in the time window as the next period of prediction input, and establishes a
LSTM-TSLightGBM model pair based on an optimal weighted combination method. PM2.5 hourly
concentration is predicted. The prediction results on the test set show that the mean squared error
(MAE), root mean squared error (RMSE), and symmetric mean absolute percentage error (SMAPE)
of the LSTM-TSLightGBM model are 11.873, 22.516, and 19.540%, respectively. Compared with
LSTM, TSLightGBM, the recurrent neural network (RNN), and other models, the LSTM-TSLightGBM
model has a lower MAE, RMSE, and SMAPE, and higher prediction accuracy for PM2.5 and better
goodness-of-fit.

Keywords: PM2.5 concentration; LSTM; TSLightGBM; time window; feature construction

1. Introduction

In recent years, the process of industrialization and urbanization has accelerated,
injecting vitality into the global economy, bringing people a better life but causing serious
damage to the ecological environment. Air quality issues have become a major concern
for countries and individuals. Among them, atmospheric particulate matter (PM) is one
of the main pollutants that causes air pollution, and fine particulate matter represented
by PM2.5 has enveloped a layer of haze over most cities in the world. PM2.5 refers to
the particulate matter with an aerodynamic equivalent diameter of 2.5 microns or less
in the ambient air. The intuitive expression is that the atmosphere is in a turbid state.
Although it has a small particle size, it has a large contact area with the air, is highly mobile,
and can readily carry a large amount of toxic and harmful substances. If a large amount
of PM2.5 is inhaled in the body, it will directly stimulate the bronchi, respiratory tract,
cardiovascular system, and other parts of the body, and can easily cause various respiratory
diseases such as cough, bronchitis, and asthma together with more severe maladies such
as arrhythmia, nonfatal heart disease, and other cardiovascular diseases. It can even lead
to embryonic deformities, directly endangering our next generation. Therefore, accurate
PM2.5 concentration prediction has positive practical significance and far-reaching impacts
on air quality detection, air pollution restoration, and human health.

At present, predicting PM2.5 mainly include numerical models, statistical modeling
prediction, and machine learning methods. The numerical model prediction method mainly
uses mathematical methods to establish the dilution and diffusion model of air pollution
concentration, and dynamically predicts the changes of air quality and the concentration
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of main pollutants. Because the atmospheric process is too complex, the forecast cannot
be accurate. Another shortcoming of this method is that the calculation is extensive and
time-consuming. Most experts and scholars are conducting research on the latter two
methods, taking into account factors that may affect PM2.5 concentration and establishing a
combined model based on historical PM2.5 concentration data to predict the concentration
of PM2.5 or other pollutants, which makes up for the uncertainty of the single numerical
model prediction. The prediction of PM2.5 based on machine learning and deep learning
forecasting methods has recently attracted relatively broad research attention. Among
them, statistical modeling and forecasting mainly refer to traditional time series models
such as the autoregressive integrated moving average model (ARIMA) and multiple
linear regression (MLR). Machine learning techniques are divided into traditional machine
learning models, such as the support vector machine (SVM) and the back propagation
neural network (BPNN), and deep learning models that have emerged in recent years.

In terms of a single model, Wang et al. [1] used the ARIMA model to predict PM2.5
concentration, but ARIMA prediction usually only considers the PM2.5 concentration
sequence, without considering the variable factors that affect it, and the prediction ac-
curacy is not ideal. Furthermore, Hui et al. [2] used the autoregressive moving average
with exogenous inputs (ARMAX) to predict the PM2.5 concentration hourly by consid-
ering the impact of weather and other pollutants. The three evaluation indicators of
R2, MAE, and RMSE showed that ARMAX has a better fitting effect than the ARIMA
model. Kanirajan et al. [3] constructed a RBFNN model based on a radial basis function
(RBF) neural network, which has a better prediction performance than the classic BPNN.
Chen et al. [4] first used a fuzzy granular time series and then used a SVM to predict PM2.5
concentration that overcomes, to a certain extent, the instability of forecasts caused by
the incomplete consideration of influencing factors. Among deep learning models, the
most commonly used are the RNN and LSTM models. Biancofiore et al. [5] established
RNN models to predict PM2.5 and PM10. Evaluation indicators, including the correlation
coefficient (R), fractional bias (FB), the normalized mean square error (NMSE), and factor of
two (FA2), proved that its prediction performance is better than multiple linear regression
models and the NN model without recursive structure. Considering that RNN has a
short memory and gradient explosion problems, Tsai et al. [6] established an improved
LSTM model based on TensorFlow to predict air quality. The correlation coefficient, Spear-
man level, and mean square error of the LSTM model are better than those of the RNN.
This proves that it is an air quality prediction model with higher accuracy and stronger
generalization effect.

Due to the high complexity and randomness of the time series, and the PM2.5 concen-
tration is affected by multiple factors, a single model as described above does not fully
explore the interaction between the multiple factors and the PM2.5 concentration, and can-
not make full use of the PM2.5 forecast’s favorable factors, so most scholars study combined
models to predict PM2.5 concentration. Liu et al. [7] jointly applied the SVM and particle
swarm optimization (PSO) to establish a rolling forecast model, and the effect is better than
a single radial basis neural network and multiple linear regression. Sun et al. [8] combined
principal component analysis (PCA) and least squares support vector regression (LSSVR)
optimized by a cuckoo search algorithm to predict PM2.5 daily. Because the traditional
BPNN method cannot reflect the impact of data in the historical time window on the
current prediction, Wenyi Zhao et al. [9] established a weighted KNN-BP neural network
model to predict PM2.5 concentration. Xulin Liu et al. [10] established CNN-Seq2seq to
predict PM2.5 concentration within an hour, and the effect was better than the combined
Seq2seq model of a machine learning model and non-CNN extracting variable features.
Kow et al. [11] proposed that CNN-BP can adequately handle heterogeneous inputs with
large time lags, cope with the curse of dimensionality, and achieve multiregion simulta-
neous multistep prediction of PM2.5 concentration; the prediction performance is better
than the BPNN, random forest, and LSTM models. To achieve a grid format prediction of
PM2.5 concentration, Guo et al. [12] established a ConvLSTM deep neural network model
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using a convolution module to extract spatial features along with LSTM extracting time
features. Yiwen et al. [13] considered that the traditional RNN and LSTM using the same
weight calculation for data at different moments did not conform to the brainlike design
and proposed a PM2.5 prediction method based on Adam’s attention mechanism. Through
an experimental comparison, it was found that attention was added. The RNN and LSTM
of the force mechanism are more accurate in predicting the concentration of PM2.5 than
those without this addition.

Most of these NN models give more attention to time series features. Common RNN
and LSTM time series prediction models are not as sensitive to features as integrated
learning models. Taking into account the time series characteristics of the data and the
nonlinear characteristics of the data, this article proposes that an integrated learning model
be combined with LSTM to establish a short-term prediction model of PM2.5. In recent
years, many scholars have begun to study forecasting models that combine ensemble
learning and NNs, and then apply them to forecasts in economics, finance, power load
and temperature forecasting, and sales. However, the ensemble model chosen by most
scholars is extreme gradient boosting (XGBoost). Considering that LSTM has a better
memory function than the RNN, LightGBM is much faster than XGBoost in model training,
and the leafwise principle can reduce more errors and obtain better accuracy. A common
combination model is to assign the same weight to each model and then add the predicted
results. Weng et al. [14] adopts the optimal weighting method to determine the weight of
each model, which can effectively improve the advantages of a single model. This paper
establishes a weighted combination model of LSTM and LightGBM through the optimal
weighted combination method based on the residual of the verification set.

2. Model
2.1. LSTM Model

RNNs can process time series data by using neurons with their own feedback. How-
ever, as the time series grows, the residual error that RNN needs to return decreases
exponentially, resulting in slow update of network weights and the problem of gradient
disappearance or gradient explosion. Hochreiter et al. proposed a long-term and short-term
neural network [15], replacing the traditional hidden layer with the LSTM layer, which
can obtain both the cell state and the hidden layer state from the previous moment. LSTM
adopts a control gate mechanism, which is composed of memory cells, input gates, output
gates, and forget gates. Its unit structure is shown in Figure 1.

Figure 1. LSTM cell structure.

Forget gate: Determine what information the model “forgets” from the cell; ft is the
output of the forget gate, the value is between 0 and 1. The closer ft is to 1, the more
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information is retained in Ct − 1, and the closer ft to 0, the more information is eliminated
in Ct − 1. The calculation is shown in Equation (1).

ft = σ
(

W f [ht−1, xt] + b f

)
(1)

Input gate: There are two parts of the function, one part is used to find those cell states
that need to be updated, and the other part is used to update the information that needs to
be updated into the cell state. The calculation is shown in Equation (2):

it = σ(Wi[ht−1, xt] + bi) (2)

Memory unit:
gt = tanh(Wc[ht−1, xt] + bc) (3)

Ct = ft·Ct−1 + it·gt (4)

Output gate: Determine the information of the output through the sigmoid layer.
According to the calculated cell state update value Ct, the output result ht is obtained:

Ot = σ(Wo[ht−1, xt] + bo) (5)

ht = Ot·tanh(Ct) (6)

In Equations (1)–(6), σ represents sigmoid function; Wf, Wi, Wc, and Wo are the weight
matrix of forget gate, input gate, memory unit, and output gate, respectively. A vector
[ht − 1, xt] is spliced by two vectors; bf, bi, bc, and bo are the bias terms of forget gate, input
gate, memory unit, and output gate, respectively; and Ct represents the unit state at the
current time and Ct − 1 represents the cell state at the last time.

2.2. LightGBM Model

LightGBM [16] is a distributed gradient boosting framework based on the decision
tree algorithm. It still uses the optimization results of (T − 1)-th trees to construct the
T-th tree. Each time the combination of weak learners is better than the previous one.
Similar to XGBoost, LightGBM explicitly adds a regular term, performs a second-order
Taylor expansion of the loss function, and uses first-order and second-order derivative
information. The objective function follows:

objt =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft) + cons tan t (7)

To find ft, make
n
∑

i=1
l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft) minimum, where Ω(ft) is the regular-

ization term.
GBDT needs to scan all data to estimate all possible segmentation points of infor-

mation gain, which consumes time and memory. LightGBM uses a GOSS algorithm to
reduce samples and an EFB algorithm to bundle features, reducing the time complexity of
the algorithm.

2.2.1. Goss Algorithm and EFB Algorithm

First, the GOSS algorithm sorts the samples from large to small based on the absolute
value of the gradient, extracts a% samples from the sorted samples, and retains all a%
samples. It then randomly samples b% samples from the remaining (1 − a%) samples, in
order to maintain the original distribution, amplifies the gradient weights of the [(1 − a%)
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b%] samples, and multiplies them by (1 − a%)/b%. The new information gain formula
follows:

ṼJ(d) =
1
n


(

∑
xi∈Al

gi +
1−a

b ∑
xi∈Bl

gi

)2

nj
l(d)

+

(
∑

xi∈Ar

gi +
1−a

b ∑
xi∈Br

gi

)2

nj
r(d)

 (8)

where n is the total number of samples of a node after the Goss algorithm filters samples,
nj

l(d) is the number of left samples of the node, and nj
r(d) is the number of right samples of

the node.
The EFB algorithm initially constructs a weighted undirected graph using the rela-

tionship between features. The nodes are then sorted in descending order according to
their degree. The greater the degree, the greater the conflict with other features. Finally,
it traverses each feature and assigns it to an existing feature package, or it creates a new
feature package to minimize the overall conflict.

2.2.2. Histogram Algorithm

The histogram algorithm [17] greatly improves the efficiency of the LightGBM model,
which can discretize the feature sequence and directly support the native support category.
It is not necessary to use similar one-hot encoding for feature digitization, as is the case in
XGBoost, and transform it into a multidimensional 0/1 feature, which is not efficient in
space and time. The histogram algorithm discretizes the floating-point eigenvalues into
m integers and builds a histogram with a width of m, as shown in Figure 2 (right). When
traversing the data, the discretized value is used as an index to accumulate statistics in
the histogram. Once the data are traversed, the histogram will accumulate the required
statistics. According to the discrete value of the histogram, the optimal segmentation point
is found. Compared with GBDT, traversing all possible segmentation points of each feature
to find the optimal segmentation point, LightGBM requires a much smaller memory and
greatly improves the speed. The algorithm is shown in Figure 2 [18].

Figure 2. Histogram algorithm.

In addition, since the histogram of a leaf can be obtained by the difference between the
histogram of its parent node and its brother node, the histogram difference only needs to
traverse the k bins of the histogram, and does not need to traverse all the data on this leaf.
Therefore, after LightGBM constructs a histogram of a leaf, it can obtain the histogram of
its sibling leaves at a very small cost. The “histogram difference acceleration” construction
method is shown in Figure 3.
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Figure 3. “Histogram difference acceleration” construction method.

2.2.3. Building the Leafwise Strategy

LightGBM uses the leafwise strategy to split the leaf node with the largest gain among
all leaf nodes each time, while limiting the maximum depth of the tree to prevent overfitting.
The splitting process is shown in Figure 4 [18].

Figure 4. Tree building diagram based on the leafwise strategy.

The splitting gain of a binary tree is shown in Equations (9)–(11) [18].

gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ (9)

Gj = ∑
i∈Ij

gi, i = 1, 2, . . . , n; j = 1, 2, . . . , T (10)

Hj = ∑
i∈Ij

hi, i = 1, 2, . . . , n; j = 1, 2, . . . , T (11)

where γ is the cost of complexity of introducing new leaf nodes each time, and Gj and Hj
are the first and second derivatives of the error function of the sample set.

2.3. Weighted Combination Prediction Model Based on LSTM and LightGBM
2.3.1. An Optimal Weighted Combination Method

LSTM and LightGBM are two completely different models. The former is sensitive
to the nature of time series, while the latter has a stronger ability to extract features
than the former. There are differences in the predictive abilities of these two models.
However, a model with a poor overall forecasting effect does not mean that the model has
a bad forecasting ability for all samples. In view of the different advantages of the two
models in terms of processing data, this paper combines the models through the optimal
weighted combination method, which avoids the overall disadvantage of a single model
and improves the stability of the model’s performance. The calculation steps of the optimal
weighted combination method follow:

Step 1: Find the deviation matrix E, as shown in Equation (12):

E =


N
∑

i=1
e2

1T

N
∑

i=1
e1Te2T

N
∑

i=1
e1Te2T

N
∑

i=1
e2

2T

 (12)
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where N represents the number of samples contained in the dataset, and e1T and e2T are,
respectively, the error between the predicted value and the true value of the LSTM model
and the LightGBM model at time T.

Step 2: The optimal weight is obtained by the Lagrange multiplier method, as shown
in Equation (13):

[w1, w2]
T =

E−1R
RTE−1R

(13)

where w1 and w2 are the weight coefficients of the LSTM and LightGBM models, respec-
tively, the sum of the coefficients is 1, and R = [1,1]T.

Step 3: The final PM2.5 concentration prediction result is obtained according to the
weight coefficient, as shown in Equation (14):

ŷT = w1ŷ1T + w2ŷ2T (14)

where ŷT represents the PM2.5 concentration prediction results of LSTM-LightGBM at
time T, and ŷ1T and ŷ2T are the PM2.5 concentration prediction results of the LSTM and
LightGBM models, respectively.

2.3.2. The Combined Forecasting Process

The weight coefficients w1 and w2 mentioned in Section 2.3.1 are determined according
to the evaluation effect of the validation set. First, the original data are preprocessed, and the
training, validation, and test sets are divided according to a certain proportion. According
to the evaluation effect of the verification set, the important parameters of the two models
are tuned separately, and the test set is used for the actual PM2.5 concentration prediction.
After model training and parameter tuning, the test set is independently predicted with
LSTM and LightGBM. Finally, the combined prediction result is obtained through the
optimal weighted combination method.

The process of combined forecasting is shown in Figure 5.

Figure 5. Flow chart of combined forecasting.
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3. Experimental Setup and Data Processing
3.1. Experimental Environment

The computer configuration used in this experiment follows: an Intel i5-8250 proces-
sor, 1.80 Hz CPU frequency, 8 GB memory, and Windows 10 (64-bit) operating system.
The software platform is Anaconda (an open source Python distribution for scientific
computing), the programming is based on Python 3.7, the LSTM experiment uses the
Keras deep learning framework, and the LightGBM model is established based on the
LightGBM library.

3.2. Data Source and Index Selection

Marković et al. [19] noted that the sources of PM particles, SO2, NO2, CO, and O3, are
different but affect each other. Guo et al. [20] used meteorological factors and other potential
pollutant concentrations as the influencing factors of PM2.5 concentration for modeling.
This paper selects the hourly historical air quality concentration data and meteorological
data of the Beijing Olympic Sports Center from 1 January 2014, to 28 February 2017, in
the UCI database, which includes year, month, day, hour, PM2.5 concentration, PM10
concentration, temperature, precipitation, and other information, for a total of 27,720 data
and 16 variables, as shown in Table 1. Among them, year, month, day, hour are date-type
variables, wd is a subtype variable, and the remaining 11 are all numeric variables. Some
data have missing values. This article is concerned with how to predict the concentration of
PM2.5 per hour through historical variable information, thus PM2.5 concentration is used as
the explained variable, and historical air particulate matter records and weather conditions
are used as the explanatory variables.

Table 1. Variable description.

Variable Meaning Variable Meaning

Year Year of this row CO CO concentration (µg/m3)
Month Month of this row O3 O3 concentration (µg/m3)

Day Day of this row TEMP Temperature (◦C)
Hour Hour of this row PRES Pressure (hPa)
PM2.5 PM2.5 concentration (µg/m3) DEWP Dew point Temperature (◦C)
PM10 PM10 concentration (µg/m3) RAIN Precipitation (mm)
SO2 SO2 concentration (µg/m3) WD Wind direction
NO2 NO2 concentration (µg/m3) WSPM Wind speed (m/s)

3.3. Analysis of Influencing Factors of PM2.5 Concentration
3.3.1. Average Concentration of PM2.5 at Different Times

Affected by climatic conditions, the concentration of PM2.5 varies in different seasons.
This section explores the changes in the concentration of PM2.5 per hour during the season.
According to the climate statistics method, the four seasons are divided into March–May
as spring, June–August as summer, September–November as autumn, and December–
February as winter. The average concentration of PM2.5 in different months and the
hourly average concentration of PM2.5 in different seasons are shown in Figures 6 and 7,
respectively.

It can be seen in Figures 6 and 7 that there are differences in PM2.5 at different
hours, but it maintains a steady upward or downward trend in similar hours. The PM2.5
concentration is higher in winter, November, and March, and the PM2.5 concentration in
summer is significantly lower than the other three seasons. The seasonal concentrations
of PM2.5 from high to low follow: winter > autumn > spring > summer. The average
concentration of PM2.5 was the highest in December. Because of the severe cold in winter,
household coal-fired and carbon-fired heating increase, leading to an increase of pollutants
in the air. The trend of PM2.5 concentration in summer and spring is similar. The average
concentration of PM2.5 was lowest in August. PM2.5 is higher than other periods from
8 a.m. to 12 a.m., which is caused by the morning peak and factory work; PM2.5 decreases
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in the afternoon because the temperature at this time limits formation of an inversion layer,
which provides greater air circulation and pollutant diffusion; PM2.5 levels increase after
5 p.m. during off-peak hours due to vehicle emissions.

Figure 6. Average concentration of PM2.5 in different months.

Figure 7. Average PM2.5 concentration per hour in different seasons.

3.3.2. Effects of Air Particulate Matter and Meteorological Factors on PM2.5 Concentration

PM2.5 is a kind of particulate matter affected by other particles in the air and meteoro-
logical conditions. The thermal distribution diagram of the correlation between the hourly
PM2.5 other air particles and meteorological factors from 1 January 2014 to 28 February
2017 are shown in Figure 8. There is a correlation between them. The other particulate
matter in the air has a strong correlation with PM2.5, and meteorological conditions have a
weak correlation with PM2.5. Different particulate matter and meteorological conditions
have varying degrees of impact on PM2.5.
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Figure 8. Thermal distribution diagram of correlation between air particulate matter, meteorological
factors, and PM2.5.

In terms of air quality, the following conclusions can be made: (1) PM2.5 has the
highest correlation with PM10, and its correlation coefficient is as high as 0.88. (2) PM2.5
has a strong positive correlation with SO2, NO2, and CO, and its correlation coefficients
are all above 0.7, which shows that harmful pollutants increase the concentration of PM2.5.
(3) PM2.5 and O3 are interactive, when the concentration of O3 increases by 1 µg/m3,
the concentration of PM2.5 decreases by 0.18 µg/m3 on average, indicating that a certain
concentration of O3 is beneficial to suppressing the concentration of PM2.5.

In terms of meteorological conditions, the following conclusions can be made: (1) Wind
speed has the greatest impact on PM2.5, and the correlation coefficient is −0.29. (2) PM2.5
is negatively correlated with temperature, rainfall, and wind speed. PM2.5 is suppressed
under conditions of high temperature, rainfall, and high wind speed. (3) The dew point
temperature and air pressure are positively correlated with PM2.5. The correlation between
air pressure and PM2.5 is the smallest, and its correlation coefficient is only 0.0057.

3.4. Data Processing and Division
3.4.1. Data Preprocessing

Missing values and repeated values affect the fitting effect of the model. It is necessary
to check whether the dataset contains missing values and duplicate values. It is found that
there are no duplicate values in the data, and all other variables except time have missing
values. The interpolation method is used to fill numerical variables, and the mode fill
method is used to fill subtype variables. The year, month, day, and hour are merged as a
data index. Regarding the wind direction of categorized variables, considering that one-hot
coding reduces the efficiency of space and time, and the use of one-hot coding cannot have
a significant impact on integrated learning; hard coding is used to code it. After the above
processing is completed, 12 variables and 27,720 pieces of data are retained.

3.4.2. Data Set Partition and Normalization

Due to the particularity of the time series, the past data are trained to predict the future
data, so the dataset cannot be divided randomly. In this paper, in chronological order, the
top 70% of the dataset is used as the training set (19,404 data from 1 January 2014, to 19
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March 2016), and the middle 20% of the data is used as the validation set (5544 data from
19 March 2016, to 5 November 2016), and the last 10% of the data as a test set (2772 data
from 5 November 2016, to 18 February 2017). For each model, it is trained based on the
training set, and the verification set is used to select the optimal parameters. Finally, it is
predicted on the test set to evaluate the performance of the model. In addition, in order
to prevent information leakage, the normalization problem is considered after the dataset
is divided.

Since the tree model is optimized by finding the optimal split of the feature, the
normalization does not change the position of the split point, so normalization is not
required when applying the tree model. However, in order to increase the convergence
speed of the NN, when the NN model is established, the data are normalized by minimum–
maximum to convert the original data to fall within [0,1]. The normalized expression is
shown in Equation (15):

xij
∗ =

xij − min
1≤i≤N

xij

max
1≤i≤N

xij − min
1≤i≤N

xij
(15)

where xij represents the original data, xij
* is the normalized value, max

1≤i≤N
xij is the maximum

value of the selected data feature, and min
1≤i≤N

xij represents the minimum value of the

selected data feature. Since the normalized data prediction is not the true predicted value,
the conversion factor should be saved to facilitate denormalization after prediction to
obtain the actual predicted value. The denormalization method is shown in Equation (16):

ŷ = (ymax − ymin)·ŷ′ + ymin (16)

where ŷ′ is the predicted value of the model with a value [0,1], and ŷ represents the actual
predicted value of the model after denormalization.

3.5. Evaluating Indicator

This article explores the problem of regression prediction. It is concerned with whether
the predicted PM2.5 is close to the real PM2.5. RMSE, MAE, and SMAPE are selected to
measure the prediction accuracy and generalization ability of different models. Let yi
be the true value; let ŷi be the predicted value of the model, i = 1, 2, . . . , n; and let n be
the number of samples. The expressions of the above evaluation indicators are shown in
Equations (17)–(19).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷ)2 (17)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (18)

SMAPE =
100%

n

n

∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

(19)

The RMSE and MAE are used to judge the deviation between the predicted value
of the model and the true value. The smaller the value, the smaller the prediction error
of the model. The SMAPE is used to evaluate the goodness-of-fit of the model, which is
an improvement of the mean absolute percentage error (MAPE), which overcomes the
asymmetry of MAPE. The closer the value is to 0, the stronger the generalization ability of
the model.

4. Model Construction and Evaluation

First, this section establishes the LSTM model and the TSLightGBM model, respec-
tively. According to the performance on the verification set, the two models are weighted
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by the optimal weighted combination method, and the test set is then predicted. Finally, it
is compared with LSTM, TSLightGBM, MLP, RNN, and RF.

4.1. LSTM Model

With the continuous accumulation or dissipation of air pollutants over a period of
time, the PM2.5 in the air is constantly changing; that is, the PM2.5 in the current period
is affected by the influencing factors of the previous N periods. This article conducts
comparative experiments by setting different time windows T, where the time window
refers to how many hours of historical data are used to predict the current PM2.5. In this
paper, the size of the time window is set to 1, 3, 6, 9, 12, 15, 18, 21, and 24.

There are too many parameters affecting the performance of NN. Therefore, first,
according to the previous experience, the activation function is determined as ReLU, and
the optimization algorithm is determined as the Adam algorithm. Two hidden layers are
set, the learning rate is set as the default parameter of 0.01, and some neurons are randomly
deleted with a probability of 0.2. A pre-experiment is set to roughly adjust the secondary
important parameters. In the pre-experiment, the batch size is set as 16, 32, and 64, the
number of iterative training epochs is set to 100 and 200 to model the training samples, two
hidden layers are set, the batch is set to 32, and the number of epochs is set to 100, which is
more appropriate. At the same time, the MAE of the verification set has an upward trend
in the last 50 trainings, so a mechanism (Early_Stopping) is set to prevent the model from
overfitting. When the MAE of the verification set decreases by no more than 0.0005 for
15 consecutive times, model training is considered complete. According to the previous
experience, the parameter settings completed by the pre-experiment are shown in Table 2.

Table 2. Parameter settings.

Parameters Setting

Activation function ReLU
Optimization algorithm Adam

Learning rate 0.01
Discard rate 0.2

Batch parameters 32

Early stop mechanism If the MAE of the verification set drops less than 0.0005 for
15 consecutive times, training is stopped

The formal experiment mainly adjusts the number of neurons contained in the two
hidden layers. Under different time windows T, these two parameters must be continu-
ously adjusted. The MAE is used as an evaluation index, and the parameter corresponding
to the minimum MAE of the verification set in the current time window is selected. Ac-
cording to the length of the input sequence, the number of neurons in the hidden layer
is obtained within the range of [50,400]. The optimal parameter settings obtained under
each time window and the MAE and RMSE of the verification set are shown in Table 3.
Considering the authenticity of the results of the verification set, the MAE and RMSE in
Table 3 are calculated based on the index formula after restoring the predicted value of the
verification set.

In Table 3 and Figure 9, as the time series increases, the overall performance of LSTM
on the PM2.5 value shows an upward trend and then a downward trend. The effect on the
verification set is best when T = 12. The LSTM model has similar prediction performance
for PM2.5 within 3 h. For example, when T = 1 and T = 3, the MAE and RMSE are about
9.27 and 14.9, respectively; when T = 9 and T = 12, the MAE and RMSE are about 8.5 and
13.5, respectively; and when T = 15 and T = 18, the MAE and RMSE are about 9.05 and 14.2,
respectively.
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Table 3. The parameter setting and verification effect under different time windows.

T
Number of

Neurons in the
First Layer

Number of
Neurons in the
Second Layer

MAE RMSE

1 100 50 9.300 15.287
3 120 60 9.252 14.619
6 128 64 8.860 14.192
9 256 128 8.557 13.760

12 320 160 8.522 13.515
15 300 150 9.073 14.258
18 300 150 9.058 14.219
21 256 128 9.260 14.480
24 350 175 9.604 14.724

As shown in Table 3, when T = 12, LSTM performs best on the validation set. The
MAE and RMSE are 8.522 and 13.515, respectively. When T = 24, LSTM performs the worst
on the validation set; MAE and RMSE are 9.604 and 14.724, respectively. In order to more
intuitively judge the relationship between the prediction ability of LSTM and the size of T,
the effect of the verification set of LSTM under each time window is presented in Figure 9.

Figure 9. The RMSE and MAE of the LSTM verification set under different time windows.

In summary, when the T is set to 12, LSTM performs best on the verification set.
The specific parameters follow: the activation function is set to ReLU, the optimization
algorithm is the Adam algorithm, the learning rate is the default parameter of 0.01, the
batch size is 32, and the number of neurons in the first and second hidden layers is set
to 320 and 160, respectively. During training, each hidden layer randomly discards some
neurons with a probability of 0.2. If the MAE of the validation set drops less than 0.0005
for 15 consecutive times, training stops.

4.2. The TSLightGBM Model

When integrated models such as LightGBM and RF process time series, there is no
time correlation between the input data. There are generally two ways to introduce time
features: (1) One is to add basic feature variables, such as year, season, month, week, and
hour. This model is denoted as TLightGBM. (2) The other uses T as a sliding window, and
statistics such as the mean and standard deviation of each samples’ features are used as
feature variables before T hours, so as to introduce the time characteristics to improve
the training accuracy of the model. This model is denoted as TFLightGBM in this paper.
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However, these two methods do not make full use of the data in the time window T, and
some information will be lost. In this section, when the time window size T is selected, the
data of each T period are spliced into a one-dimensional shape as the explained variable of
the PM2.5 of the T + 1 period, so as to predict the PM2.5 of the T + 1 h. In this paper, this
model is denoted as TSLightGBM and compares it with the previous two methods that
introduce temporal features. In order to ensure the fairness of the model comparison, the
size of the selected sliding window and time window are the same as in Section 4.1.

Considering that there are many parameters of the LightGBM model, the ensemble
model of the tree is mainly affected by the number of trees, the maximum depth, and
the learning rate. This section mainly adjusts the three main parameters of LightGBM
as minimally as possible with the goal of verifying the set MAE. The number of trees
(n_estimators) is adjusted within [100, 250, 500, 1000, 2000], the maximum tree depth
(max_depth) is adjusted within [6, 8, 10, 12, 16], and the learning rate (learning_rate) is
adjusted within [0.01, 0.05, 0.1]. The final adjustment results and the corresponding MAE
and RMSE values are shown in Table 4.

Table 4. The final adjustment results of LightGBM and the corresponding MAE and RMSE.

Model n_estimators max_depth learning_rate MAE RMSE

TLightGBM 1000 6 0.01 12.496 19.570
TFLightGBM 2000 10 0.01 18.180 26.796
TSLightGBM 1000 10 0.01 8.153 13.266

Table 4 shows the following: (1) The model with the best effect is TSLightGBM, and its
RMSE and MAE are 8.153 and 13.266, respectively; (2) the second-best model is TLightGBM,
and its RMSE and MAE are 12.496 and 19.570, respectively; and (3) the worst model is
TFLightGBM, and its RMSE and MAE are 18.180 and 26.796, respectively. When LightGBM
cannot provide the input data with a time correlation, the data in T are spliced into a
one-dimensional shape as an explanatory variable to predict PM2.5 in the T + 1 period, and
the prediction performance of the model is better.

In summary, the feature construction method of TSLightGBM is selected, the number
of trees is set to 1000, the maximum depth of the tree is 10, and the learning rate is 0.01.
LightGBM performs best on the verification set.

4.3. LSTM-TSLightGBM Weighted Combination Model

Based on the verification set MAE of the optimal LSTM and the optimal LightGBM
in Sections 4.1 and 4.2, the ratio (0.42:0.58) of two models in the prediction is calculated
according to the optimal weighted combination method.

In order to better evaluate the performance of the combined model, this section
compares it with MLP, RNN, RF, LSTM, and TFLightGBM. These models all choose the
parameters with the goal of the smaller MAE of the validation set. Among them, the input
of MLP and RF is similar to that of TFLightGBM. Similar to other NNs, MLP is normalized
when training the model. The RNN is constructed in the same way as LSTM. The real
prediction performance of each model is shown in Table 5.

Table 5. The performance of each model.

Model MAE RMSE SMAPE

MLP 17.853 28.058 36.974%
RNN 16.846 27.158 35.487%

RF 13.027 24.702 20.950%
LSTM 12.918 23.501 21.271%

TSLightGBM 12.278 23.216 19.936%
LSTM-TSLightGBM 11.873 22.516 19.540%
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Table 5 shows the following: (1) the weighted combination model LSTM-TSLightGBM
has a better performance than any single model, and its MAE, RMSE, and SMAPE are
the smallest, which are 11.873, 22.516, and 19.540%, respectively; (2) the second-best
model is TSLightGBM, and its MAE, RMSE, and SMAPE are 12.278, 23.216, and 19.936%,
respectively; (3) the third-best model is LSTM. Although the SMAPE of LSTM is 0.321%
larger than that of RF, its MAE and RMSE are 12.918 and 23.501 respectively, which are 0.1
and 1.2 smaller than that of RF. Overall, LSTM is a better model than RF.

This paper assumes that if the difference between the prediction errors of the two
models exceeds 10%, it is considered that there is a significant difference in the predic-
tion performance of the two models. Compared with MLP and RNN models, MAE of
LSTM-TSLightGBM decreased by 33.50% and 29.52%, respectively; RMSE decreased by
19.75% and 17.09% respectively; and SMAPE decreased by 47.15% and 44.94% respec-
tively. On the whole, the prediction effect of LSTM-TSLightGBM on PM2.5 concentration is
significantly improved.

To more intuitively judge the superiority of the LSTM-TSLightGBM performance, it
is necessary to further combine graphics to judge its performance. Considering that the
effect of graphic display is not obvious when the difference degree of MAE is within 1, this
section only shows the comparison curve between the predicted value and the real value of
LSTM-TSLightGBM model with the best performance and the MLP model with the worst
performance. Due to the large sample size of the test set, all visualization will affect the
judgment effect. Here, 100 samples are drawn from the first and second halves of the test
set for comparison. The visualization results are shown in Figures 10 and 11.

Figure 10. LSTM-TSLightGBM prediction results: (a) 100 random samples in the first 50% of the test set, (b) 100 random
samples in the last 50% of the test set.

Figure 11. MLP neural network prediction results: (a) 100 random samples in the first 50% of the test set, (b) 100 random
samples in the last 50% of the test set.

As shown in Figures 10 and 11, compared with the LSTM-TSLightGBM model, the
difference between the predicted value of MLP neural network and the actual value is
more obvious. When PM2.5 is in the range of 100 to 200, the predictive capabilities of LSTM-
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TSLightGBM and the MLP neural network are close. However, when PM2.5 is close to 0 or
greater than 350, the difference between the predicted value of MLP and the real value is
clear, while the difference between the LSTM-TSLightGBM model and the real value is not.
The reason why LSTM-TSLightGBM is better may be that LSTM has a “memory” function,
and the variable inputs to the MLP are independent of each other. In addition, LSTM has
gating rules and selectively filters variable information. At the same time, TSLightGBM
also has the function of screening variables, which can reduce the influence of noise.

In terms of evaluation indicators and prediction results, LSTM-TSLightGBM combines
the advantages of LSTM’s high sensitivity to time information and the advantages of
LightGBM’s strong extraction of feature variables. Therefore, LSTM-TSLightGBM has
superiority in the prediction of PM2.5.

5. Conclusions

Based on the hourly historical air quality data and meteorological dataset from the
environmental monitoring site of the Beijing Olympic Sports Center from 1 January 2014,
to 28 February 2017, this paper conducts an empirical study and draws the following
conclusions:

(1) The overall seasonal variation of PM2.5 concentration, from highest to lowest, shows
the following pattern: winter > autumn > spring > summer. The average concentration
of PM2.5 is highest in December and the lowest in August. The concentration of
PM2.5 is positively correlated with the concentration of harmful particulate matter.
The correlation between PM2.5 and PM10 is the highest, reaching 0.88. A certain
concentration of O3 is conducive to suppressing the concentration of PM2.5, and
high temperature, rainfall, and wind speed have a certain inhibitory effect on PM2.5.
Meteorological factors have a small impact on PM2.5.

(2) As the PM2.5 concentration is affected by historical information, the performance
of LSTM is related to the size of the time window. As the time window increases,
the performance of LSTM on PM2.5 increases first and then decreases. When the
time window size is 12, performance of LSTM is best. For the nontime series model,
LightGBM, different feature construction methods have an impact on the performance.
The TSLightGBM, which uses all the information in the time window as the input the
next period of prediction, has the best performance.

(3) Comparing LSTM-TSLightGBM with LSTM, TSLightGBM, RF, RNN, and MLP neural
networks, LSTM-TSLightGBM has the smallest MAE, RMSE, and SMAPE, which
demonstrates its effectiveness in processing time series data and its superiority in the
hourly forecast of PM2.5.
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