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Abstract: This paper addresses the subject of inter-annual variability of the tropical precipitable
water vapor (PWV) derived from 18 years of global navigation satellite system (GNSS) observations.
Non-linear trends of retrieved GNSS PWV were investigated using the singular spectrum analysis
(SSA) along with various climate indices. For most of the analyzed stations (~49%) the GNSS PWV
anomaly was related to the El Niño Southern Oscillation (ENSO), although its influence on the PWV
variability was not homogeneous. The cross-correlations coefficient values estimated between the
Multivariate ENSO Index (MEI) and PWV were up to 0.78. A strong cross-correlation was also found
for regional climate pattern expressed through CAR, DMI, HAW, NPGO, TNA and TSA indices. A
distinct agreement was also found when instead of climate indices, the local sea surface temperature
was examined (average correlation 0.60). The SSA method made it also possible to distinguish
small-scale phenomena that affect PWV, such as local droughts or wetter rainy seasons. The overall
nature of the investigated changes was also verified through linear trend analysis. In general, not a
single station was characterized by a negative trend and its weighted mean value, calculated for all
stations was equal to 0.08 ± 0.01 mm/year.

Keywords: GNSS; PWV; climate; tropics; time-series; SSA

1. Introduction

The tropical region is a major center of atmospheric convection, accompanied by
significant latent heat release [1]. The Earth’s climate system’s global circulation depends
on latent heat flux from the surface to the atmosphere through the chain of evaporation-
clouds–precipitation processes [2], while the transport of heat and momentum by Hadley
Cells is vital to the maintenance of the global heat balance. Since precipitation rates are the
largest in the global tropics, so is the amount of latent heat transferred to the atmosphere.
Thus, variability in the tropical water vapor impacts global circulation patterns. As a result,
tropical weather patterns across numerous timescales have a great repercussions on the
weather and climate in mid-latitudes through atmospheric teleconnections [3,4]. The equa-
torial humidity changes resulting from, e.g., El Niño–Southern Oscillation (ENSO), which
is the most prominent year-to-year climate fluctuation on Earth [4], has a strong impact
on tropical weather and climate [5–7]. However, footprints of ENSO are also observed
nearly world-wide, including both poles, in the Earth’s climate system [8–10]. Therefore,
long-term, reliable monitoring of water vapor variability in the tropics is an important
task in understanding global climate, especially considering the fact that water vapor is
characterized by the single highest positive feedback on the surface temperature [11–14]
and dominates the effect of the Earth’s surface temperature increase [15].

The amount of water vapor in the atmospheric column, usually expressed as inte-
grated water vapor (IWV) or precipitable water vapor (PWV), can be measured using
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various techniques. Traditionally, meteorological balloons that perform high-resolution
profiles of atmospheric temperature, humidity, pressure and horizontal winds up to 30 km
height (radio sounding, RS) are used for this purpose. Although this is one of the most
commonly used method for PWV measurements, RS data suffer from certain limitations.
For one, RS profiles are not purely vertical but may suffer from a drift due to horizontal
winds [16,17], resulting in ascent through air masses characterized by different moisture
content. Furthermore, the spatial distribution of the RS measurement network is rather
coarse (from ~200 km up to ~700 km, depending on the location), highly inhomogeneous
and land-locked, with only a handful of research vessels providing data over open ocean.
Operational temporal resolution of RS launches is daily or twice-daily [18], which is more
than sufficient for monitoring of climate phenomena, but limits the ability to investigate
scale interactions, especially in the tropics where the primary mode of variability is diurnal
cycle [19,20]. Balloon launch frequency can be increased over certain areas for a limited
period for a targeted observations, but coordinated enhancement over large regions (e.g.,
the entire maritime continent) requires tremendous coordinated effort on an international
level [21]. Finally, RS operations require ground staff during balloon launch and their
cost itself poses strong limitations for increased spatial and temporal resolution of these
data. Such limitations are even more important for the research of unpredictable climate
patterns, such as ENSO. For example, the Tropical Ocean-Global Atmosphere (TOGA)
Coupled Ocean Atmosphere Response Experiment (COARE) intensive observation period
(IOP) from November 1992 to March 1993 has been designed to study atmosphere–ocean
interactions, organization of atmospheric convection, ocean variability and multi-scale
interactions within the western Pacific warm pool in order to gain better understanding
of ENSO, among others [22]. Although a tremendous amount of research alongside the
project’s goals has been delivered as a result of this endeavor, the IOP period has not
encountered clear ENSO conditions, which means that the resources deployed as part of
TOGA-COARE provided little insight into ENSO dynamics [23,24]. Recently, the National
Oceanic and Atmospheric Administration (NOAA) El Niño Rapid Response (ENRR) [25]
project has been carried out during a major El Niño event in 2016, with a ship, aircrafts
and land stations deployed for targeted observations. This project aimed to improve the
understanding of the atmospheric response to El Niño conditions and its implications on
heavy weather conditions in the US. The success of NOAA ENRR confirms the fundamen-
tal need for continuous research aimed at an in-depth understanding of the dynamics of
tropical climate patterns and their teleconnections. However, its relatively short period
of 12 weeks did not cover many aspects of the 2016 event, such as the initial evolution of
the atmospheric moisture pattern due to shifting SSTs. Therefore, a reliable and continu-
ous monitoring of atmospheric moisture content across the Pacific Ocean would greatly
augment capacity of targeted efforts such as NOAA ENRR.

In recent years, a new technique used for the purpose of short- and long-term PWV
variability analysis has been developed. It is based on the global navigation satellite systems
(GNSS) ground and satellite infrastructure. Since water vapor affects the propagation of
the GNSS signal through changing atmospheric refractivity, each of the GNSS permanent
stations can provide long term series of unique data of atmospheric refraction. Firstly,
Bevis et al. [26] proposed the concept of GNSS meteorology, by calculating the PWV based
on GNSS observations together with surface temperature and pressure. Since then, many
studies have proved the great utility of this technique in monitoring troposphere humidity
changes [27–31].

The great potential of the GNSS technique in the monitoring of PWV variability
emerges from the high temporal and spatial resolution of the observations, which are
collected regardless of weather conditions. In addition, stations belonging to the GNSS
permanent network, such as the International GNSS Service (IGS), have been perform-
ing measurements even since 1994, thus providing an over 20-year time series. Another
advantage is the automatic data collection and cost-effectiveness of GNSS data acquisi-
tion systems (e.g., single unit measures for many months as opposed to disposable RS
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units). Although it is not a direct method of PWV measurements, the application of an
appropriate processing strategy for GNSS observations enables the use of GNSS PWV time
series as a valuable source for PWV long term analysis, with accuracy similar to the PWV
measured by radio soundings [32,33]. Studies conducted so far, on the global [34–38] and
regional [32,39–41] scales have clearly proven the efficacy of GNSS PWV data in
climate monitoring.

This paper attempts to establish a link between GNSS PWV decadal variability and
global, regional, and local climate phenomenon, which are main drivers of moisture inter-
annual changes. It focuses on long-term variability in PWV over GNSS stations located in
the tropical regions, both from a linear and non-linear point of view. Special attention has
been paid to the ENSO to demonstrate the possibilities of using the GNSS infrastructure to
monitor this phenomenon as well as its impact on weather conditions. The structure of
the paper is as follows: section two contains information about the dataset used for this
study and describes the methodology; section three presents results and discussion. The
last section is devoted to conclusions.

2. Materials and Methods

GNSS signals passing through the Earth’s troposphere are disturbed by the temper-
ature, air pressure, and water vapor, which cause their delay. In general, this delay is
expressed towards the zenith and is called zenith tropospheric delay (ZTD). It is estimated
through GNSS observation processing and consists of a delay caused by the hydrostatic
(zenith hydrostatic delay, ZHD) and wet (zenith wet delay, ZWD) components of the atmo-
sphere. In practice, a priori ZHD is used in the process of ZTD estimation, and correction
calculated to its value is often equated to the ZWD. However, the ZWD obtained in such a
way includes both the ZWD itself and correction for formerly modelled ZHD. Therefore,
in GNSS meteorology, ZHD is also calculated a posteriori, using, e.g., the Saastamoinen
formula [42], and in such a form is subtracted from GNSS ZTD. The resulting ZWD is
strictly related to the humidity in the atmosphere and can serve IWV estimation using
the Bevis formula [26]. The water vapor weighted mean temperature, which is necessary
for this procedure, can be estimated through, e.g., its linear relationship with the surface
temperature [43,44].

In this study, we focus on the inter-seasonal variability of the PWV, estimated based on
the GNSS observations derived from the selected stations belonging to the IGS network [45].
It should be noted that station selection aimed data consistency among analyzed locations.
Therefore, selected stations belong to only one of many global, pan-regional and regional
networks and should be considered a subset of all GNSS data. The selected stations are
located between 30◦ S and 30◦ N and have been operating between January 2001 and
December 2018, and were selected to ensure long-term coherent data sets available for
analyses. The collected 30-s GPS observations were processed in Bernese GNSS Software
ver. 5.2 [46], using the precise point positioning (PPP) approach. We decided to use this
method, since it prevents error propagation between stations and provides one of the most
reliable results from the point of view of GNSS climate monitoring [33]. Precise ephemeris
and clocks from second CODE reprocessing [47] were used. In addition, observations
below 5◦ elevation mask were excluded, to limit the negative effects of phenomena such
as multipath. Hourly ZTD values were estimated together with tropospheric gradients
using Vienna Mapping Function 1 [48] and Chen and Herring mapping function [49].
Estimation of the ZWD were possible by way of the Saastamoinen model and air pressure
derived from the ERA5 model [50]. Conversion between ZWD and PWV was performed
using water vapor weighted mean temperature estimated based on surface temperature
data from ERA5. This enables the estimation of long-term PWV with mean bias below
2 mm and linear trend difference below 0.01 mm/year in comparison to the RS data [33].
Based on the so-processed PWV we estimated daily solutions. Stations with less than
70% of the available data were excluded from further analysis. As a result, the average
completeness of the solutions at selected stations was at a level of 85%. The location of the
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chosen 43 stations, together with information about their height above sea level, is given in
Figure 1 and Table A1 (Appendix A).
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Figure 1. Location of the global navigation satellite system (GNSS) stations used in the study.

A PWV analysis was supported by SST data from the Fleet Numerical Meteorology
and Oceanography Center (FNMOC) High-Resolution SST/Sea Ice Analysis for the Global
High-Resolution SST project [51]. These data are available every 6 h at a near global
Mercator projection grid, with 12 km resolution at the equator. Daily anomalies of SST
were computed by removing the seasonal cycle, defined as the mean plus the first three
annual harmonics fitted to an average annual cycle calculated between 1 January 2006–31
December 2018.

The singular spectrum analysis (SSA) method [52,53] was used to extract the nonlinear
trend, which we assume is the slowly-varying version of a time series that comprises long-
term variations but without seasonal periodicities. SSA is a non-parametric and model-free
method which can be applied to analysis and prediction of any series. Its advantage
over classical spectral methods and its importance in non-linear dynamics results from
the adaptive character of eigenvalues. In non-linear dynamics, the SSA method was
introduced by Broomhead and King [54], and is based on principal component analysis
(PCA). Its particular importance in the time series analysis results from the fact that the
power spectrum of the analyzed signal is the sum of spectra of individual components.
In other words, the time series can be represented as a sum of different components such
as trend (defined as a slowly varying series), periodicities, and noise. Therefore, the SSA
enables the decomposition of the signal and obtainment of useful information about a
specific component. Thus, SSA has applications in many areas, including smoothing, noise
reduction, non-linear trend estimation, extraction of periodicities, estimation of volatility,
etc. Because the SSA method requires continuous time series, we filled the gaps considering
the temporal correlation present in the data and the iterative SSA described by Kondrashov
and Ghil [55]. Then, homogenization of PWV time series was performed using an approach
presented by Hoseini et al. [56]. However, instead of using ERA-Interim as in the original,
we used higher-resolution data from the newest ERA5 reanalysis [50]. After finding all the
change points and correcting the mean shifts, we extracted the nonlinear trend as one of
the reconstructed components of the original time series. Figure 2 presents the prepared
PWV time series (top) for GNSS station GUAM (red) and the first five reconstructed
components (RC) derived from the SSA method. RC1 and RC2 include information about
annual oscillation, so we show the aggregate value. Similarly, in the case of RC4 and
RC5, which present components of semi-annual oscillation. RC3 can be interpreted as a
non-linear trend. For comparison purposes, the grey color represents PWV signal and
its decomposition based on data from a neighboring RS station. Also, correlation values
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are presented, which are very high for the RCs shown (above 0.9). This shows that GNSS
data are comparable with RS signals and confirms the ability of the GNSS data to provide
reliable monitoring of integrated water vapor properties.
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Figure 2. Example of precipitable water vapor (PWV) time series for GNSS station GUAM (red) and
radio sounding station 91212 (red) (top) and first five reconstructed components (RC) obtained by
the singular spectrum analysis (SSA) method. Annual and semi-annual oscillations are represented
by RC1–2 and RC4–5, respectively. Nonlinear trend is represented by RC3.

3. Results

This section presents the results and a discussion of the investigation of the PWV’s
long-term variability. We have divided it into analysis of non-linear and linear changes.
In case of non-linear variability, the results are presented and discussed with a division
based on main climate indicators that affect inter-annual variability. The similarity between
a given index and non-linear PWV variability was assessed through a cross-correlation
coefficient. We used this method since it allowed us to obtain the strength of correlation
regardless of the time difference between the occurrence of a phenomenon and its potential
impact on the local environment. We adopted an absolute value of the cross-correlation
coefficient equal to at least 0.4, as an indicator of a statistically significant correlation
between a given phenomenon and changes in PWV. The lag window was adopted as
12 months. Some stations show a significant correlation with more than one climate index,
which is related to the global teleconnections. As a consequence, a detailed analysis is
conducted with comparison to the climate index, that, according to the cross-correlation
process, has the biggest impact on the PWV variability. Since global or regional climate
indices may not be fully representative for each of the analyzed stations, we also conducted
a detailed analysis of the influence of local SST on the PWV variability.

3.1. Non-Linear Long-Term Variability
3.1.1. Pacific Related Climate Indices

One of the commonly used ENSO indices, that combines both oceanic and atmospheric
variability is the Multivariate ENSO Index Version 2 (hereby called MEI) [57]. Next to the
SST, this index includes information about the sea-level pressure (SLP), winds and Outgoing
Longwave Radiation for the Pacific region between 30◦ S–30◦ N and 100◦ E–70◦ W. In
principle, positive MEI events (El Niño) are characterized by warmer than usual SSTs
accompanied by lower than usual SLP in the central-east tropical Pacific, anonymously
high SLP over Indonesia and western equatorial Pacific, reduction of tropical convection
over Indonesia and the western Pacific with its reinforcement over the central tropical
Pacific, and strong changes of trade winds through their reduction or even reversal. ENSO
influences global atmospheric and oceanic circulation. Therefore, one could expect to see
its clear impact on each of the analyzed stations located in the tropical belt. However,
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various PWV variabilities were found and some stations had higher agreement with the
ENSO than the others.

Generally, the statistically significant impact (cross-correlation exceeding 0.4) of ENSO
on PWV variability was found across the whole of the analyzed area, although its strength
and character differed. 21 stations (~49%) were characterized by absolute coefficient of
cross-correlation higher than 0.4 (12 stations positive, 9 stations negative) (Table 1). The
highest agreement was found within the Pacific Ocean basin. In this area stations like
TUVA (Funafuti, Tuvalu), THTI (Papeete, French Polynesia), TONG (Nuku’alofa, Tonga),
PIMO (Quezon City, Philippines) and KOUC (Koumac, New Caledonia) were characterized
by a cross-correlation coefficient equal to 0.78, 0.70, −0.66, −0.66 and −0.63, respectively.
No lags between ENSO and PWV changes were found at TONG and KOUC stations, which
indicate that they varied at the same time as occurrence of El Niño and La Niña episodes.
For the stations with a cross-correlation coefficient exceeding 0.5 it can be noticed that
estimated lag is within 0 to +5 months. This imply that PWV changes, that have a similar
character to changes in the MEI index, occurred together with or after the phenomenon
indicated by this index. There were also stations for which statistically significant cross-
correlations were found, but estimated lags were −8 months (KOKB) or even −10 months
(KOKV). Such lags would suggest that changes in PWV preceded the ENSO phenomenon,
which in these cases is rather a statistical artifact. In addition, PWV over these stations is
mostly modulated by other climate patterns (presented later in the article). Positive lags
were mostly concentrated in the western Pacific and central Africa, while negative in the
Maritime Continent and northern Australia (Figure 3). Detailed information about the lags
and cross-correlation is given in Table 1.

Table 1. Cross-correlation coefficient and lags for stations characterized by the highest similarity to
the Multivariate ENSO Index (MEI).

Site Cross-Correlation
Coefficient

Lag
[Months] Site Cross-Correlation

Coefficient
Lag

[Months]

TUVA 0.78 +2 PNGM 0.41 0
THTI 0.70 +4 BAKO −0.42 −5

DGAR 0.56 +2 NTUS −0.48 −6
MBAR 0.55 +2 LAUT −0.48 +3
NKLG 0.52 +5 CRO1 −0.48 −8
FALE 0.51 +4 DARW −0.53 −4
MAUI 0.44 −7 TOW2 −0.56 −3
KOKB 0.45 −8 KOUC −0.63 0
ASPA 0.44 +6 PIMO −0.66 −2
KOKV 0.43 −10 TONG −0.66 0
CHPI 0.42 +1
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Figure 3. Response of the PWV long-term variability to the El Niño Southern Oscillation (ENSO).
The marker color denote value of the lag in months, while the direction and length of the vectors
indicate character (positive or negative) and values of the maximum correlation, respectively.

The fact that a PWV non-linear trend was correlated with ENSO did not mean that
this was the major phenomenon modulating air humidity. As a consequence, in this
subsection we present results for stations, for which ENSO had the biggest impact out of
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all the analyzed indices. Figure 4a presents stations for which a PWV non-linear trend
is positively correlated with the ENSO. These stations are located in the southern-west
Pacific, namely TUVA, THTI, FALE (Faleolo, Samoa), ASPA, and in the central-west Pacific,
namely PNGM (Lombrum, Papua New Guinea). In their case it can be observed how El
Niño is associated with an increase in moisture, and La Niña with a decrease, especially
considering the strong La Niña episode of 2010–2012. From the beginning of 2010 (the end
of El Niño) to the middle of 2011 (the strongest phase of La Niña), the mean monthly PWV
dropped by 4.0 mm, 4.2 mm, 4.4 mm, 4.9 mm and 6.5 mm for FALE, ASPA, THTI, PNGM
and TUVA, respectively. Likewise, during strong La Niña in 2007–2009, all stations indicate
a decrease in the mean PWV, with the ASPA station being the only exception. Although
this station is located about 150 km from the FALE station, it only shows distinct PWV
variability during the 2010–2012 La Niña. Similar results for this station were, however,
obtained by Wang et al. [58], who also used the SSA method to verify long-term nonlinear
changes. As in our case, they did not find a negative PWV anomaly in 2008 during another
strong La Niña event, but rather constantly decreasing values from a positive anomaly in
2006 (indicated in both studies) to a negative anomaly in 2011/2012 (also in both studies).
A higher disagreement between PWV anomalies estimated using the SSA method can be
found in case of the THTI station. While in previously mentioned study [58], the value
of PWV is rather constantly dropping since approximately 2005 to 2011, in the case of
our results it can be noticed that the highest PWV value, from the same period of time,
occurred in January 2007 (during El Niño), then was clearly negative in August 2008 (La
Niña), positive in January 2010 (El Niño) and again negative in March 2011 (La Niña).
These differences result probably from the calculation strategy adopted for processing
GNSS observations, which has a great impact on GNSS PWV reliability. Nevertheless, a
comparative analysis of local SST and PWV anomalies (discussed later in Section 3.1.4) for
this station showed that the periods highlighted by us, for which the highest and lowest
PWV values were observed, are in strong agreement with the highest and lowest SST
anomalies. The SST analysis also confirmed the correctness of the non-linear trend for
the ASPA station, for which low PWV variability was related to the small SST anomalies
during the analyzed period.
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A higher discrepancy between ENSO and PWV non-linear variability can also be
observed for the PNGM station. According to Smith et al. [59] the ENSO impact on Papua
New Guinea’s rainfall is not obvious and homogeneous due to the high topographical com-
plexity. This region is also under strong influence from the Maritime Continent/Australian
monsoon that drives the sub-seasonal atmospheric variability and shows two-way interac-
tions with ENSO [60,61]. As can be noticed in Figure 4 (left), PWV anomalies tend to be
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negative during La Niña events, while their response to the El Niño events is not obvious.
These results are in line with those obtained by Murphy et al. [62], who have analyzed
various responses of the Pacific islands’ weather and climate to the ENSO state. For the
station located in Kavieng (New Ireland province, Papua New Guinea), nearby PNGM,
they found the occurrence of dryer than normal conditions during La Niña, but wetter than
normal conditions during only specific types of El Niño, which support our results and
general concept that reliable estimated GNSS PWV can be successfully used for long-term
inter-annual moisture variability studies. Figure 4 (right), in turn, presents stations that,
in contrast to the previous cases, are characterized by negative PWV anomaly during El
Niño episodes, and positive during La Niña. Since these stations are located at much
greater distances from each other than in the case of positively correlated stations, the
PWV response to the ENSO was not so homogeneous. Nevertheless, the highest PWV
anomalies were, again, observed during the 2010–2012 La Niña. For this period PWV
anomaly reached 5.3 mm, 3.7 mm, 3.5 mm, 2.7 mm, 1.7 mm and 1.5 mm for TOW2 (Cape
Ferguson, Australia), TONG, KOUC, PIMO (Quezon City, Philippines), LAUT and NTUS
(Singapore, Singapore), respectively. Strong, negative correlation to the ENSO phases is es-
pecially worth emphasizing in the case of KOUC (−0.63), LAUT (−0.48) and TONG (−0.66)
stations, that are located close to the previously discussed ASPA, FALE, THTI and TUVA
stations. Although they are also in the southern-west Pacific, PWV non-linear trends repre-
sent an opposite response to the ENSO. Similar results were found by Murphy et al. [62]
who confirmed analogous differences in November–April rainfall for the stations located
on the islands of Tuvalu (in our case TUVA station), Fiji (in our case LAUT station) and
Tonga (in our case TONG station). In their study, Tuvalu was characterized by negative
SST and rainfall anomalies during La Niña events and positive anomalies during El Niño
events, which is in close agreement with the results presented here. Furthermore, stations
located on the islands of Fiji and Tonga were characterized by negative rainfall anomalies
during El Niño events and positive anomalies during La Niña, which is also in line with
our results. According to Murphy et al. similar PWV variations occur at Apia island (FALE
station in our case), while according to results obtained by us, the results are opposite.
In this case, however, the cross-correlation coefficient obtained by us was the smallest
among all the stations presented here (0.44) and may not be representative for seasonal
rainfall, which was mainly discussed in their study. Additionally, a lack of GNSS data
for specific periods may have negatively affected the accuracy of SSA trend estimation,
thereby reducing overall consistency between PWV and MEI (more detail in Section 3.1.4).

Within the Pacific Ocean basin, we also paid special attention to the Hawaii region,
whose climate is under a major influence from the Pacific Ocean surrounding the islands.
Figure 5 presents long-term PWV anomaly for five stations located in this region, namely
HNLC (Oahu island), KOKB and KOKV (both located near each other at Kauai island),
MAUI (Maui island) and MKEA (Hawaii island). As can be noticed, all stations present
similar long-term variability and are characterized by occurrence of the highest and the
lowest anomalies at the same time, regardless of altitude differences. As an example, the
most negative anomaly for the HNLC station (22 m) was found in April 2010, whereas in
the case of the MKEA station (3754 m) it was May 2010. The highest positive anomaly, in
turn, was found in August 2010 and June 2010 for HNLC and MKEA, respectively. Altitude,
however, affects the range of PWV variability. The widest differences were observed at
HNLC station, and varied between −2.4 mm and 2.4 mm, whereas the lowest were found
at MAUI (3062 m) and varied between −1.4 mm and 1.4 mm (MKEA was up to 2.0 mm).
Anomalies for KOKB and KOKV stations (1168 m) usually fell between results for HNLC
and MAUI. According to Chu and Chen [63], this archipelago tends to be dry during El
Niño events and wet during La Niña, although such conditions may not be observed for
each ENSO phase. Even though results obtained for these stations show correlation with the
ENSO (cross-correlation coefficients given in Table 1, with the exception of HNLC station
for which it amounted to 0.38), such a dependency can not be observed easily. Consequently,
we used the HAW index (https://psl.noaa.gov/forecasts/sstlim/timeseries/, accessed

https://psl.noaa.gov/forecasts/sstlim/timeseries/
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on 1 March 2021), which describes SST anomalies in the vicinity of Hawaii (22◦ N–18◦ N,
150◦ W–140◦ W). As can be noticed in Figure 5, rather negative SST anomalies between 2008
and 2013 occurred with mostly negative PWV anomalies. A positive SST anomaly since
2013, in turn, was accompanied by mostly positive anomalies in PWV signal. A distinct
positive anomaly in 2018 most likely reflects the effects of hurricanes and cool season
storms which contribute to the above average wetter conditions over most of Hawaii [64],
while distinct negative in 2010 reflect moderate up to exceptional drought conditions
which afflicted nearly half or more of Hawaii [65]. In general, cross-correlation coefficients
calculated using PWV non-linear trend and HAW index were 0.65 (0 months lag), 0.47
(0 months lag), 0.54 (0 months lag), 0.42 (−1 months lag) and 0.56 (with 0 months lag),
which is higher than in the case of MEI. Although ENSO is a global climate phenomenon,
it is not the main driver of SST variability within Subtropical Pacific. In the case of the
Hawaii area, SST is also strongly modulated by North Pacific Subtropical Gyre (NPSG).
NPSG is a system of ocean currents rotating clockwise across the North Pacific, which
transports water to the Hawaii region from the northeast Pacific. Depend on the speed of
these currents, changes the time needed to transport this originally cool water from higher
to lower latitudes. As a result, there is more (slower speed) or less (higher speed) time
to warm water up before it reached Hawaii, and in consequence higher or lower PWV
anomalies. The dependency between North Pacific Gyre Oscillation (NPGO) index [66],
that represent changes in NPSG speed via SST and sea surface height anomaly, and PWV
variability over Hawaii is presented at Figure 5 (right). All stations are negatively correlated
to the NPGO, thus reflecting the influx of warmer (negative NPGO) and cooler (positive
NPGO) waters. Consequently, estimated cross-correlation coefficient between PWV and
NPGO amounted to −0.66, −0.48, −0.77, −0.46 and −0.6 for HNLC, KOKB, KOKV, MAUI
and MKEA, respectively.
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3.1.2. Indian Ocean Related Climate Indices

Another, large-scale climate phenomenon that has been examined for its impact on
the PWV long-term variability is related to the Indian Ocean. The Indian Ocean Dipole
(IOD) shows interaction with the ENSO [67–69] and presents similar mechanism to the El
Niño/La Niña events. A positive phase of IOD takes place when SST in the south-eastern
tropical Indian Ocean is cooler than usual, while SST across the Indian Ocean, in the
western region, is warmer than usual. The negative IOD phase is characterized by the
opposite situation. The IOD phases can be expressed by the dipole mode index (DMI) [70],
which refers to the SST anomalies.

Since in contrast to the ENSO, the IOD influence is rather limited to the Indian Ocean
basin, occurrence of the patterns associated with it was only investigated for stations in
this region. Depending on whether the stations were located on the eastern or western side
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of the Indian Ocean, we used DMIeast or DMIwest indexes, that are more suitable for these
regions. Results show that among all the considered stations, five were clearly affected
by IOD. These were DGAR (Diego Garcia Island, United Kingdom), MBAR (Mbarara,
Uganda) stations (Figure 6a), BAKO (Cibinong, Indonesia), COCO (Cocos (Keeling) Island,
Australia) and DARW (Darwin, Australia) (Figure 6b).
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From westerly located stations (Figure 6a), the highest value of the cross-correlation
coefficient was found for the MBAR station and DMIwest index (0.67 with 0 months
lag). Despite the fact, that this station is located in eastern-central Africa at more than
1340 m.a.s.l, it is clearly affected by the IOD and noted variance simultaneously with its
phases. The highest PWV anomaly (1.3 mm) was observed in January 2016, while the
second highest (0.9 mm) in March 2016, both together with the highest positive anomalies
of the DMIwest index. Such a distinct increase in humidity results from the fact that during
positive SST anomalies in the western Indian Ocean basin, the westerly winds weaken
along the equator, thus allowing warm and humid air masses to shift towards central
Africa [71]. A distinct consistency between PWV anomalies and DMI can also be found
for DGAR station. Despite a smaller cross-correlation coefficient between the PWV and
DMIwest index (0.58 with 0 months lag), IOD is a major factor in modulating the climatic
variations of PWV. The highest positive PWV anomaly (2.7 mm) occurred in December
2015, when the SST in the western Indian Ocean basin was also the highest during the
analyzed time span. The highest negative (−1.7 mm), in turn, took place in 2011 when the
DMIwest index was also negative. Although during the analyzed time span there were
also similar or even greater negative variations in this index, the changes in PWV caused
by them were less significant. However, since this station is also positively correlated with
ENSO (0.56 with +2 moths lag), such an effect may be partly explained by a modulating
effect of the extreme 2010–2012 La Niña.

From easterly located stations, the highest influence of the IOD on air humidity was
found for the DARW station. In this case, the cross-correlation coefficient was equal to
0.59, although the lag time was also distinct and amounted to +9 months. This is visible on
Figure 6b where the highest (4.4 mm) and second highest (3.1 mm) PWV anomalies were
observed in July 2010 and October 2016, respectively, several months after the main phase of
positive DMIeast. The fact that the highest PWV was not accompanied by the highest values
of DMIeast index (that took place in 2016), is most likely linked to the distinct negative
correlation with the ENSO (−0.54 with −4 months lag). Consequently, the strongest La
Niña episode caused the largest increase of the PWV in 2010, while distinct episodes of El
Niño caused decrease in humidity in August 2002 (−2.6 mm), February 2006 (−1.7 mm)
and April 2015 (−2.0 mm). These results are in line with the statement that ENSO plays
an important role in formulating weather conditions over Australia [72] and the general
rule that La Niña increases humidity and rainfall mostly over northeast Australia, while
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El Niño brings droughts. They also partly explained the lack of full agreement between
DARW PWV non-linear trend variability and the DMIeast index. Similar variations in
PWV were observed at the BAKO station. In this case, IOD also affects the air humidity the
most. The cross-correlation coefficient value calculated based on the DMIeast index and
PWV anomaly was equal to 0.52, and, similarly to the DARW station, was characterized by
a distinct lag, equal to +8 months. The highest PWV anomaly was observed not in 2010, at
the time of the record-breaking La Niña, but in September 2016 (4.3 mm), simultaneously
with the highest DMIeast index anomalies, most likely due to the fact that this station is
less correlated to the ENSO (−0.42 with −5-month lag). The lowest, but still significant,
similarity between IOD phases and PWV non-linear trend variability was found for the
COCO station. The value of a cross-correlation coefficient between PWV anomalies and
DMIeast index at this station was 0.48, with a +6-month lag. As in the case of the DARW
and BAKO stations, the two highest PWV values were observed together with the highest
SST anomalies expressed through the DMIeast index and amounted to 5.2 mm and 3.1 mm
for September 2010 and April 2016, respectively. On the other hand, the highest anomaly
was observed during the record-breaking La Niña (2010–2012), although this station is not
correlated with the ENSO (0.26 with +8 months lag). This indicates that despite a general
lack of dependency between ENSO and PWV long-term variability over Coco Island, an
extremely strong ENSO phase may affect the local moisture field.

3.1.3. Atlantic Related Climate Indices

Much like those of the Pacific and Indian Oceans, Atlantic large-scale climate indices
also modulate moisture variability over the analyzed stations. In contrast to the ENSO, their
influence is more limited to the area of occurrence of SST anomaly and consequently we
were able to distinguish several groups of stations that are affected by various phenomena.

Distinct inter-annual signals were found in the Canaries, at the MAS1 (Maspalomas,
Gran Canaria island) and LPAL (Roque de los Muchachos, La Palma island) stations.
Although Gallego et al. [73] have found the ENSO signal in the subtropical Atlantic, in
results obtained by us of PWV anomalies, did not show a direct dependency on this
phenomenon. Therefore, we followed conclusions obtained by Sánchez-Benítez et al. [74],
who pointed out that tropical Atlantic SST is responsible for the largest variability of
precipitation in this region. Figure 7a presents PWV non-linear changes with reference to
the Tropical Northern Atlantic index (TNA) [75], that describes anomalies in the monthly
SST from 15◦ W–57.5◦ W and 5.5◦ N–23.5◦ N basin. Both stations show overall consistency
with the TNA and small discrepancies between LPAL and MAS1 may be the effect of
altitude difference, which exceeds 2000 m. The values of cross-correlation coefficients
amounted to 0.48 and 0.45 with −3 and −4 month lags for LPAL and MAS1, respectively.
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On the opposite side of Equator, Atlantic SST anomalies also seemed to affect PWV
long term variability at the HARB (Pretoria, South Africa) and HRAO stations (Krugers-
dorp, South Africa). Since in general the climate of south Africa is strongly associated with
the South Atlantic SST [76], the HARB and HRAO stations were investigated for occurrence
of oscillations resulted from it. For this purpose, the Tropical Southern Atlantic (TSA)
index [75], which describes SST anomalies in the 30◦ W–10◦ E and 20◦ S–0◦ basin, was used.
As can be observed (Figure 7b), both PWV non-linear trends tend to be modulated by the
TSA, although the absolute values of PWV variations do not exceed 0.95 mm. Both these
stations, however, are located inland at an altitude of more than 1388 m, which generally re-
duced the average amount of water vapor. The strong negative anomaly up to −1.1 mm in
2018 is linked to the severe drought that occurred in South Africa [77]. Similarly, as in case
of previously investigated climate indices, again we calculated cross-correlation coefficients
between PWV non-linear trend and the TSA index. Despite the overall compliance result-
ing from Figure 7, the values of cross correlations coefficient were small and amounted
to 0.32 and 0.35 (with +3- and +5-months lag), for HARB and HRAO, respectively. These
results may arise from the fact that there are visible oscillations in PWV long term trends,
most likely driven by local environmental conditions and generally low levels of PWV
(similar were observed in LPAL and MAS1). To reduce their impact on the cross-correlation
process we adopted, for both the TSA index and PWV trend, the annual moving average.
As a result, the value of cross-correlation coefficient increased to 0.52 and 0.59 for HARB
and HRAO, respectively (a similar procedure adopted for LPAL and MAS1 cases resulted
in an increasing cross-correlation coefficient up to 0.54 and 0.55, respectively).

Long-term variations in SST in the Atlantic were also tested to verify their impact on
Central American-Caribbean region (CARIB) PWV variability, in which three stations are
located, namely CRO1 (Christiansted, Virgin Islands, United States), GUAT (Guatemala
City, Guatemala) and MANA (Managua, Nicaragua). Martinez et al. [78] pointed out that
Atlantic Multidecadal Oscillations (AMO) [79] should be considered during investigation
of Caribbean inter-annual variability, particularly in terms of rainfall. To verify whether the
air humidity is also under the influence of this oscillation we conducted a cross-correlation
process. Although AMO describe long-duration changes in SST throughout the entire
North Atlantic basin (0◦–80◦ N, 80◦ W–0◦ E), we obtained significant values of cross-
correlation coefficient that amounted to 0.47 (+1 months lag) and 0.45 (+1 month lag) for
CRO1 and MANA, respectively. At the same time the GUAT station was characterized
by only a 0.31 cross-correlation coefficient. Nevertheless, a much higher consistency was
obtained when instead of AMO, the Caribbean (CAR) index, that describes SST anomalies
in the Caribbean Sea basin, was used. Figure 8a presents PWV non-linear trends for CRO1,
GUAT and MANA stations compared to the CAR index. As can be noticed, the stations
are in good agreement with SST variability in this region. More precisely, cross-correlation
coefficient values were calculated at 0.48 (+7 months lag), 0.63 (+4 months lag) and 0.64
(+7 months lag) for CRO1, GUAT and MANA, respectively. The SST anomaly in all CARiB
region does not, however, explain all PWV variations, e.g., negative anomaly for CRO1
station in March 2015 (−1.3 mm). Despite this, the overall dependency is clear, much as in
the case of the GUAT and MANA stations. In the case of CARIB stations, it is also worth
to emphasizing two aspects: (1) a clear upward trend in all the stations analyzed in this
region and (2) occurrence of the highest and lowest anomaly at CRO1 (Christiansted, Virgin
Islands, U.S.) and MANA (Managua, Nicaragua) stations that tend to appear at a frequency
of about 5–6 years.
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SST anomalies in the Caribbean Sea were also found to affect stations located much
further to the south and east. We found out that the PWV non-linear trend estimated for
KOUR (Kourou, French Guiana) and NKLG (Libreville, Gabon) (Figure 8, right) represents
a similar signal as the CAR index. For the KOUR station cross-correlation coefficient
amounted to 0.56 (+9 months lag), which is similar to results obtained for CRO1 (both in
term of coefficient and lag values). Negative anomalies also occurred at a similar time, al-
though they are shifted by several months. Surprisingly, the highest similarity between the
CAR index and PWV variability was found for the NKLG station. In Figure 8b it is clearly
visible how well matched these two signals are. The calculated cross-correlation coefficient
amounted to 0.73 with only +1 month lag, which indicates strong teleconnections between
SST in northern-east Atlantic and PWV long-term variability over central-west Africa.

3.1.4. Non-Linear Trend Variability in Relation to Local SST

Although the impact of climate indices analyzed so far had a global or regional range,
not all stations were characterized by statistically significant variations related to them. In
addition, the investigated influence of e.g., ENSO or IOD did not explain all PWV non-
linear trend changes over the stations. Therefore, we conducted an analysis of the impact of
local SST variability on the air moisture. The local SST was determined as an average value
from the SST (GHRSST project) in a 2-degree radius around the station, and in this form
subjected to the SSA process, with the aim of estimating a non-linear trend. Consequently,
we obtained SST decadal variability for 38 out of 43 stations, that is, for stations which
were in sufficient proximity to the oceans. Stations excluded due to these criteria were:
BOGT (Bogota, Colombia), BRAZ (Brasilia, Brazil), HARB (Pretoria, South Africa), HRAO
(Krugersdorp, South Africa), MBAR (Mbarara, Uganda) and UNSA (Salta, Argentina).
In contrast to the formerly investigated climate indices, in this case we only calculated
correlation at lag 0, since local SST variations do not involve large-scale teleconnections in
affecting local PWV. Detailed information about the obtained results is given in Table 2.
For better comparison with previously discussed results, the table was supplemented with
information about the climate index with which we investigated the highest correlation.
Results show that most of the analyzed stations present a high agreement between PWV
and SST non-linear trend. The absolute mean value of correlation coefficient, calculated
based on all 38 stations, was 0.57. The highest agreement was found for YAR2 (Yarragadee,
Australia) (0.87), while the lowest for the TCMS (0.25) station. Figure 9 (top) presents
examples of stations that are in high agreement with local SST, namely YAR2 and the
THTI (correlation 0.80) station. In their case it can be clearly noticed how GNSS PWV
non-linear trend extracted through the SSA method varied simultaneously with SST: the
highest and lowest PWV anomalies occurred at almost the same time as the highest and
lowest SST anomalies. This is especially evidenced, again, during the extremely strong
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La Niña (2010–2012), that was responsible for occurrences of the highest anomaly at the
YAR2 station (2.1 mm), and the lowest at the THTI station (−3.9 mm). Although the
THTI station is highly correlated with ENSO (cross-correlation 0.70), such results were
less expected at the YAR2 station, which is poorly correlated with ENSO (cross-correlation
below 0.4). However, since this ENSO phase was record-breaking and caused an increase
in humidity throughout almost all of Australia [80,81], we found its distinct impact also at
other stations located in west Australia, namely YARR (Yarragadee, Australia) and KARR
(Karratha, Australia) (not shown). Such an impact of the strong 2010–2012 La Niña episode
on moisture distribution over the Australian region (including the previously discussed
TOW2 and DARW stations) was also recognized in GPS-derived PWV by Choy et al. [82].

Table 2. Correlation between PWV non-linear trend and local SST non-linear trend, supplemented with
information on the climate index correlated with given station the most (p—positively, n—negatively).

Site SST Corr. Climate
Index Site SST Corr. Climate

Index

YAR2 0.87 - ASPA 0.58 MEI (p)
HNLC 0.86 NPGO (n) MAUI 0.55 NPGO (n)
TUVA 0.85 MEI (p) DARW 0.54 DMI_east (p)
TONG 0.83 MEI (n) CHPI 0.51 -
COCO 0.81 DMI_east (p) GUAM 0.51 -
MKEA 0.81 NPGO (p) KOUR 0.50 CAR (p)
THTI 0.80 MEI (p) NTUS 0.50 MEI (n)

BAKO 0.76 DMI_east (p) TOW2 0.45 MEI (n)
GUAT 0.75 CAR (p) KOUC 0.38 MEI (n)
YARR 0.75 - KARR 0.36 -
CRO1 0.73 CAR (p) MANA 0.36 CAR (p)
LAUT 0.70 MEI (n) REUN 0.36 -
KOKB 0.68 NPGO (n) IISC 0.34 -
LPAL 0.68 TNA (p) FALE 0.33 MEI (p)
KOKV 0.67 NPGO (n) TNML 0.27 -

DGAR 0.66 DMI_west
(p) TCMS 0.25 -

NKLG 0.61 CAR (p) AREQ 0.24 -
MAS1 0.60 TNA (p) PIMO −0.19 MEI (n)
TWTF 0.59 - PNGM −0.26 MEI (p)

Another group of stations were characterized by a slightly lower, but still statistically
significant similarity between PWV and SST variability. ASPA (correlation 0.58) and TWTF
(Taoyuan, Taiwan) (correlation 0.59) may serve as examples (Figure 9, middle). Like YAR2
and THTI, the ASPA station shows a clear relationship between PWV and SST variability.
However, on the basis of this station it can also be noticed how this method is sensitive to a
lack of original data. Despite the fact that all GNSS PWV time series were pre-processed, in
the way of filling gaps, the negative peak in SST in September 2008 is not reflected in PWV,
thus showing how data gaps negatively affect the reliability of non-linear trend estimation
using the SSA method. On the other hand, there was also the TWTF station, that represents
a distinct trend that can only partly be explained by raising SST (since 2011). Nevertheless,
such a trend is consistent with the positive PWV trend between 2006–2012 in Taiwan
discussed by Yeh et al. [83]. This station, is also characterized by a distinct oscillation, with
a 3–5-year period. Almost identical signal, both in terms of trend and oscillations, were
found at the neighboring stations TCMS and TNML (both Hsinchu, Taiwan).

The last group states for the stations reflects the absolute value of the correlation
coefficient less than 0.4 (Figure 9, bottom). In this group we can distinguish stations like
REUN (Le Tampon, France) (correlation 0.36), whose PWV non-linear trend presents some
similarity to the SST anomalies, although due to the altitude difference (1552 m) and local
environment conditions they are expressed by a statistically lower correlation to the SST.
Reduced similarity between PWV over the station and local SST can also be related to the
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lack of GNSS data, like in the case of the FALE station (correlation 0.33) (Figure 9, bottom).
This station had 72% of the originally delivered GNSS solutions, while the remaining 28%
were calculated using the SSA method. The lack of real data affects not only the PWV non-
linear trend during the period for which data were artificially created, but may also affect
PWV before and after data gaps. Consequently, longer and more numerous breaks results
in less reliable trend estimation, which have been found at the FALE station since 2013.
Therefore, any analyses and interpretations should taking into account the presence of filled
breaks in the time series. This effect also contributes to reducing the value of the correlation
coefficient for the formerly mentioned TCMS and TNML stations, especially compared
to the TWTF station. Although they are all in the similar location and have analogous
PWV anomalies, TCMS and TNML are characterized by much a lower correlation (0.25
and 0.27) than for TWTF. However, in contrast to TWTF (89% data completeness), both
TCMS (74% data completeness) and TNML (70% data completeness) suffer from a lack of
GPS observations, especially since 2008.
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3.2. Linear Long-Term Variability

Next to the non-linear, we also investigated linear variability, to evaluate the general
trend of changes using least square adjustment. Figure 10 represents PWV linear trend
estimated for the January 2001–December 2018 period. The weighted mean value, esti-
mated based on all stations (where the individual uncertainties were treated as weights),
was 0.08 mm/year, with an uncertainty (1-sigma) equal to 0.01 mm/year (note that the
KOKV station was excluded from this analysis due to insufficient length of the time series).
Although comparative analysis of tropospheric linear trend for different time spans is not
fully reliable [84], we decided to refer our results to those obtained by Chen and Liu [36],
who also studied GPS-based trend of PWV in tropics during a similar period. For the
2000–2014 time span they verified the occurrence of a trend equal to 0.023 mm/year, which
is much lower than the trend estimated by us. Such significant difference, however, can
be mostly explained by the number of stations involved in the analysis. In our case we
used 43 stations, which provide broader coverage than the number of stations used in the
aforementioned study (17). In addition, Chen and Liu clearly pointed out that inhomoge-
neous distribution and the small number of stations reduces the reliability of the estimated
GNSS-based linear trends. On the other hand, they have also estimated trends using other
techniques and obtained similar results to those presented by us: 0.066 mm/year (ECMWF-
based), 0.083 mm/year (NCEP-based) or 0.073 mm/year (radiosonde-based). Although in
both these studies the mean linear trend value was positive, it is worth underlining that
none of the stations analyzed by us were characterized by a negative trend. The highest
trend was found for the BAKO stations and amounted to 0.18 ± 0.02 mm/year, while the
smallest one was found for TUVA and was equal to 0.00 ± 0.02 mm/year.
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According to Figure 10 it can be stated that the largest changes occurred in the
area from Australia up to Taiwan. Next to the BAKO, stations with other high rates of
PWV linear trends can be found here, including DARW (0.14 ± 0.02 mm/year), KARR
(0.14 ± 0.02 mm/year), NTUS (0.15 ± 0.01 mm/year) or TNML (0.17 ± 0.02 mm/year).
Distinct trends were also observed in Hawaii and in Central America, while smaller ones
were observed in the southern-west Pacific and South America. In general, there was no
correlation between rate of PWV change (expressed through a percentage ratio between
the linear trend and the mean PWV) and station altitude. This is most likely related to the
insufficient number of analyzed stations, which does not allow for a reliable estimation of
such dependency, especially considering various climate phenomena affecting local PWV
across global tropics. An exception to this is the Hawaii region, in which four stations
are located close to each other, therefore under a similar climate phenomenon, but with
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large altitude differences. In this case the highest changes were observed at the highly
seated MAUI (3044 m) and MKEA (3728 m), and amounted to 3.03% and 2.69% per year,
respectively. Clearly lower results, equal to 0.44% were obtained for the KOKB station
(1150 m), while the lowest, 0.36%, for the HNLC station (6 m).

4. Discussion

The main goal of this study is to demonstrate a usefulness of the GNSS technique in
monitoring long-term, climate-related changes in tropospheric moisture patterns. Vari-
ability in tropical climate patterns triggers various changes in the prevailing weather
conditions over the globe, for which their in-depth examination is crucial. One such canon-
ical tropical phenomenon is ENSO. The GNSS technique may provide novel insight into
shifts in regional and global distribution of atmospheric moisture during ENSO initiation,
evolution and decay. This can be achieved because GNSS techniques are able to represent
changes in PWV associated with ENSO. In fact, PWV variability derived from GNSS data
compares well with RS data across a range of temporal scales (Figure 11). Furthermore,
GNSS data allow direct analysis of sub-diurnal to intra-annual time scale. This provides an
opportunity to investigate multi-scale interactions based on GNSS data, without additional
resources, which is a necessity for RS networks. Such data can help to leverage detailed
field studies with targeted observations. As an example, the GNSS station in Tahiti, which
has been operational during NOAA ENRR field program, was able to monitor evolution of
the atmospheric moisture content throughout the 2016 El Niño event, that is beyond the
IOP between 26 January and 29 March (Figure 11).

Atmosphere 2021, 12, x FOR PEER REVIEW 18 of 24 
 

 

 

Figure 11. Non-linear trend of PWV from GNSS and radio sounding (RS) over Tahiti (GNSS:THTI, 

RS:91938) with MEI index (top), and GNSS and RS solution for the period when MEI index exceeds 

0.5, which indicates the occurrence of the El Niño event. National Oceanic and Atmospheric Ad-

ministration El Niño Rapid Response intensive observation period (NOAA ENRR IOP) is marked 

with green shading. 

In order to fully leverage GNSS observations, one need to break the location con-

straint—just as all operational RS stations, GNSS observations are land-locked. Most of 

the global tropics, including areas where phenomena such as ENSO or IOD evolve, is 

open ocean. However, recently PWV data have been retrieved from a small, regional 

network of ship-borne GNSS receivers [85]. This proves that GNSS technology can be 

expanded to oceans, taking advantage not only of research fleet but also densely popu-

lated shipping routes across global oceans. This would be neither a simple nor an easy 

objective, but appropriate frameworks already exist. For example, the Ship of Oppor-

tunity Program (SOOP) leverages cargo ships to conduct automated oceanographic ob-

servations. Integration of GNSS observations in such frameworks is definitely feasible 

and would provide a tremendous improvement in observations of atmospheric moisture 

content over open ocean.  

5. Conclusions 

This paper addressed the subject of inter-annual long-term variability of the tropical 

PWV derived from GNSS observations. First, non-linear changes were identified by 

means of the SSA method, showing how significant PWV anomalies in tropical regions 

can be dependent on the occurrence of various climate phenomena. At most of the ana-

lyzed stations, PWV was found to be affected by the ocean-atmosphere conditions caused 

by ENSO. A significant cross-correlation (the coefficient exceeded 0.4) between PWV 

non-linear trend and MEI index (describing ENSO phases) was found at 21 out of 43 sta-

tions (49%), located in the Pacific Ocean basin, Australia, the Indian Ocean basin, Africa, 

and South America. Twelve of them were positively correlated to the ENSO, thus show-

ing an increase in PWV anomalies during El Niño episodes and a decrease during La 

Niña, while nine of them were negatively correlated. Although the ENSO signal was 

observed across all global tropics, it was a dominant mode of PWV long- term variability 

only for stations located in the vicinity of the west Pacific basin (11 stations). Neverthe-

less, its extremely strong phases affected PWV situated outside the west Pacific, includ-

ing stations that statistically are not correlated with the ENSO.  

Beside the ENSO, we found a distinct influence of five other phenomena, expressed 

through regional climate indices, that were identified as a primary driver of PWV 

non-linear variability over the analyzed stations. These cases concern among others the 

Hawaii region, for which stations show significantly higher consistency with the HAW 

and NPGO (north Pacific Gyro Oscillation) index than with the MEI, but also stations in 

Figure 11. Non-linear trend of PWV from GNSS and radio sounding (RS) over Tahiti (GNSS:THTI,
RS:91938) with MEI index (top), and GNSS and RS solution for the period when MEI index exceeds
0.5, which indicates the occurrence of the El Niño event. National Oceanic and Atmospheric Admin-
istration El Niño Rapid Response intensive observation period (NOAA ENRR IOP) is marked with
green shading.

In order to fully leverage GNSS observations, one need to break the location
constraint—just as all operational RS stations, GNSS observations are land-locked. Most
of the global tropics, including areas where phenomena such as ENSO or IOD evolve, is
open ocean. However, recently PWV data have been retrieved from a small, regional network
of ship-borne GNSS receivers [85]. This proves that GNSS technology can be expanded to
oceans, taking advantage not only of research fleet but also densely populated shipping
routes across global oceans. This would be neither a simple nor an easy objective, but
appropriate frameworks already exist. For example, the Ship of Opportunity Program (SOOP)
leverages cargo ships to conduct automated oceanographic observations. Integration of GNSS
observations in such frameworks is definitely feasible and would provide a tremendous
improvement in observations of atmospheric moisture content over open ocean.
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5. Conclusions

This paper addressed the subject of inter-annual long-term variability of the tropical
PWV derived from GNSS observations. First, non-linear changes were identified by means
of the SSA method, showing how significant PWV anomalies in tropical regions can be
dependent on the occurrence of various climate phenomena. At most of the analyzed
stations, PWV was found to be affected by the ocean-atmosphere conditions caused by
ENSO. A significant cross-correlation (the coefficient exceeded 0.4) between PWV non-
linear trend and MEI index (describing ENSO phases) was found at 21 out of 43 stations
(49%), located in the Pacific Ocean basin, Australia, the Indian Ocean basin, Africa, and
South America. Twelve of them were positively correlated to the ENSO, thus showing
an increase in PWV anomalies during El Niño episodes and a decrease during La Niña,
while nine of them were negatively correlated. Although the ENSO signal was observed
across all global tropics, it was a dominant mode of PWV long- term variability only for
stations located in the vicinity of the west Pacific basin (11 stations). Nevertheless, its
extremely strong phases affected PWV situated outside the west Pacific, including stations
that statistically are not correlated with the ENSO.

Beside the ENSO, we found a distinct influence of five other phenomena, expressed
through regional climate indices, that were identified as a primary driver of PWV non-
linear variability over the analyzed stations. These cases concern among others the Hawaii
region, for which stations show significantly higher consistency with the HAW and NPGO
(north Pacific Gyro Oscillation) index than with the MEI, but also stations in the Indian
Ocean that were reflecting changes related to the different phases of IOD. The DMI index
(east and west variant) turned out to be the most consistent with the PWV anomalies at
five stations, including the MBAR station located in east-central Africa. PWV non-linear
trends over the Atlantic basin were dominated by Atlantic-related climate indices. Here,
TNA and TSA were mainly affecting the subtropical stations, located on the Canary Islands
and in South Africa. At the same time, variations related to the CAR index were found
in the Central American-Caribbean region and northern-east South America. The highest
consistency between this index and PWV long-term variability, however, was found for
the NKLG station, located on west coast of Africa, thus indicating strong influence of the
northern-east Atlantic on the long-term moisture variations in equatorial Africa.

In total, nine stations were found not to be significantly influenced by any of the
analyzed climate indices. These stations were located in South America (AREQ (Arequipa,
Peru), BOGT (Bogota, Colombia), BRAZ (Brasilia, Brazil)), west Australia (KARR, YAR2,
YARR) and Taiwan (TCMS, TNML, TWTF). In the case of the South American stations, the
lack of correlation between climate indices and PWV non-linear trend is most likely due
to their locations. They are situated inland at high altitudes (2449 m, 2554 m and 1119 m,
for AREQ, BOGT and BRAZ, respectively), which limits the impact of oceanic-related
phenomena on local PWV. Such a situation, however, did not occur regarding Australian
stations, which are situated on the west coast, in the immediate vicinity of the Indian Ocean,
or regarding Taiwanese stations that are also located on the coast. PWV non-linear trends
from these stations, however, showed a correlation to the long-term variability of local
SST. In general, the mean value of the cross-correlation coefficient between PWV and the
local SST non-linear trend, calculated based on 38 stations, was 0.60. For more than 70% of
the stations the correlation value exceeded the threshold of significance (0.4), reaching a
maximum value up to 0.87 (YAR2 station).

There was also an upward linear trend in the mean GNSS PWV in the tropics. While
the weighted mean value was estimated at 0.08 ± 0.01 mm/year, there was visible spatial
variability in the results obtained for particular stations, e.g., distinct trends were observed
in the regions of the Maritime Continent, Australia and the Caribbean, while more subtle
changes were observed for South America, Africa and the Pacific. Generally, not a single
station was characterized by a negative trend value, and the highest linear trend was found
for the BAKO station (Cibinong, Indonesia) and amounted to 0.18 ± 0.02 mm.
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The analysis conducted here showed that long-term homogeneous GNSS PWV time
series delivered through PPP processing can be successfully used in inter-annual climate
variability studies. By analyzing GNSS PWV using the SSA method, we obtained results
with a clear PWV response to different climate indices and local SST. In addition, the SSA
method allowed us to investigate the total influence of many factors on the inter-annual
PWV variability, including those unrelated to the large-scale climate phenomena, such as
local droughts. The data completeness, however, is one of the major factors that affect
proper analysis results.
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Appendix A

Table A1. Name, location, and coordinates of International GNSS Service (IGS) stations used in
the study.

Site Location Longitude [◦] Latitude [◦] Altitude [m]

AREQ Arequipa, Peru −71.49 −16.47 2449.1

ASPA Pago Pago, United
States −170.72 −14.33 21.1

BAKO Cibinong, Indonesia 106.85 −6.49 139.8
BOGT Bogota, Colombia −74.08 4.64 2553.9
BRAZ Brasilia, Brazil −47.88 −15.95 1118.6

CHPI Cachoeira Paulista,
Brazil −44.99 −22.69 620.8

COCO Cocos (Keeling) Island,
Australia 96.83 −12.19 3.4

CRO1 Christiansted, Virgin
Islands, United States −64.58 17.76 12.2

DARW Darwin, Australia 131.13 −12.84 74.7

DGAR Diego Garcia Island,
United Kingdom 72.37 −7.27 9.1

FALE Faleolo, Samoa −172.00 −13.83 9.7
GUAM Dededo, Guam 144.87 13.59 146.4

GUAT Guatemala City,
Guatemala −90.52 14.59 1517.3

HARB Pretoria, South Africa 27.71 −25.89 1532.8
HNLC Honolulu, United States −157.86 21.30 6.3

HRAO Krugersdorp, South
Africa 27.69 −25.89 1388.9

KARR Karratha, Australia 117.10 −20.98 116.7

KOKB Kokee Park, Waimea,
United States −159.66 22.13 1150.5

https://doi.org/10.34808/9s0h-k459
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Table A1. Cont.

Site Location Longitude [◦] Latitude [◦] Altitude [m]

KOKV Kokee Park, Waimea,
United States −159.66 22.13 1150.5

KOUC Koumac, New
Caledonia 164.29 −20.56 23.7

KOUR Kourou, French Guiana −52.81 5.25 8.7
LAUT Lautoka, Fiji 177.45 −17.61 31.7

LPAL Rogue de
losMuchachos, Spain −17.89 28.76 2207.0

MANA Managua, Nicaragua −86.25 12.15 66.4
MAS1 Maspalomas, Spain −15.63 27.76 197.2

MAUI Haleakala, Maui,
United States −156.26 20.71 3044.1

MBAR Mbarara, Uganda 30.74 −0.60 1349.6

MKEA Mauna Kea, United
States −155.46 19.80 3728.4

NKLG Libreville, Gabon 9.67 0.35 21.5
NTUS Singapore, Singapore 103.68 1.35 71.6

PIMO Quezon City,
Philippines 121.08 14.64 51.4

PNGM Lombrum, Papua New
Guinea 147.37 −2.04 38.7

REUN Le Tampon, France 55.57 −21.21 1552.2
TCMS Hsinchu, Taiwan 120.99 24.80 58.4

THTI Papeete, French
Polynesia −149.61 −17.58 90.8

TNML Hsinchu, Taiwan 120.99 24.80 57.0
TONG Nuku’alofa, Tonga −175.18 −21.14 3.7

TOW2 Cape Ferguson,
Australia 147.06 −19.27 30.3

TUVA Funafuti, Tuvalu 179.20 −8.53 3.6
TWTF Taoyuan, Taiwan 121.16 24.95 184.1
UNSA Salta, Argentina −65.41 −24.73 1224.4
YAR2 Yarragadee, Australia 115.35 −29.05 267.0
YARR Yarragadee, Australia 115.35 −29.05 267.1
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