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Abstract: In this paper, we performed an analysis of the 500 most relevant scientific articles published
since 2018, concerning machine learning methods in the field of climate and numerical weather
prediction using the Google Scholar search engine. The most common topics of interest in the
abstracts were identified, and some of them examined in detail: in numerical weather prediction
research—photovoltaic and wind energy, atmospheric physics and processes; in climate research—
parametrizations, extreme events, and climate change. With the created database, it was also possible
to extract the most commonly examined meteorological fields (wind, precipitation, temperature,
pressure, and radiation), methods (Deep Learning, Random Forest, Artificial Neural Networks,
Support Vector Machine, and XGBoost), and countries (China, USA, Australia, India, and Germany)
in these topics. Performing critical reviews of the literature, authors are trying to predict the future
research direction of these fields, with the main conclusion being that machine learning methods will
be a key feature in future weather forecasting.

Keywords: machine learning; weather; numerical weather prediction; climate

1. Introduction

The beginning of the 21st century, with the advent of big data, efficient supercom-
puters with Graphics Processing Units (GPU), and scientific interest in emerging new
methods, turned out to be crucial in the history of machine learning [1]. Although many
methods are known from the 1960s and have been examined in detail in many stud-
ies since then, recent years, with unprecedented increases in data volume and com-
puter power, are seen as the golden era for artificial intelligence and machine learn-
ing (https://www.forbes.com/sites/joemckendrick/2019/10/23/artificial-intelligence-
enters-its-golden-age/?sh=75d495f0734e, accessed on 17 December 2021).

Detailed reviews of machine learning algorithms, as the most important subgroup
of artificial intelligence methods (Figure 1) in atmospheric science, can be found in many
thematic articles [2–4]. In these publications, one can find details about many methods and
their classifications. For atmospheric scientists, the most interesting group of techniques
was found to be supervised learning (Figure 1), the most dominant group in the recent
publications in the field. In the case that some labelled data are available, one can use it as
a training dataset from which to build a function that maps given inputs to outputs. That
function can be used in a different dataset, named testing one, to evaluate the model, and if
the results are satisfactory, it can be used in the classification or regression of any kind of
application needed. In that group we find methods, such as Decision Trees, e.g., Random
Forest (RF) [5] or XGBoost (XGB) [6], Artificial Neural Networks (ANN) [7], Deep Learning
(DL) [8], and Support Vector Machine (SVM) [9]. The second group in machine learning is
unsupervised learning (Figure 1), in which algorithms do not have labelled data to train
from, and must decide upon other ways to divide a given dataset, or reduce the dimensions
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of it, for further analysis. In this group, the popular methods among atmospheric scientists
are K-means Clustering (K-means) [10] and Principal Component Analysis (PCA) [11].

The main goal of this study is to present a review of the machine learning methods
and applications within the main topics of meteorology, as well as in climate analyses. We
show examples of the use of machine learning techniques as a new method that helps to
solve important and complex issues in weather forecasting and in the study of climate
change over different temporal- and spatial scales. We did not intend to present every
aspect of each problem (e.g., in the field of climate change at least 13 particular aspects
can be distinguished, https://vitalflux.com/machine-learning-use-cases-climate-change/,
accessed on 17 December 2021), but to point out only the most important and attractive
issues, which were obtained via text mining of scientific publications, and to prove that
machine learning techniques can be used with success in meteorology and climatology. We
also present possible future research directions for these fields.

This paper is organized as follows: Section 2 presents the materials and methods
used for text mining of scientific papers. Section 3 consists of a summary of the results of
the text mining of scientific papers, which reveals the most common topics; Sections 3.1
and 3.2 presents a review of the well-known scientific papers related to the use of machine
learning in Numerical Weather Prediction (NWP) and climate analysis. Section 4 provides
a discussion of our results and conclusions about the use of machine learning at present
and in the future.
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Figure 1. Artificial intelligence, machine learning, and their classification. ANN—Artificial Neural
Networks, DL—Deep Learning, RF—Random Forest, XGB—XGBoost, K-means—K-means Cluster-
ing, PCA—Principal Component Analysis.

2. Materials and Methods

This study was performed using a database with information for 500 scientific articles
(published since 2018), obtained from the Google Scholar search engine (https://scholar.
google.com/, accessed on 10 November 2021), which were related to the phrases “numerical
weather prediction” and “machine learning”—250 papers, and “climate” and “machine
learning”—250 papers. All search results were organized by relevancy; every item in the
search results was checked in order to choose only research papers and to exclude unrelated
articles. Thus, a database with 500 papers was created. Subsequently, every manuscript
was saved onto Zotero software (https://www.zotero.org, accessed on 10 November 2021),
which helps to organize data and extract text databases using important information, such
as title, abstract, keywords, authors, journals, etc. All the prepared data are available in
the supplementary comma separated (csv) files (Tables S1 and S2). Text mining, using
the ‘tidytext’ [12] R package [13], was performed on our database to search for the most
common phrases included in the abstracts, and mostly used meteorological fields, methods,
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and countries of analysis. Additional to text mining, we analyzed well known papers on
the relevant weather forecasting and climate change issues.

3. Results

For the first group of research papers related to machine learning methods and NWP
models, we first built a list of search items based on American Geophysical Union (AGU) in-
dex terms (https://www.agu.org/Publish-with-AGU/Publish/Author-Resources/Index-
terms, accessed on 22 December 2021), then measured how frequently these search items
occurred in the abstracts. The 10 most common phrases are presented in Figure 2. Since the
topic of post-processing NWP results to improve forecasts concerning renewable energy
is very common among scientists, the phrase “Wind Forecasting” had the highest count
(Figure 2). The phrase with the second highest count turned out to be “Ensemble Forecast-
ing”, due to the growing interest in improving probabilistic forecasts and in the methods
required to interpret them correctly. Slightly fewer counts were recorded for phrases such
as “Data Assimilation”, “Extreme Events”, “Remote Sensing”, and “Land Cover”. Less
than 10 counts were found for the phrases “Tropical Cyclones”, “Coupled Models”, “Cloud
Physics”, and “Boundary Layer”.
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For the second group of research papers related to machine learning methods in cli-
mate, a similar histogram is presented in Figure 3. Unsurprisingly, the most common phrase
in this group was “Climate Change”, with more than 140 counts. Almost three times more
counts were recorded for the phrase “Global Climate Models” than for “Regional Climate
Models”. Slightly less common phrases were “Climate Impact”, “Remote Sensing”, “Land
Cover”, and “Extreme Events”, while phrases such as “Coupled Models”, “Convection”,
and “Calibration” had less than 10 counts.

https://www.agu.org/Publish-with-AGU/Publish/Author-Resources/Index-terms
https://www.agu.org/Publish-with-AGU/Publish/Author-Resources/Index-terms


Atmosphere 2022, 13, 180 4 of 16
Atmosphere 2022, 13, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 3. Most common phrases from articles related to climate and machine learning. 

In addition to text mining of research topics and phrases, similar word counts in the 
abstracts of selected publications can also give an interesting insight into the most com-
mon topics of interest. Some of the most interesting results derived using this method are 
presented in the following section. Figure 4 presents the most commonly used meteoro-
logical fields in NWP studies. Scientists mentioned the term ‘wind’ more than 200 times, 
and this term is related to an important group of renewable energy and wind forecasting 
studies, as presented in Figure 2. The term ‘precipitation’ was used almost 150 times, usu-
ally with regards to applications for short-range prediction, and downscaling or post-pro-
cessing. Several papers on bias correction of temperature and air pressure were present, 
as well as studies on radiation, both using photovoltaic application and emulating this 
scheme in NWP models. 

To better understand the practices used by scientists for exploring machine learning 
techniques in NWP, the most commonly applied methods are presented in Figure 5. The 
most dominant algorithms were ANN and DL. Decision trees methods, such as RF, XGB, 
and SVM, are often used. Based on our experience, it seems that all of these methods can 
be successfully applied to NWP and climate analyses.  

Figure 3. Most common phrases from articles related to climate and machine learning.

In addition to text mining of research topics and phrases, similar word counts in the
abstracts of selected publications can also give an interesting insight into the most common
topics of interest. Some of the most interesting results derived using this method are pre-
sented in the following section. Figure 4 presents the most commonly used meteorological
fields in NWP studies. Scientists mentioned the term ‘wind’ more than 200 times, and this
term is related to an important group of renewable energy and wind forecasting studies, as
presented in Figure 2. The term ‘precipitation’ was used almost 150 times, usually with
regards to applications for short-range prediction, and downscaling or post-processing.
Several papers on bias correction of temperature and air pressure were present, as well as
studies on radiation, both using photovoltaic application and emulating this scheme in
NWP models.

To better understand the practices used by scientists for exploring machine learning
techniques in NWP, the most commonly applied methods are presented in Figure 5. The
most dominant algorithms were ANN and DL. Decision trees methods, such as RF, XGB,
and SVM, are often used. Based on our experience, it seems that all of these methods can
be successfully applied to NWP and climate analyses.

In the case of research related to climate studies with machine learning methods, the
most common countries taken into consideration are presented in Figure 6. It must be
noted that only 25% (62 articles out of 250) of the papers under consideration in Figure 6
had a specific geographical region included in the abstract. Very often, the abstracts were
more focused on the methods and data used in the study. An example of how this effected
our results is that 25 papers on climate-related aspects in China represented almost 40% of
all the papers with specified regions included in the abstract (Figure 6). The most dominant
group of papers related to studies about climate in China. Slightly fewer occurrences of the
following countries, USA, Australia, India, and Germany, were found in selected abstracts.
Figures 4–6 show the results from our analysis designed to capture all possible occurrences
of a given phrase (e.g., the phrase ‘USA’ was a sum of the occurrences of the words ‘U.S.’,
‘USA’, ‘United States’, etc.).
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A more detailed insight into the selected fields of interest to scientists, generated using
the text mining method in the form of co-occurrence networks from Figures 2 and 3, is
presented below. Sections 3.1 and 3.2 consider NWP and climate research, respectively.
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3.1. Numerical Weather Prediction
3.1.1. Photovoltaic and Wind Energy

Many countries all over the world are in the stages of moving away from fossil-fuel
power plants and towards the implementation of cleaner technologies, such as harnessing
energy from wind or solar radiation; however, this transition leads to new challenges, one
of which being the stability of power grids. Energy from conventional power plants is
more stable and it is relatively easy to alter the production power with changing demand
from customers, whereas renewable energy production is highly dependent on weather
conditions. Therefore, accurate predictions are required, not only of meteorological fields,
but also for energy production.

The standard procedure for predicting energy production from wind farms is to use
NWP models and power curves of installed wind turbines, although many applications also
use machine learning techniques. The research in this field has, in recent years, focused on
using new machine learning methods [14–17], different NWP models and configurations,
such as ensemble forecasting [18,19], or different approaches, from forecasting wind power
for every wind turbine with high-resolution NWP models [20] to wind power production
over whole countries [21]. With the obvious limitations of accuracy of NWP models, authors
are trying to build models using methods such as RF, XGB, ANN, and DL to increase the
accuracy of very short-range forecasts up to few hours, most commonly examined day-
ahead forecasts, and predictions up to several days in advance.

In terms of photovoltaic (PV) energy, similar to wind power, research has focused
on examining the different architectures of machine learning models for improved post-
processing of NWP forecasts, with the use of similar methods [22,23]. One example is the
PVNet model, designed to predict spatially aggregated PV production in Germany [24].
This model, based on LRCN (Long-Term Recurrent Convolutional Network) architecture,
was not only proven to predict PV energy with high accuracy, but also to provide valuable
insight into the dependence on energy production from different meteorological fields
with respect to geographical location. Machine learning can be also an important tool in
planning future installations of power plants [25]. With the use of existing PV systems,
NWP forecasts, and observational data, it is possible to build an accurate model that
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can be used to determine favorable locations for new PV installations, even if weather
measurements are not available. Machine learning techniques can be also combined with
more basic statistical methods to provide location independent, day-ahead PV production
forecasts [26].

3.1.2. Atmospheric Physics and Processes

In recent years there has been a growing interest in machine learning methods in
many aspects, from the post-processing and bias correction of model forecasts [27,28] to
emulating full model physics [29]. There are three important aspects to be taken into
account when planning work using machine learning methods in NWP models. The first
is to speed up computations of very computationally expensive parts of the model, the
second is to improve the performance of current algorithms, and the third is to emulate
the existing code with machine learning models in order to easily allow a model to run
on a computer cluster with GPU accelerators. It is worth mentioning here some of the
events held by leading NWP centers that focused on sharing knowledge regarding the use
of machine learning in their applications, with recordings of meetings and presentations
available online: NOAA Workshop on Leveraging AI in Environment Sciences (https:
//2021noaaaiworkshop.sched.com/info, accessed on 10 November 2021), ESA-ECMWF
Workshop 2021 (https://www.ml4esop.esa.int/, accessed on 10 November 2021), and
EUMETNET 43rd EMGLAM 2021 (http://srnwp.met.hu/Annual_Meetings/2021/index.
html, accessed on 10 November 2021).

One of the most challenging problems with very high-resolution NWP models is
related to land-cover classifications. Currently used databases are usually available with
very coarse resolution and consist of numerous errors. Convolutional Neural Networks
(CNN) can be used to improve them with the use of Sentinel-2 satellite data, the CORINE
land-cover, and the BigEarthNet database [30]. This method was not only able to produce a
model land-cover database that outperformed the currently used model, but also allowed
the updating of maps to any time of the year, which is important for regions with large
seasonal variations.

Several papers were also recently published on the topic of emulating different parts of
NWP models by machine learning [31–34]. Authors are using either benchmark solutions
to provide reliable estimates of examined algorithms, or using observational data from
special campaigns to train models on real and accurate data. Very promising results were
also obtained with NWP modules prepared especially for GPU accelerators, with speedup
reaching 120 times those of their versions on standard Central Processing Unit-based (CPU)
computers, in the cases of both the Radiation Transfer Model and Aerosol Microphysics.

Another interesting aspect relates to the tuning of NWP model parameters. Currently,
in every existing NWP model, there are several parameters that have to be tuned manually.
Scientists, while running some long or short-range experiments, usually do it, and compare
verification results over different configurations. A machine learning-based approach for
this process has been proposed in the literature [35,36]. Various microphysics schemes, cu-
mulus parameterizations, and shortwave and longwave radiation schemes were examined,
and based on the relationship between the choice of physical processes and the resulting
forecast errors, a machine learning model was built to assess WRF model uncertainty.

3.2. Climate
3.2.1. Parametrizations

One of the challenges in improving General Circulation Models (GCM) is related to
the proper parametrization of several atmospheric processes, e.g., moist convection. One
example of how to tackle this problem comes with the use of machine learning methods [37].
It was proposed that RF models be trained from the output of high-resolution atmospheric
NWP models and incorporated into the GCM model. It was shown that, using this tech-
nique, GCMs can run stably and accurately capture even extremes in precipitation. The RF
method was used to ensure, for example, energy conservation, but authors commented

https://2021noaaaiworkshop.sched.com/info
https://2021noaaaiworkshop.sched.com/info
https://www.ml4esop.esa.int/
http://srnwp.met.hu/Annual_Meetings/2021/index.html
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that it can also be achieved with other machine learning techniques with an adjustment of
the field’s tendencies in the training process.

Interesting insight into parametrization performance was presented by Juval and
Gorman [38]. Consistent with O’Gorman at al. [37], the RF method was used to learn from
high-resolution, idealized atmospheric models, and it also led to stable forecasts in the
coarse-grid model.

Different approaches to the problem of using machine learning with parametrizations
can be divided into three groups [39]. The first relates to the use of machine learning with
observed data to develop improved individual parameterizations of features not explicitly
resolved by the dynamics of the models [40–43]. The second is similar to the first group,
although the parametrization scheme is not improved here, but replaced completely by
machine learning [31,37,38,44–59]. The third group relates to when observed data are used
to produce forecasts of key weather features at specific locations [60–63].

3.2.2. Extreme Events

Extreme meteorological events are often related to the occurrence of weather fronts.
Several studies were compared in order to examine their climatology with the use of
machine learning methods [64–67], which can help provide more objective tools, in contrast
with manually drawn maps with fronts. Authors are using several databases with labelled
weather fronts, meteorological reanalysis, and several other methods to provide accurate
models that can be used for the climatological analysis of positions of weather fronts.

Precipitation is also often considered in studies using machine learning methods.
Since there is a big difference in the level of accuracy of prediction of synoptic-scale climate
features and precipitation field, a 2D Convolution Neural Network has been proposed to
develop approximators of regional precipitation and discharge extremes based on synoptic-
scale predictions from general circulation models [68]. With such a method, not only is it
possible to find the most reliable fields in estimation of precipitation extremes, but also to
identify important regional and seasonal differences. Machine learning methods can be
also used to better predict future intensity–duration–frequency curves that are important
in terms of extreme precipitation and flooding events [69], or to estimate the trends and
seasonal components of rainfall and streamflow [70–72] with the use of Wavelet analysis.

3.2.3. Climate Change

The previous sections show that the role of machine learning in many areas of mete-
orology, especially operational meteorology working for weather forecasts, is significant.
This role has grown in recent years. The question that now arises is how machine learning
will contribute to the field of climate change, which is probably the most significant issue
in Earth sciences in recent years. The answer is not unequivocal here, because due to
hundreds of articles on this topic, covering both global aspects as well as regional and
local, there is a dominance of works without reference to machine learning. This situation
is slowly changing, and the number of works using machine learning in climate change
analyses has recently grown. We present here the most important works, in our opinion,
which are important from the methodological and cognitive point of view. From the out-
set, it is worth citing a fundamental publication by 22 authors entitled ‘Tackling Climate
Change with Machine Learning’ [73], which includes a very wide spectrum of machine
learning applications in various climate change issues. It is written by many researchers
from renowned research centers, specializing in particular climatic issues. This publication
contains over 800 references to different aspects of climate change. In three main parts,
titled ‘mitigation’, ‘adaptation’ and ‘meta tools’, the authors provide a detailed review of
the literature on specific issues of climate change and its interactions with the environment
and human activities. Moreover, in the work one can find many recommendations for
various recipients and decision makers. The more than 800 works cited in total provide an
excellent source of numerous analyses and introduce the possibilities of machine learning
applications in research and activities related to climate change.
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An example of a somewhat similar work, but concerning the modeling of the climatic
conditions and climate projections, is the study by Schneider et al. 2017 [74]. Although
this work is not as recent, it gives a good look at climate modeling and the application of
new data and tools with the special use of machine learning. A broad view of the problems
of climate modeling and the application of machine learning is presented in the work of
Rechstein et al. [75] and Huntingford et al. [76]. A narrower meaning, concerning only
selected elements of the climate system, is represented by the works of O’Gorman and
Dwyer [37] and Dijkstra et al. [77]. The latter presents the advantages of using ML in the
prediction of the El Niño phenomenon.

Several scientific publications considered the use of machine learning techniques in
tackling climate change, where specific applications were considered, having the potential
to be successfully examined similar to teleconnection identification and climate connection
to extreme weather. Climate change research is present in many aspects of everyday life,
e.g., in predicting building energy use [78] or pavement condition [79], in the future climate.
Studies such as these can be very important and beneficial to long-term policymaking.

Another important aspect in this field is related to agriculture. Crop [80] and wheat
yields [81] were modelled with successful results that outperformed classical statistical
methods. Increasing heat events were identified, with machine learning techniques in the
study conducted in Australia, to be a major factor causing yield losses in the future.

Based on the findings in this section, we summarize that machine learning helps to
improve analysis and find links between different predictors and climate conditions in
different issues. Simultaneously, it can also be used to generate high-resolution data and to
explore the drivers of climate change [82–87].

4. Discussion and Conclusions

In this article, we present a review of the studies that aimed to use machine learning
and artificial intelligence methods in meteorology and climatology. First, we extracted
relevant information about the current studies in the field using text mining methods. With
the use of Google Scholar search engine, we collected 500 articles, published since 2018,
related to the use of machine learning techniques in numerical weather prediction and
climate analysis. Based on the created dataset, we identified the most relevant topics of
currently published studies, as well as other characteristics, such as analyzed meteorological
fields, used methods, and the most common countries mentioned in the abstracts of the
papers. This method has several limitations that should be mentioned here. The search
engine will favor publications with the “machine learning” phrase in the title or abstract,
and can omit important papers that use this phrase only in the main text. In addition, since
the articles were collected manually, their overall number was only 500, far less than the
requirement of several thousand, as suggested in other text mining publications related to
searching for patterns in scientific articles (in those publications, databases were already
prepared for specific topics, such as COVID-19). On the other hand, every publication was
checked by a specialist in the field, so unrelated papers were immediately excluded from
further analysis.

In terms of the presented results, it is clear that there are wide possibilities for using
the methods mentioned previously, which have recently become a very important part
of atmospheric science due to their research and applicational potential. Applicability
in terms of prognostic models is indisputable, therefore machine learning methods can
be successfully used to analyze and determine important problems in meteorology and
synoptic climatology, such as current circulation types (patterns), types of weather, weather
fronts, and air masses.

In our opinion, machine learning may have a particularly significant application in
synoptic meteorology and climatology. This is because in many circulation-related issues
there are no unambiguous, quantitative definitions or criteria, which makes it difficult
and sometimes impossible to conduct objective analyses. Only for weather types can
those criteria be found, but for others there are usually no strict and precise definitions
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without quantitative criteria and indices, and even if they exist, they are only available
to selected regions on a local scale [88–91]. Therefore, machine learning can be used to
objectively determine those elements, both in a supervised way when labelled data are
available, and in an unsupervised way when we need to divide different features based
on common characteristics. For example, the k-means clustering method can be found in
many publications in which the authors intended to determine specific types of circulation,
weather types, or types of dependence between different characteristics of meteorological
and environment variables [92–98].

It is worth mentioning here that in previous review papers from the 20th century
and the beginning of the 21st century, machine learning was not often mentioned in the
perspectives for future emerging developments [99–102]. However, looking at the progress
in the field of numerical meteorological analysis in recent years, this is not surprising. At
the beginning of the 21st century, access to computer clusters, specialized software, and
professional databases was very limited. It is clearly visible also in terms of meteorological
reanalysis, that is now freely available to the research community, in very high spatial- and
temporal resolution [103]. Although the interest in using machine learning in atmospheric
science is visible from the beginning of 1990s and earlier [104,105], they were much more
limited than more recent versions [106–108].

Even throughout the history of development in meteorology and synoptic climatology
in the 21st century, it is hard to find a perspective for machine learning and artificial intelli-
gence [90,100–105], where greater importance is placed on downscaling and GIS methods.
With that in mind, authors are trying to answer the question about the future of machine
learning in atmospheric science, and it seems that, at least in the coming years, interest will
grow. The increase in available computer power and emerging new technologies, the de-
velopment and access to specialized software, and improved reanalysis will be key factors
determining the use of machine learning in many studies. There are several limitations and
problems that scientists can face when using machine learning techniques. One of the most
obvious is related to knowledge of tools and methods. Fortunately, many institutions are
now trying to organize workshops and seminars that are freely available online to help to
tackle this problem. Proper use of machine learning methods also requires some level of
interdisciplinary cooperation between scientists [109].

With fast growing interest in the use of machine learning methods in NWP and cli-
mate research, it is difficult to judge what the near future looks like. Some scientists are
predicting that these methods will not play a significant role, while others see machine
learning as a solution to almost every problem, and believe that in a few years it will
suppress the standard way of working with models. We decided to look at the written
plans belonging to world-leading NWP and climate consortia, such as the European Centre
for Medium-Range Weather Forecasts (ECMWF) (https://www.ecmwf.int/node/19877,
accessed on 10 November 2021), and agencies such as the National Oceanic and Atmo-
spheric Administration (NOAA) (https://sciencecouncil.noaa.gov/Portals/0/Artificial%
20Intelligence%20Strategic%20Plan_Final%20Signed.pdf?ver=2021-01-19-114254-380, ac-
cessed on 10 November 2021). Both institutions are highly involved in research related
to the use of modern machine learning techniques, and have extensive plans for the near
future that can be used as a proxy for what we can expect in the field.

Based on previously mentioned plans and the current progress in atmospheric science,
there is a clear tendency to tackle many aspects of research and operational areas of work
with machine learning techniques. Both NOAA and ECMWF have assembled groups
of scientists that will be responsible for accelerating artificial intelligence across whole
institutions, and working together with other researchers and computer companies. Several
goals and milestones have been established. There is a plan to organize several workshops
and conferences related to the progress in the use of machine learning, research applications
with the use of machine learning are supposed to be transferred faster to operational mode,
and artificial intelligence should be widely promoted.

https://www.ecmwf.int/node/19877
https://sciencecouncil.noaa.gov/Portals/0/Artificial%20Intelligence%20Strategic%20Plan_Final%20Signed.pdf?ver=2021-01-19-114254-380
https://sciencecouncil.noaa.gov/Portals/0/Artificial%20Intelligence%20Strategic%20Plan_Final%20Signed.pdf?ver=2021-01-19-114254-380
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Another sign that machine learning methods will be present in many components
of modern NWP and climate models is related to trends in new computer clusters. What
can be seen in recent years is a rapid growth of top speed clusters in the world with GPU
accelerators (https://blogs.nvidia.com/blog/2020/06/22/top500-isc-supercomputing/,
accessed on 10 November 2021, and https://www.lumi-supercomputer.eu/lumi-provides-
new-opportunities-for-artificial-intelligence-research/, accessed on 10 November 2021).
Computer codes and the overall design of NWP models, written in programming languages
such as Fortran, were prepared for standard CPU machines, therefore research into the use
of machine learning to emulate some parts of the model, or even the whole model, can
be very beneficial for agencies and consortia in the future [110]. It should be mentioned
here that there are also some other initiatives that promote the use of machine learning in
NWP and climate models. The Destination Earth project from European Commission’s
Green Deal and the Digital Strategy (https://digital-strategy.ec.europa.eu/en/policies/
destination-earth, accessed on 10 November 2021) with it’s very challenging aims to provide
a digital twin of the Earth with very high-resolution, will require speedup of current NWP
models and fast post-processing of hundreds of terabytes of data every day. Most probably,
in order to achieve this goal, state of the art machine learning methods will have to be
implemented in future operational suites.

According to our knowledge and experience in this field, it is important first to prop-
erly understand the processes and relationships between meteorological and environment
variables in analyzed problems, and to correctly implement any machine learning method
and not to use it as a black box. With proper investigation taken into account, the aforemen-
tioned use of new technologies, and the cooperation between different fields, we believe
that machine learning methods will be a key feature in future weather forecasting. Bias
correction, ensemble forecasting interpretation, better data assimilation, and the emulation
of computationally costly parametrizations can help us achieve accurate, high-resolution
NWP model forecasts. It is worth mentioning that, although all the methods referenced in
this paper can be used with success in many applications, some of them, for example RF,
require less knowledge in the field of machine learning and are more suitable for beginners,
while DL or CNN needs more experience to be used properly. We agree with [111] that
artificial intelligence will be a very important technique that will help in the monitoring
and forecasting of weather conditions. Independent of operational use, those methods can
be also highly valuable in climate change research at spatial- and temporal scales [112],
although it will depend strongly on data availability, which over recent years has been
constantly improving.
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