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Abstract: The surface urban heat island (SUHI) effect is among the major environmental issues
encountered in urban regions. To better predict the dynamics of the SUHI and its impacts on extreme
heat events, an accurate characterization of the surface energy balance in urban regions is needed.
However, the ability to improve understanding of the surface energy balance is limited by the
heterogeneity of surfaces in urban areas. This study aims to enhance the understanding of the
urban surface energy budget through an innovation in the use of land surface temperature (LST)
observations from remote sensing satellites. A LST database with 5–min temporal and 30–m spatial
resolution is developed by spatial downscaling of the Geostationary Operational Environmental
Satellites—R (GOES–R) series LST product over New York City (NYC). The new downscaling method,
known as the Spatial Downscaling Method (SDM), benefits from the fine spatial resolution of Landsat–
8 and high temporal resolution of GOES–R, and considers the temporal variation in LST for each
land cover type separately. Preliminary results show that the SDM can reproduce the temporal and
spatial variability of LST over NYC reasonably well and the downscaled LST has a spatial root mean
square error (RMSE) of the order of 2 K as compared to the independent Landsat–8 observations. The
SDM shows smaller RMSE of 1.93 K over the tree canopy land cover, whereas RMSE is 2.19 K for
built–up areas. The overall results indicate that the SDM has potential to estimate LST at finer spatial
and temporal scales over urban regions.

Keywords: land surface temperature; spatial downscaling method; surface urban heat island; satellite
remote sensing; GOES–R; landsat–8; New York City

1. Introduction

Reliable estimates of land surface temperature (LST) are crucial for understanding the
land–atmosphere energy budget, hydrological and biogeochemical cycles, climate change,
as well as for land surface model data assimilation [1–4]. LST is also a key input variable
for the estimation of land surface emissivity, evapotranspiration, and latent and sensible
heat fluxes [5–7]. Differences in LST and near–surface air temperature are often difficult to
characterize because LST exhibits different patterns of spatial and temporal variability than
near–surface air temperature over a specific region [8].

Further, in–situ observations of LST are not uniform everywhere, and that hinders
applicability due to limited spatial representation. On the other hand, satellite remote
sensing provides LST estimates at uniform spatial and temporal scales globally or quasi–
globally. Thermal infrared (TIR) sensors provide LST estimates at finer spatial resolution
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with reasonable accuracy, but they are restricted to clear–sky conditions alone. An example
of one of the most widely used TIR–based LST products is obtained from the Moderate
Resolution Imaging Spectroradiometer (MODIS) derived LST estimates, and it has been
successfully used for numerous applications worldwide [3,4,8–11]. Microwave sensors
provide LST estimates for all–weather conditions, but their spatial resolution is rather coarse.
Hence, integration of both TIR– and microwave–based LST estimates could provide better
estimates of LST for all–weather conditions at finer spatial and temporal scales [12,13].

Satellite–based LST estimates have been widely used for the study of surface urban
heat island (SUHI) intensity and changes in their spatial extent [2,14–17]. The SUHI
phenomenon is generally seen as being caused by a reduction in latent heat flux and an
increase in sensible heat flux in urban areas as vegetated and evaporating soil surfaces are
replaced by relatively impervious low albedo paving and building materials. However, the
adequate monitoring of SUHI requires high temporal (~10–15 min) and spatial resolution
(~50–100 m) LST estimates.

LST estimates from the polar–orbiting satellites such as the Landsat satellite series
are optimal for SUHI studies due to finer spatial resolution (e.g., 30 m derived from
the native 100 m spatial resolution of Landsat–8) and good radiometric accuracy [18].
However, their long revisit time (~16 days), rather narrow swath, and non–availability of
data in the presence of clouds restrict their use. In contrast, geostationary satellites such
as the Geostationary Operational Environmental Satellites–R (GOES–R) series provides
LST estimates over a specific region very frequently (e.g., every 5 min) to monitor diurnal
variability, but at a rather coarse spatial resolution of about 2 km [19,20]. Overall, there is
not one single TIR–based satellite sensor capable of producing LST estimates at both finer
spatial and temporal scales.

The generation of fine spatiotemporal resolution LST data for urban areas is promising,
and several methods have been proposed for the downscaling of satellite–based LST
estimates over urban regions through physical or statistical methods for SUHI monitoring
and other applications (e.g., [12,21–31]). Bechtel et al. [21] used a downscaling approach
based on several predictors to downscale TIR–based LST estimates from a geostationary
satellite and showed that the method was able to downscale LST for a factor of about 2000
with an accuracy of the order of 2 K. Weng et al. [23] proposed a spatiotemporal adaptive
data fusion algorithm for temperature mapping to obtain finer resolution LST by blending
daily MODIS and periodic Landsat datasets over Los Angeles County, California, USA,
and an accuracy of 1.3–2 K was reported. However, this model was unable to predict
changes in LST due to limitations in model assumptions. Wu et al. [12] developed a
spatiotemporal integrated temperature fusion model for the synergism of LST from multi–
scale polar–orbiting and geostationary satellite datasets in a unified framework, and an
independent validation of the fused LST showed accuracy of about 2.5 K. Bonafoni [24]
suggested a statistical downscaling method based on relationships between LST and about
10 spectral indices to downscale LST estimates from Landsat and MODIS sensors over the
city of Milan, Italy. They suggested that the combined use of vegetation and built–up/soil
indices would be advantageous for LST downscaling procedures over heterogeneous urban
landscapes. Further, GOES –derived LST imagery at 4 km was spatially downscaled to
1 km for Los Angeles, USA using geospatial and census data to characterize and quantify
heat hazard [30]. It was shown that spatial downscaling methods with geostationary LST
imageries enable the study of the diurnal cycle of SUHI [22,31]. However, these studies
use several parameters as inputs, with uncertainties in each input parameter propagating
throughout the downscaled LST product. It is to be noted that correct spatiotemporal
features must be reproduced after applying downscaling techniques for SUHI studies [25].
Additionally, the relationship of fine and coarse resolution data varies diurnally, which
could not be captured adequately using a static downscaling approach. Comprehensive
reviews of advancement in LST downscaling methods (both spatially and temporally)
along with their advantages and limitations were recently outlined by Mao et al. [32] and
Wu et al. [33].
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The objective of this study is to generate a high spatial (30 × 30 m) and temporal
(5–min) resolution LST dataset by the combined use of Landsat–8 and GOES–R products
for SUHI studies. Several studies independently focused on improving the LST retrievals
from different satellites. However, here our main goal is to develop a method to enhance
their spatial and temporal variabilities. The proposed downscaling method, known as the
Spatial Downscaling Method (SDM), not only benefits from the relative merits of Landsat–8
and GOES–R, but also considers the temporal variation in LST for each land cover (LC)
type separately. This proposed method is primarily tested over the New York City (NYC)
region of the USA as a preliminary analysis.

2. Study Area and Datasets
2.1. Study Area

The study area comprises NYC (Figure 1), a region with a population of about
8.5 million people. The city has an average altitude of 10 m, and its center is located
at 40◦43′50.1960′ ′ N and 73◦56′6.8712′ ′ W. The study area covers the five boroughs of NYC,
namely Bronx, Brooklyn, Manhattan, Queens, and Staten Island. The city consists of a range
of LC including tree canopy, grass/shrub, bare land, water, buildings, roads and others
paved surfaces as identified by the 2010 New York City Open Data resource provided by
the Department of Parks and Recreation (https://data.cityofnewyork.us/Environment/
Landcover-Raster-Data-2010-3ft-Resolution/9auy-76zt (accessed on 10 September 2021)).
This LC dataset is derived from the combined use of 2010 Light Detection and Rang-
ing (LiDAR), 2008 four-band orthoimagery, and ancillary geospatial datasets through the
object–based image analysis method. This dataset was developed as part of the Urban Tree
Canopy Assessment for New York City and overall accuracy of 96% was reported. The
spatial distribution of the major LC types over NYC at 30 m spatial resolution is shown in
Figure 2a.
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Figure 1. Location of the study area—New York City (data source is the NYC Open Data at https:
//opendata.cityofnewyork.us/ (accessed on 10 September 2021)).

A heat island effect exists in NYC, with the mean temperatures at Central Park gen-
erally being 1.20–3.02 ◦C lower than the surrounding temperatures, and the surface air
temperature of the city is up to 8 ◦C warmer than the rural areas within 100 km of the city
and the difference becomes more pronounced during heat wave conditions [34,35]. For
instance, the urban heat island intensity was observed to be nearly twice in July 2016 over
NYC compared to the decadal mean [35].

https://data.cityofnewyork.us/Environment/Landcover-Raster-Data-2010-3ft-Resolution/9auy-76zt
https://data.cityofnewyork.us/Environment/Landcover-Raster-Data-2010-3ft-Resolution/9auy-76zt
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Figure 2. (a) Major land cover types over New York City based on 2010 New York City Open Data,
and (b) diurnal cycle of GOES–R LST in July 2017 across New York City for three major land cover
types, e.g., tree canopy, grass/shrub, and buildings.

The 3ft–resolution LC raster file was upscaled to 30 m and 2 km to match the spatial
resolution of Landsat–8 and GOES–R LST data, respectively. For each resampling case, the
upscaled pixel was obtained by selecting the most frequent LC from the nearest original
LC pixels. At 3–ft resolution, the LC data is composed of seven land classes that include
tree canopy, grass/shrub, bare soil, water, buildings, roads/railroads, and other paved
surfaces. The upscaled 30 m resolution LC is composed of four classes namely, tree canopy,
grass/shrub, water, and buildings (e.g., Figure 2a). When LC dataset is upscaled from 30 m
resolution to 2 km resolution, the most frequent LC classes are tree canopy, grass/shrub,
and buildings. These three LC classes were used to construct the LST diurnal cycle of the
GOES–R for the month of July in 2017 as shown in Figure 2b.

2.2. Landsat–8 Data

Landsat images offer the longest continuous global record of the Earth’s surface. Since
1972, they have been unique resources for the global change research and applications in
agriculture, cartography, geology, forestry, regional planning, surveillance, education, and
national security [18,36]. Landsat–8 was launched on 11 February 2013 and has a minimum
of 16 days revisit cycle, which is sometimes extended due to cloud contamination. The
satellite has 11 bands having a spatial resolution of 15–100 m, and they are available
from the United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/
(accessed on 10 September 2021)). Landsat–8 LST is retrieved using a generalized single–
channel method from the Landsat TIRS 1 (Band 10) within the range of 10.6–11.2 µm,
because large calibration uncertainty in TIRS band 11 since 2014 was reported by the
USGS [37,38]. The surface emissivity, atmospheric transmittance, and effective mean
atmospheric temperatures are three essential parameters that need to be computed for the
LST retrieval from the Landsat single TIRS band data [38]. Level 1 product from the band
10 is converted into spectral radiance using the radiance scaling factors provided with the
metadata (Equation (1)).

Lλ = ML × Qcal + AL (1)

where, Lλ is the spectral radiance, ML is the radiance multiplicative rescaling factor, Qcal is
the Level–1 pixel value in digital number, and AL is the radiance additive rescaling factor.
As the USGS has reprocessed the TIRS band 10 data including radiance offsets, calibration
offset is not introduced in Equation (1).

The spectral radiance is then converted into brightness temperature (Tb) through the
approximation of the Planck radiance function and given by

Tb = K2/ln(K1/Lλ + 1) (2)

https://earthexplorer.usgs.gov/
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where, K1 and K2 are band–specific thermal conversion constants provided with the meta-
data and given in Table 1. The unit of resultant Tb is Kelvin.

Table 1. Rescaling factor and thermal constant values along with path/row of Landsat–8 TIRS band
10 used in this study.

Radiance
Multiplicative

Rescaling Factor (ML)

Radiance Additive
Rescaling Factor

(AL)
K1 K2 Path/Row

Band 10 3.342 × 10−4 0.1 774.8853 1321.0789 13–14/32

Finally, Tb is divided by the surface emissivity ε to obtain LST using Equation (3).

LST = Tb/ε (3)

As for the surface emissivity, we applied a universal value for all urban surfaces.
Several studies have shown that the approximate value of emissivity in urban areas ranges
from 0.96 to 0.99. We used a widely accepted value in the literature for urban built areas in
very densely populated cities of ε = 0.99 [39–41]. Based on our sensitivity analysis, every
0.01 surface emissivity difference will change the absolute value of LST by about 0.75 K.
Landsat–8 provides one of the finest spatial resolution satellite–based LST estimates to
monitor urban growth and the SUHI. However, the presence of clouds, aerosols, and diverse
spatial distributions of water vapor content highly disturbs the process of acquisition. The
thermal band 10 of Landsat–8 has a 100 m native spatial resolution, but is resampled and
published at 30 m by the USGS. Hence, the spatial resolution of Landsat–8 derived LST is
30 m. In order to ensure the use of high–quality data for the downscaling, we discarded
data that have more than 10% of cloud coverage from July 2017 to April 2018. The details of
Landsat–8 images along with magnitudes of rescaling factors and thermal constant values
used for LST estimation over NYC are provided in Table 1.

2.3. GOES–R Data

The Geostationary Operational Environmental Satellites (GOES) are a series of geosta-
tionary satellites operated by the National Oceanic and Administration (NOAA)/National
Environmental Satellite, Data and Information Service (NESDIS) for weather nowcasting,
meteorology and climate research of the Western Hemisphere. The primary instrument
on the GOES–R series launched in 2016 is the Advanced Baseline Imager (ABI) with its
16 different spectral bands; the bands are composed of two visible channels, four near–
infrared channels, and 10 infrared channels [42]. The LST product from the ABI is based
on a split–window technique that corrects for atmospheric absorption and applies surface
prescribed emissivity information. In addition, an atmospheric path length term is applied
to further correct the satellite view zenith angle effect. Coefficients of the LST algorithm,
which were derived using an atmospheric radiative transfer model, are stratified for day-
time and nighttime conditions, as well as for dry and moist atmospheres. The algorithm
is then verified using a radiative transfer simulation dataset and evaluated using proxy
dataset and ground measurements [19,43]. The accuracy of the GOES–R LST products is
found to be about 2.5 K, and that meets the mission requirements [20]. A comparison of
diurnal variations in LST from the GOES–R ABI and MODIS sensors over North America
showed a general agreement with each–other except for the mountainous regions [44]. LST
data at 5 –min temporal resolution and about 2 km spatial resolution over the Continental
United States were obtained from the NOAA for 2017 and 2018.

3. Spatial Downscaling Method (SDM)

All concurrent Landsat–8 and GOES–R LST products over NYC between 2017 and
2018 were collected. First of all, concurrent Landsat–8 data were re–projected from the
Universal Traverse Mercator to Geographical Coordinate System to match the GOES–R
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spatial grid. Using both GOES–R and Landsat–8 LSTs observed at the same date and time,
their spatial relationship was found through a linear regression model. This statistical
method considers the differences between the sensors and accounts for their seasonal
changes. Then, the SDM is applied to sharpen the GOES–R data. The structure of the SDM
is presented below in Equation (4).

T(x, y, t) = TG(X, Y, t) + ∆TL(x, y) + T(G − L)(X, Y) + ∆TG(T) + ∆T(Gdownscaled − L) (4)

where,

t stands for 5–min time intervals
T stands for averaged diurnal time of Landsat–8 observations
x and y stand for the location of 30 m pixel (Landsat–8 pixel)
X and Y stand for the location of 2 km pixel (GOES–R pixel)
G stands for GOES–R
L stands for Landsat–8.
T(x, y, t) is the GOES–R downscaled LST to Landsat–8 resolution (30 m)
TG(X, Y, t) is the observed GOES–R temperature at coarser resolution
∆TL(x, y) is the spatial variability of each Landsat–8 pixel with respect to the averaged
Landsat–8 LST pixel, which is obtained by removing the mean LST value from each LST
pixel of Landsat–8.
T(G − L)(X, Y): there is a systematic bias between Landsat–8 and GOES–R in LST measure-
ments even for the same time and spatial scales due to sensor configurations, footprint
size, radiometric and spectral differences, and retrieval algorithms. These systematic differ-
ences are accounted for by removing the average of Landsat–8 LST from the GOES–R LST
measurements. This bias is represented in the equation by T(G − L)(X, Y).
∆TG(T): the temporal differences between LC types at finer resolutions are accounted for
by the GOES–R diurnal LST variability, ∆TG(T). This term is calculated based on monthly
diurnal variability and each LC type that is obtained from a 30 m resolution of NYC land
cover map and then re–sampled to 2 km resolution the same as the GOES–R. The term
∆TG(T) is the temperature of each LC class at every 5–min subtracted by the temperature
of LC class at a time that ranges between 11:30 a.m. and 11:40 a.m.
∆T(Gdownscaled − L) represents the post–downscaling errors between downscaled GOES–R
LST and Landsat–8 LST observations.

Figure 2b represents the average LST values at 5–min intervals for major LC types in
the NYC area (i.e., tree canopy, grass/shrub, and buildings) using GOES–R observations
for July 2017. The LST values are reaching their maximum between 4:00 p.m. and 5:00 p.m.
local solar time, and buildings show higher magnitude of diurnal temperature variability
as expected compared to trees and grass surfaces. The considerable dependence of LST
variability on LC type is reported in the recent studies e.g., [9,11]. The entangled succession
of operations is illustrated in the accompanying flowchart shown in Figure 3.

Furthermore, eight independent Landsat–8 images (e.g., which are not the part of
SDM) between 2017 and 2018 were used for the evaluation of the SDM over NYC. The
widely used statistical metrics such as correlation coefficient (square root of coefficient of
determination), bias and root mean square error (RMSE) were used for the evaluation of
the downscaled LST against independent Landsat–8 LST datasets.
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4. Results and Discussion

Using the SDM, GOES–R LST observations were downscaled to Landsat–8 spatial
resolution level for every 5–min over NYC. The results were compared with eight inde-
pendent Landsat–8 LST observations. However, we present only two case studies here
for brevity. Figure 4 shows the spatial distributions of observed GOES–R LST, Landsat–8
LST, downscaled LST, and difference between SDM and Landsat–8 LST for 31 August 2017.
This corresponds to the summer LST for the city. It is to be noted that the independent
Landsat–8 LST dataset is considered as a reference to compare the potential of SDM. The
overall spatial patterns of downscaled and observed LSTs match appreciably well. As
expected, LST over the built–up areas is higher than the vegetated areas. The difference
between SDM and Landsat–8 observations is usually less than 2 K.

Figure 5 shows the spatial distributions of observed GOES–R LST, Landsat–8 LST,
downscaled LST, and difference between SDM and Landsat–8 LST for 28 April 2018. The
southeastern part of the city shows rather less LST as compared to other parts of the city
using the Landsat–8 dataset.

However, the SDM provides missing values over some parts of the city due to the
non–availability of the GOES–R dataset. The spatial patterns of the SDM LST are in good
agreement with the Landsat–8 dataset. LST variations with LC types are also preserved
by the SDM, and the unique LST patterns in buildings can be discerned. The SDM over-
estimates LST over large parts of the study area and underestimates by about 2–3 K as
compared to the Landsat–8 observations over some parts of NYC. In addition, bias in the
downscaled LST shows a considerable seasonal variation with the largest magnitude of
bias occurring during fall and the smallest magnitude of bias occurring during winter. This
analysis clearly reveals that the SDM can reproduce the spatial variability of LST over NYC.

Figure 6 presents the quantitative comparison of the downscaled LST with Landsat–8
observations over NYC for 31 August 2017 and 28 April 2018. In both cases, the coefficient
of determination is quite high (65–66%) which suggests that the downscaled LST obtained
from the GOES–R and Landsat–8 correlated quite well. The data points fall close to
the diagonal line, indicating that the downscaled LST are in good agreement with the
observations. Although SDM marginally overestimates LST as compared to Landsat–8
observations, the bias is 0.75 K for 31 August 2017, whereas it is as low as 0.26 K for 28 April
2018. The general overestimation of LST by GOES–R as compared to Landsat–8 was also
observed over North America [44]. The root–mean–square error (RMSE) in the SDM LST is
less than 1.5 K in both cases. These error metrics again show that SDM has the potential to
downscale GOES–R LST over the urban region with reasonable accuracy. Nonetheless, such
analysis was undertaken for several cases across NYC for different seasons. The coefficient
of determination varies between 0.49 and 0.87, whereas RMSE is usually less than 2 K for
all cases. The overall error metrics for the SDM for three distinct LC types across NYC are
provided in Table 2.



Atmosphere 2022, 13, 332 8 of 12Atmosphere 2022, 13, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 4. Spatial distributions of LST from (a) GOES–R, (b) Landsat–8, (c) SDM, and (d) difference 

between SDM and Landsat–8 over New York City for August 31, 2017. 

Figure 5 shows the spatial distributions of observed GOES–R LST, Landsat–8 LST, 

downscaled LST, and difference between SDM and Landsat–8 LST for 28 April, 2018. The 

southeastern part of the city shows rather less LST as compared to other parts of the city 

using the Landsat–8 dataset.  

 

Figure 5. Spatial distributions of LST from (a) GOES–R, (b) Landsat–8, (c) SDM, and (d) difference 

between SDM and Landsat–8 over New York City for April 28, 2018. 

Figure 4. Spatial distributions of LST from (a) GOES–R, (b) Landsat–8, (c) SDM, and (d) difference
between SDM and Landsat–8 over New York City for 31 August 2017.

Atmosphere 2022, 13, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 4. Spatial distributions of LST from (a) GOES–R, (b) Landsat–8, (c) SDM, and (d) difference 

between SDM and Landsat–8 over New York City for August 31, 2017. 

Figure 5 shows the spatial distributions of observed GOES–R LST, Landsat–8 LST, 

downscaled LST, and difference between SDM and Landsat–8 LST for 28 April, 2018. The 

southeastern part of the city shows rather less LST as compared to other parts of the city 

using the Landsat–8 dataset.  

 

Figure 5. Spatial distributions of LST from (a) GOES–R, (b) Landsat–8, (c) SDM, and (d) difference 

between SDM and Landsat–8 over New York City for April 28, 2018. 

Figure 5. Spatial distributions of LST from (a) GOES–R, (b) Landsat–8, (c) SDM, and (d) difference
between SDM and Landsat–8 over New York City for 28 April 2018.



Atmosphere 2022, 13, 332 9 of 12

Atmosphere 2022, 13, x FOR PEER REVIEW 9 of 13 
 

 

However, the SDM provides missing values over some parts of the city due to the 

non–availability of the GOES–R dataset. The spatial patterns of the SDM LST are in good 

agreement with the Landsat–8 dataset. LST variations with LC types are also preserved 

by the SDM, and the unique LST patterns in buildings can be discerned. The SDM over-

estimates LST over large parts of the study area and underestimates by about 2–3 K as 

compared to the Landsat–8 observations over some parts of NYC. In addition, bias in the 

downscaled LST shows a considerable seasonal variation with the largest magnitude of 

bias occurring during fall and the smallest magnitude of bias occurring during winter. 

This analysis clearly reveals that the SDM can reproduce the spatial variability of LST 

over NYC.  

Figure 6 presents the quantitative comparison of the downscaled LST with Land-

sat–8 observations over NYC for 31 August 2017 and 28 April 2018. In both cases, the 

coefficient of determination is quite high (65–66%) which suggests that the downscaled 

LST obtained from the GOES–R and Landsat–8 correlated quite well. The data points fall 

close to the diagonal line, indicating that the downscaled LST are in good agreement with 

the observations. Although SDM marginally overestimates LST as compared to Land-

sat–8 observations, the bias is 0.75 K for 31 August 2017, whereas it is as low as 0.26 K for 

28 April, 2018. The general overestimation of LST by GOES–R as compared to Landsat–8 

was also observed over North America [44]. The root–mean–square error (RMSE) in the 

SDM LST is less than 1.5 K in both cases. These error metrics again show that SDM has 

the potential to downscale GOES–R LST over the urban region with reasonable accuracy. 

Nonetheless, such analysis was undertaken for several cases across NYC for different 

seasons. The coefficient of determination varies between 0.49 and 0.87, whereas RMSE is 

usually less than 2 K for all cases. The overall error metrics for the SDM for three distinct 

LC types across NYC are provided in Table 2. 

Table 2. Correlation coefficient and root–mean–square error (RMSE) between downscaled LST and 

Landsat–8 LST over New York City for three different land cover types. 

 Correlation coefficient RMSE (K) 

Tree canopy 0.73 1.93 

Grass/Shrub 0.75 2.11 

Built–up 0.74 2.19 

 

The SDM shows high correlation coefficients of 0.73–0.75 as compared to the Land-

sat–8 dataset for these three LC types. The SDM shows smallest RMSE of 1.93 K over the 

tree canopy LC, whereas RMSE is 2.19 K for built–up areas. The differences in RMSEs for 

different LC types might be associated with their respective LST variability. For instance, 

built–up area shows the largest diurnal variability, whereas tree cover area has the 

smallest diurnal variability across NYC (e.g., Figure 2b). 

 

Figure 6. Density scatter plots between LST from SDM and Landsat–8 over New York City for (a) 

August 31, 2017 and (b) April 28, 2018. The error metrics such as coefficient of determination, 

root–mean–square error and bias are also provided in each plot. 
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(a) 31 August 2017 and (b) 28 April 2018. The error metrics such as coefficient of determination,
root–mean–square error and bias are also provided in each plot.

Table 2. Correlation coefficient and root–mean–square error (RMSE) between downscaled LST and
Landsat–8 LST over New York City for three different land cover types.

Correlation Coefficient RMSE (K)

Tree canopy 0.73 1.93
Grass/Shrub 0.75 2.11

Built–up 0.74 2.19

The SDM shows high correlation coefficients of 0.73–0.75 as compared to the Landsat–8
dataset for these three LC types. The SDM shows smallest RMSE of 1.93 K over the tree
canopy LC, whereas RMSE is 2.19 K for built–up areas. The differences in RMSEs for
different LC types might be associated with their respective LST variability. For instance,
built–up area shows the largest diurnal variability, whereas tree cover area has the smallest
diurnal variability across NYC (e.g., Figure 2b).

Figure 7a illustrates the histogram of LST from SDM and Landsat–8 for NYC. The
histograms show the general LST distribution. The LST data have bimodal distributions
and the histograms tend to center closer to 300 K in both products.
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Figure 7. Comparison of histograms of LST from SDM and Landsat–8 over New York City for (a) all
cases, and (b) different land cover types.

The bimodal distributions of LST are due to seasonal variations in LST (e.g., summer
and winter seasons). The histogram of LST from SDM and Landsat–8 for three different
LC types over NYC is presented in Figure 7b. The histograms of LST are quite similar for
Landsat–8 and downscaled GOES–R for three LC types. However, the downscaled GOES–R
LST shows marginally higher values in LST when compared to the observed Landsat–8.
Several studies independently focused on improving the LST retrievals from different
satellites. However, here our main goal is to develop a method to enhance their spatial
and temporal variabilities. That means utilizing more accurate and improved retrieval
methods also could improve the quality of the input data sets in the proposed method
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here. This downscaling method explicitly considers the effect of different LC types on
LST distribution. This preliminary analysis clearly indicates the potential of proposed
SDM for GOES–R derived LST downscaling for SUHI studies. However, this study is
planned to be extended with a longer period of the GOES–R dataset and a comprehensive
evaluation against in–situ observations in continuation of this study. Furthermore, thermal
infrared based LST datasets are available for clear sky conditions only, and a suitable
method for gap filling is also needed to obtain a spatially consistent LST dataset over the
urban environment.

5. Conclusions

This study proposed a downscaling model, SDM, for estimating LST at very high
temporal and spatial resolution (e.g., 5–min and 30 m) using GOES–R datasets. The SDM
algorithm generated LST with the consideration of its temporal variability with each LC
class. This algorithm also benefits from the relative merits of frequent temporal sampling
of GOES–R and fine spatial resolution of Landsat–8. A preliminary comparison over NYC
with independent Landsat–8 observations showed general agreement between the SDM
and Landsat–8 LST datasets with RMSE less than 2 K. The spatial variability of LST over
the NYC was captured reasonably well by the downscaled LST. The overall results indicate
that the SDM has potential to estimate LST at a finer spatial scale over urban regions for
SUHI studies. However, there is a need to extensively validate the downscaled LST with
ground–based observations over the city. This validation effort will be conducted in the
near–future as a continuation of this study.
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