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Abstract: Air pollution is the environmental issue of greatest concern in China, especially the
PM2.5 pollution in the Beijing–Tianjin–Hebei urban agglomeration (BTHUA). Based on sustainable
development, it is of interest to study the spatiotemporal distribution of PM2.5 and its influencing
mechanisms. This study reveals the temporal evolution and spatial clustering characteristic of PM2.5

pollution from 2015 to 2019, and quantifies the drivers of its natural and socioeconomic factors on it
by using a geographical temporal weighted regression model. Results show that PM2.5 concentrations
reached their highest level in 2015 before decreasing in the following years. The monthly averages
all present a U-shaped change trend. Relative to the traditional high concentrations in the northern
part of the BTHUA domain in 2015, the gap in pollution between the north and south has reduced
since 2018. The obvious spatial heterogeneity was demonstrated in both the strength and direction
of the variables. This study may help identify reasons for high PM2.5 concentrations and suggest
appropriate targeted control and prevention measures.

Keywords: PM2.5 pollution; U-shaped change trend; influencing mechanism; BTHUA; GTWR

1. Introduction

Many countries and regions in the world have long suffered from air pollution, which
results in various problems such as climate change, greenhouse trapping, and environ-
mental degradation. Among all air pollutants, fine particulate matter (PM2.5; particles less
than 2.5 µm in aerodynamic diameter) is strongly associated with adverse health effects.
Epidemiological studies have shown connections between PM2.5 and various diseases such
as asthma, cardiovascular disorders, respiratory infections, and even premature death [1–3].
As one of the largest economies and the fastest-developing countries globally, China is
confronted with severe air pollution. Among the most critical environmental issues people
face, air pollution has become a global concern, and the regional governance of PM2.5 has
received much attention in recent years [4,5].

It is widely recognized that the concentrations of PM2.5 are closely related to me-
teorological conditions and human economic activities. Many studies have focused on
the characteristics and contributing factors for PM2.5. Natural factors include rainfall,
temperature, wind speed, and relative humidity [6–8]. Socioeconomic factors including
urbanization [9,10], economic development [11,12], transportation [13,14], energy consump-
tion [15], and foreign direct investment [16,17] have played crucial roles in air pollution
analysis. For instance, Lou (2016) identified six factors associated with PM2.5 accumulations:
urbanization, industry share, construction level, urban expansion, income disparity, and
private vehicles [18]. Zhan et al. (2018) concluded that natural factors constitute the main
impetus in the deterioration of air pollution, rather than socioeconomic factors [19]. Liu
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(2020) examined the relationships between PM2.5 pollution and factors and indicated that
socioeconomic factors such as economic growth, population density, and urban built-up
areas led to increases in PM2.5 concentrations [20].

Several approaches have been applied to analyze the driving factors of PM2.5, in-
cluding the application of least squares regression, a geographical detector, structural
decomposition analysis, and a geographically weighted regression model [21,22]. Akbal
(2021) utilized hybrid deep learning methodology to model particulate matter (PM) of
Ankara City [23]. Akdi (2021) adopted a periodogram-based time series methodology to
investigate monthly PM2.5 of Paris for the period between January 2000 and December
2019 [24].

On the whole, existing research has produced crucial advancements and laid a firm
foundation for this study area. However, the existing findings on the key factors affecting
PM2.5 have failed to identify the individual and potential contributing factors unique to
a distinct region and have not considered regional temporal and spatial heterogeneity
individually [19]. To fill the clear gap that exists in our knowledge, this study makes two
main contributions compared with previous studies. First, we applied a geographical and
temporal weighted regression model (GTWR) to conduct this study. The GTWR captures
the spatial variations in regression coefficients for different research units and allows the
spatiotemporal disparities to be calculated separately. Second, six types of influence degree
were divided according to the parameter results of the GTWR model, and their intensities
of driving forces are discussed respectively.

This paper presents the changes in PM2.5 concentration characteristics and the spatial
variations in the key driving factors of PM2.5 in the BTHUA from 2015 to 2019. A geo-
graphical and temporal weighted regression model was applied to identify and analyze
the spatiotemporal differentiation of influencing factors, which quantifies their individual
effects specific to each study unit. The series of findings resulting from this paper can
greatly benefit policymakers who seek to appropriately formulate targeted, refined, and
differentiated air quality improvement measures in the BTHUA area.

2. Materials and Methods
2.1. Study Area

The Beijing–Tianjin–Hebei urban agglomeration (BTHUA) lies in the center of China’s
Circum–Bohai–Sea Region, with a population of 109.8 million in 2019. It covers 134,735
square kilometers, accounting for 7.79% of China’s population and 1.9% of China’s territory.
In 2019, the BTHUA produced 8447 billion Yuan of GDP, accounting for 8.56% of the
national GDP and ranking third among China’s 20 urban agglomerations. Its GDP per
capita increased to 77,000 Yuan in 2019. The urbanization of BTHUA reached 62.13%,
higher than the average national rate. The BTHUA is usually administratively divided into
three distinct regions: Beijing, Tianjin, and Hebei, which include the cities of Shijiazhuang,
Baoding, Langfang, Cangzhou, Qinhuangdao, Tangshan, Zhangjiakou, and Chengde. The
spatial range data for this studied region is obtained from China National Natural Resources
Department Standard Map Service System Pipe Network (http://bzdt.ch.mnr.gov.cn/,
accessed on 5 January 2022) (Figure 1).

http://bzdt.ch.mnr.gov.cn/
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Figure 1. Location and range of Beijing–Tianjin–Hebei urban agglomeration.

2.2. Natural Factors

Consistent with previous research, the natural conditions explored in this study in-
clude four factors: rainfall (R), wind speed (WS), relative humidity (RH), and temperature
(T). Rainfall is a fundamental natural factor known to negatively impact PM2.5 concentra-
tions in Chinese cities [25], consistent also with research results from Nagasaki, Japan [26].
Using Seoul as a study area, Park (2021) found that wind speed was essential to PM2.5 con-
centrations [27]. Pateraki (2012) found a significant correlation between relative humidity
and PM2.5 [28], consistent with the results of Tai (2010) [29]. Temperature is known to be
sensitive to all pollutant concentrations [30]. In particular, Yang (2017) found a negative re-
lationship between temperature and PM2.5 concentrations [31]. Table 1 shows the statistical
information for each of the variables related to PM2.5.

Table 1. Statistical summary of the variables.

Variable Definition Symbol Max Min Mean Std. Dev.

Rainfall (mm) R 8483.42 4881.53 6083.97 744.85
Wind speed (m/s) WS 2.59 1.88 2.25 0.21

Relatively humidity (%) RH 64.38 50.17 57.90 3.19
Temperature (◦C) T 13.87 9.18 12.31 1.30

Economic development
(billion yuan) GDP 3537.13 122.00 623.14 813.96

Industrial structure (%) IS 0.57 0.16 0.41 0.10
Technology innovation

(billion yuan) TI 223.36 0.01 13.75 37.96

Foreign Direct Investment
(billion dollar) FDI 24.33 0.01 2.47 4.71

Environmental regulation
(ton/billion yuan) ER 7.89 0.01 1.12 1.41

Urbanization (%) UR 86.60 46.64 59.53 11.72

2.3. Socioeconomic Factors

Based on previous research, we selected a wide range of anthropological influencing
factors related to PM2.5 concentrations [32–34]. A set of relevant determinants of PM2.5
were selected scientifically and rationally by extending existing analytical frameworks. We
examined six variables: economic development, industrial structure, technology innova-
tion, foreign direct investment, government regulation, and urbanization, all of which have
been frequently applied to analyze PM2.5 concentrations. First, as a common indicator of
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economic development, the increase in GDP in China has mainly been driven by fossil
fuel consumption, which can produce large amounts of air pollution. Second, secondary
industry, consisting of both labor-intensive and energy-intensive industries, led to an in-
crease in PM2.5 concentrations. We took the proportion of secondary industry as a proxy for
industry structure, which is expected to be positively correlated with PM2.5 concentrations.
Third, foreign direct investment has a contentious relationship with PM2.5 concentrations
levels. On the one hand, FDI offers low-pollution equipment and technologies and better
management, understood to result in reduced emissions. On the other hand, FDI may
contribute to increased PM2.5 concentrations according to the pollution haven hypothesis.
Next, technological innovation is used because technological progress reduces energy con-
sumption and PM2.5 concentrations. Government regulation also plays an important role
in controlling PM2.5 concentrations. The more strict anti-pollution countermeasures carried
out by the government, the lower the PM2.5 emissions. In addition, it is generally argued
that rapid urbanization may negatively impact ambient air quality because urbanization
usually requires more extensive infrastructure and transportation, which fosters more fossil
fuel consumption and higher PM2.5 concentration.

Data regarding factors influencing PM2.5 concentrations from 2015 to 2019 were ob-
tained from various sources, including the Beijing Statistical Yearbook, Tianjin Statistical
Yearbook, Hebei Statistical Yearbook, China Regional Economic Statistical Yearbook, China
Urban Statistical Yearbook, China Science and Technology Statistical Yearbook (CNKI:
http://data.cnki.net/Yearbook, accessed on 5 January 2022). These indicators are summa-
rized in Table 1.

2.4. PM2.5 Data

This paper chose the BTHUA as the study area, with PM2.5 concentration data derived
from China’s National Environmental Monitoring Centre (http://106.37.208.233:20035/,
accessed on 5 January 2022). The data quality control for PM2.5 was performed based on
the GB3095-2012 requirements of China’s National Ambient Air Quality Standards (AAQS)
to validate air pollutant concentration data. In this study, the monitored 24-h averaged
PM2.5 concentrations at all the stations in a city represent the polluted level of the city.
According to the definition of GB3095-2012, the “daily average” refers to the arithmetic
mean of a natural daily 24-h average concentration, while the “monthly average” refers
to the arithmetic average of the mean concentrations of each day in a calendar month; the
“seasonal average” represents the arithmetic average of the mean concentrations of each
day in a calendar quarter, while the “annual (yearly) average” represents the arithmetic
average of the mean concentrations of each day in a calendar year; here, spring covers
March through May, summer spans June through August, autumn indicates September
through November, and winter consists of December, January, and February.

2.5. Geographically and Temporally Weighted Regression (GTWR) Modeling

A geographically and temporally weighted regression (GTWR) model was employed
to observe the influence of factors on the explained variables by considering the spatial
position relationship between variables, which could capture the instability and mutual
differences of spatial data; however, the effect of time would be largely ignored. The GTWR
is derived from the local spatiotemporal coefficient of the variation model proposed by
Huang (2010) [35], which is a spatiotemporal analysis method based on a GWR model
incorporated time series and has the advantage of a time-weighted regression (TWR) in
identifying temporal effects. Meanwhile, there is no need to consider the problem of a
limited quantity of samples. The spatiotemporal weight matrix is constructed according to
the three-dimensional coordinates in this model. An analysis region closer to the region
defined by the coordinates is defined to have greater weight (including the proximity
of time and space) [36]. A spherical region constructed with the analysis region as the
sphere’s center is used for local regression. Then, the parameter estimates for different
regions at different times are considered. This method has been used in several studies.

http://data.cnki.net/Yearbook
http://106.37.208.233:20035/
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Wang et al. (2021) employed the geographically and temporally weighted regression
model to analyze the varying importance and spatiotemporal differentiation of the factors
influencing ecosystem services in the Pearl River Delta of China [37]. Liang et al. (2019)
studied the impact of urbanization factors and subsystems on environmental pollution by
using a GTWR model [38]. The exact calculation process is as follows

yi = β0(longi, lati, ti) +
n
∑
j

β j(longi, lati, ti)xij + εi

i = 1, 2, 3, · · · , 13 j = 1, 2, 3, · · · , n
(1)

Here, yi is the PM2.5 concentration of city i, longi is the longitude of the city i, lati is
the latitude of the city i, ti is the year of the city i, β0(longi, lati, ti) and β j(longi, lati, ti) are
the latitude and longitude function of city i, and the parameters to be estimated. The term

xij is the explanatory variable of the city factors to PM2.5, and εi
iid∼ N(0, σ2) is the random

disturbance term.
The space–time weighted matrix is a key part of GTWR model, and the formulation is:

W(longi, lati, ti) = diag(wi1, wi2, · · · , wim), m = 1, 2, 3, · · · , 13; wim is a function based on
the space–time distance attenuation

wim = exp(−
d2

im
h2 ) (2)

where dim is the spatiotemporal distance between i and m, and h2 is the width of the
spatiotemporal window. The term dim and the minimum cross-verification method is
determined by

dim =

√
λ[(longi − longm)

2 + (lati − latm)
2] + γ(ti − tm)

2 (3)

minCV = ∑ [yi −
∧

ym 6=i(h)] (4)

where λ determines the spatial distance (longi − longm)
2 + (lati − latm)

2, when λ = 0
there is no spatial effect; γ determines the separation in time (ti − tm)

2, when γ = 0 there
is no time effect. The GTWR model requires λ 6= 0 and γ 6= 0; h is the optimal time–space
window width determined by the cross-verification method (CV) by minimizing the sum
of the squares of residuals.

Letting hs−t be the width of the space–time window, hs be the width of the spatial
window, ht be the width of the time window, and satisfy hs−t = λhs = γht. At this point,
substituting Equations (3) and (4) into Equation (2), we obtain

wst
im = exp[− (longi − longm)

2 + (lati − latm)
2

(hs)2 − (ti − tm)
2

(ht)2 ] (5)

Equation (5) is simplified and can be obtained as follows

wst
im = wst

im = exp[− (longi − longm)
2 + (lati − latm)

2

(hs)2 ] ∗ exp[− (ti − tm)
2

(ht)2 ] = ws
im ∗ wt

im (6)

Bandwidth plays a significant role in the regression results and this paper adopts
an adaptive bandwidth and establishes the AICc as its criterion to obtain more accurate
analysis, given that excessive bandwidth results in points with little impact in the fitting
process, while a bandwidth too small produces overfitting. To facilitate differentiation, this
paper divides the influence degree types according to the parameter results and divides
the negative and positive influences into low, medium, and high categories, respectively.
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3. Results
3.1. Characteristics of Temporal and Spatial Variation to PM2.5
3.1.1. Temporal Characteristics

The PM2.5 concentration measurements covered the five years from 2015 to 2019.
Figure 2 shows the 24-h and monthly measurements of PM2.5 concentrations over this
time and generally indicates that PM2.5 concentrations remarkably exceeded the Chinese
standard of 35 µg/m3 (black line). Obviously, more often than not, monthly averages
exceeded the standard of 75 µg/m3 (blue line). The PM2.5 concentrations achieved their
highest level in 2015 before decreasing in the following years. In total, 1325 days out of
1826 days met the criteria, while the remaining 501 days went beyond the criteria, ranging
from 35 µg/m3 to 310 µg/m3. The 24-h averages of PM2.5 displayed cyclic variations over
certain time intervals in BTHUA (Figure 2). The average length of a PM2.5 cycle was almost
seven days, both in spring and winter, while that of summer and autumn was almost
twice as long, about 15 days. The 24-h maximum value occurred on 22 December 2015 at
329.84 µg/m3, while the minimum was recorded on 13 August 2019, at 8.76 µg/m3.
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Figure 2. Daily and monthly variations in PM2.5 concentrations in Beijing–Tianjin–Hebei urban
agglomeration from 2015 to 2019.

Figure 2 demonstrates the monthly averages of PM2.5 concentration over 12 months
for each year from 2015 to 2019, which illustrates distinct variations. The monthly averages
were similar in every year and showed a U-shaped pattern. The highest concentration oc-
curred between October and March, and the lowest concentrations were clustered between
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May and September. The highest monthly average value was December, at 99 µg/m3.
The lowest value was observed in August (36.7 µg/m3), still slightly higher than the
AAQ standards.

The highest value of PM2.5, with an average value exceeding 92 µg/m3, appeared in
winter when centralized heating was ongoing. The average value for the winter season
was 116.9 µg/m3 in 2015, whereas after that year, there was a clear decline that became
more profound in 2018 with the lowest value, followed by a slight increase in 2019, with
an average value of around 80 µg/m3. Autumn and spring ranked second and third
with mean values of 58.4 µg/m3 and 57.0 µg/m3, respectively. The lowest concentrations
occurred in summer, with an average value of 42.7 µg/m3. Notably, none of the average
seasonal values met the Ambient Air Quality Standards (Figure 2f).

3.1.2. Spatial Change

Figure 3 shows the markedly changed magnitude and spatial distribution of PM2.5 con-
centrations in the BTHUA from 2015 to 2019. According to both the World Health Organi-
zation (WHO) and China’s national ambient air quality standards (AAQA), we established
five annual PM2.5 level ranges, including excellent (<15 µg/m3), good (15–35 µg/m3),
slightly polluted (35–50 µg/m3), moderately polluted (50–75 µg/m3), and heavily polluted
(>75 µg/m3). As seen in Figure 3, there were no cities with concentrations lower than
15 µg/m3 from 2015 to 2019. In 2015, the areas with heavily polluted levels (i.e., mean
annual PM2.5 > 75 µg/m3) were clustered around the middle and southern part of BTHUA,
while the value of PM2.5 concentrations was relatively lower (<50 µg/m3) in the northern
mountain areas. In 2015, eight cities, including Beijing, Langfang, Tangshan, Baoding, Shiji-
azhuang, Xingtai, Hengshui, and Handan, exceeded the heavily polluted level, accounting
for 72.72% of the whole area. During 2016 and 2017, Beijing and Tangshan were excluded
from the heavily polluted list and, consequently, the number of heavily polluted areas
decreased. Compared with previous years, the gap between heavily polluted areas has
narrowed between the northern and southern regions since 2018. In other words, PM2.5
concentrations in most of the northern regions increased from “good” or “slightly polluted”
to the “moderately polluted” level, while those of the southern regions decreased from
“heavily polluted” to the “moderately polluted” level. In particular, Baoding had the lowest
PM2.5 concentrations after 2018, which may be due to the national strategic establishment
of a “Xiong’An New Area”, which, as one of three national strategies, has made Baoding
area undertake the important role of the so-called non-capital functions to take over the
heavy burdens the capital city of Beijing once bore.

3.2. Factors Influencing PM2.5 Concentrations

We chose ten variables to determine the mechanisms that influenced the PM2.5 con-
centrations in BTHUA across the study period. Early studies have clearly established
a significant spatial autocorrelation of the PM2.5 distribution in the BTHUA area. The
clustering characteristics reflect the spatial spillover effect of PM2.5 concentrations, meaning
that local PM2.5 pollution can positively impact concentrations in adjacent areas [39,40].
The GTWR model was extended from a GWR model to take temporal variations into
consideration, allowing significantly better goodness of fit than that of conventional least
square methods and GWR models [20]. To explore the spatial and temporal non-stationary
nature of the mechanism, a geographic and time-weighted regression (GTWR) model was
constructed to analyze the spatial and temporal differentiation of the influencing factors
from 2015 to 2019. The results from Table 2 showed that, in comparison with OLS and
GWR, the AICc value of GTWR produced better fitting effects with decreases by 69.54
and 17.92, and R2 increases by 0.125 and 0.027, respectively. The test suggested that the
GTWR model performed better than the global OLS and GWR model. When analyzing
the influencing factors of PM2.5 concentrations, the GTWR model containing spatial and
temporal heterogeneity is more compatible than the OLS model, which focuses only on
global regression and the GWR model without any time effects.
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Table 2. Assessment of GTWR model.

Indicator Model Type Model Comparison

OLS GWR GTWR GTWR–OLS GTWR–GWR

AICc 339.27 287.65 269.73 −69.54 −17.92
R2 0.823 0.921 0.948 0.125 0.027

3.2.1. Natural Factors Influencing PM2.5 Concentrations

Figure 4 shows the spatial differences present in the coefficients of the natural factors
addressed in the BTHUA. The results indicate a negative regression coefficient between rain-
fall and PM2.5 concentrations. The negative regression coefficient between the wind speed
and PM2.5 concentrations was about 92.31%. In most cities, the factor of relative humidity
correlated positively with PM2.5 concentrations (92.31%). In contrast, the temperature factor
displayed a negative relationship with PM2.5 concentrations (61.54%).

3.2.2. Socioeconomic Factors Influencing PM2.5 Concentrations

Figure 5 illustrates the geographic distribution of the regression coefficient values
for the socioeconomic factors of this study. Previous research has highlighted the GDP
and industry structure as significant factors affecting PM2.5 concentrations. Data analysis
revealed a positive correlation coefficient between GDP and PM2.5 concentrations of about
92.31% for this area. The regression results for the GTWR show that the positive regression
coefficient between the space proportion dedicated to industrial structures and PM2.5 is
about 69.23%. The area of BTHUA with a positive correlation coefficient between the
urbanization factor and PM2.5 concentrations accounted for about 76.92% of the total area.
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Figure 5. Spatial distribution of regression coefficients for socioeconomic factors in the Beijing–
Tianjin–Hebei urban agglomeration during the study period.

About 84.62% of the area in the BTHUA was characterized by negative correlation
coefficients between the technology innovation factor and PM2.5 concentrations. The total
effect of foreign direct investment on PM2.5 concentrations is also proven to be negative,
with a regression coefficient of 76.92%, the reason for which may be interpreted by the pol-
lution halo hypothesis. The environmental regulation factor in the BTHUA demonstrated a
distinct negative correlation with PM2.5 concentrations, which was consistent with both
initial predictions and common sense.
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4. Discussion

Our results indicate significant spatial heterogeneity in both the direction and strength
of the determinants at the local scale. In the southern part of the BTHUA, such as the cities
of Shijiazhuang, Xingtai, Handan, PM2.5 concentrations had a high positive correlation with
economic growth (Figure 5a). According to the environmental Kuznets curve, economic
development can, in its later stages, be harmful to the environment because it consumes
large amounts of resources and energy. It seems paradoxical that a mutualistic relationship
between China’s economic growth and environmental pollution has likely long existed until
the BTHUA broke through the inflection point of the environmental Kuznets curve [41].

The PM2.5 concentrations showed strong positive correlations with the secondary
industrial structure (Figure 5b). The economy in the four areas of Tianjin, Tangshan,
Shijiazhuang, and Xingtai was driven mainly by heavy industries such as steel, automobile,
and equipment manufacturing facilities, characterized by high resource consumption.
Heavy industry served as the chief source of PM2.5 concentrations in these areas. On the
contrary, the industrial structure of Zhangjiakou, Chengde, Qinhuangdao, and Beijing in
the north correlated negatively with the concentrations of PM2.5. The reason lies within the
fact that the main industrial structure of these places is dominated by the service industry,
with relatively less pollution from industrial activities. For example, Beijing is famous
for its tertiary and technology-intensive industries, both of which are classified as service
industries resulting in less energy consumption. As an ecological barrier of the Beijing–
Tianjin–Hebei urban agglomeration, the northern mountainous area has emphasized the
development of the tourism-driven industry. Therefore, we can conclude that different
industrial structures produce different effects on the environmental quality of cities.

Technology innovation was negatively correlated with PM2.5 concentrations (Figure 5c).
For one, this may be due to the continuous creation of new technologies and products that
are more environmentally friendly and efficient to both economic activities and daily life.
For another, the pollution prevention technology in China is becoming more advanced so
that air pollution can be better controlled. In megacities such as Beijing and Tianjin, where
there is a tremendous emphasis on scientific research and technological improvements,
more and more technicians and workers are receiving high-level technical education, which
tends to explain the strong negative correlation between technical innovation levels and
PM2.5 concentrations. In contrast, the TI levels of Shijiazhuang, which is in the transfor-
mation stage of the pollution industry, and Hengshui, which is lagging in technological
innovation because of its relatively poor economic development, have a positive correlation
with PM2.5 concentration, indicating that its technological achievement may not, as of yet,
have been transformed into actual ecological benefits.

The foreign direct investment significantly reduces PM2.5 concentrations, especially if
the FDI is accompanied by advanced technologies, which would tend to create spillovers for
domestic industries. Beijing and Tianjin showed large negative coefficients between FDI and
PM2.5 concentrations (Figure 5d). Wang et al. (2020) researched 18 urban agglomerations in
China and found that FDI had a negative impact on the BTHUA, which is consistent with
the research results of this paper [42].

The environmental regulation factor in the BTHUA showed a distinct negative cor-
relation with PM2.5 concentrations (Figure 5e). This conclusion is further evidenced in
the goalsetting of “constructing ecological civilization,” a section of the report by the 18th
National Congress of the Communist Party of China (CPC). Consequently, government
regulators began to take powerful measures to enhance economic and social transformation
based on the efficient use of resources and establishing green, low-carbon growth, upgrad-
ing production, and changing lifestyles to achieve the goal of green development. Qu
(2020) pointed out that the aggressive abatement policies likely contributed to reductions
in normalized PM2.5 concentrations [43].

The positive coefficients of megacities and big cities such as Beijing, Tianjin, and
Shijiazhuang are high, which indicates that the intensive urbanization in these areas inten-
sifies environmental pollution (Figure 5f). Negative coefficients between urbanization and
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PM2.5 emerged mainly in the northern mountainous areas. We can conclude that suitable
urbanization in mountainous areas in its early stages effectively contributes to improving
environmental quality. This conclusion is consistent with the research findings of Liang
et al. (2019) and confirms that the impact mechanism of urbanization on PM2.5 pollution
varies with the level of urban development [38].

5. Conclusions

This research set out to discover the key effective influencing factors contributing to
PM2.5 in BTHUA. We analyzed the spatiotemporal change in PM2.5 concentrations in the
Beijing–Tianjin–Hebei urban agglomeration (BTHUA). We found that the PM2.5 pollution
showed an overall decreasing trend from 2015 to 2019 and the spatial gap between the
north and the south decreased in recent years.

This study creatively applied an improved GWR model to a designated region so as to
estimate the association between PM2.5 concentrations and a series of key socioeconomic
and meteorological factors. The GTWR model was extended from a GWR model by adding
temporal variations, and the added complexity of the GTWR model produced significantly
better goodness of fit than that of conventional OLS methods and GWR models. The GTWR
performed in this study is helpful in recognizing the effects of influencing factors varying
in time and space.

The findings of this study provide detailed empirical evidence for regions to im-
prove air quality in accordance with local conditions. Moreover, this study contributes
valuable insights to visualizing those spatial and temporal variations in the correlation
coefficients of each determinant related to PM2.5 concentrations. This visualization may
help local policymakers adopt specific policies in accordance with local pollution patterns
and corresponding development models, as opposed to a “one-size fits all” approach.
Additionally, the cities of BTHUA should scientifically adjust industrial structures, im-
plement the optimization and upgrading of economic growth, maximize the efficiency of
energy use, implement strict environmental access standards, and define a bottom line for
ecological protection.

However, there are two limitations in this paper. Due to the limited data of the
socioeconomic factors, taking a city as the basic research unit restrained the choices of
factor variables and further deep explorations. Future improvement should be directed
to lower-level administrative regions as its basic research unit. In addition, this paper
adopted the GTWR model that captures the spatial variations in regression coefficients
for different research units and allows the spatiotemporal disparities. Although it has
been previously used, there are still some uncertainties in its objectivity and timeliness.
Hybrid deep learning methodologies such as random forest regression should be proposed
in the future.
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