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Abstract: As an air pollution phenomenon, haze has become one of the focuses of social discussion.
Research into the causes and concentration prediction of haze is significant, forming the basis of
haze prevention. The inversion of Aerosol Optical Depth (AOD) based on remote sensing satellite
imagery can provide a reference for the concentration of major pollutants in a haze, such as PM2.5
concentration and PM10 concentration. This paper used satellite imagery to study haze problems
and chose PM2.5, one of the primary haze pollutants, as the research object. First, we used conven-
tional methods to perform the inversion of AOD on remote sensing images, verifying the correlation
between AOD and PM2.5. Subsequently, to simplify the parameter complexity of the traditional
inversion method, we proposed using the convolutional neural network instead of the traditional
inversion method and constructing a haze level prediction model. Compared with traditional aerosol
depth inversion, we found that convolutional neural networks can provide a higher correlation
between PM2.5 concentration and satellite imagery through a more simplified satellite image pro-
cessing process. Thus, it offers the possibility of researching and managing haze problems based on
neural networks.

Keywords: CNN; MODIS; PM2.5; haze forecast; aerosol optical depth; air pollution

1. Introduction

The main component of haze is fine particulate matter (PM2.5), an organic compound
of toxic substances such as heavy metals and carcinogens. It is the most harmful air
pollution to the human body because it can directly enter the lungs [1–3]. In recent years,
more and more people have paid close attention to its environmental damage and influence
on the human body in large urban areas [4–6].

With the increased attention on haze, the harm it does to the human body is gradually
being revealed. Therefore, the research on haze becomes deeper and more diverse [7–11].
Predominant questions involve the causes of haze, pollution composition, time distribution,
regional distribution, and management programs. The research methods also span multiple
disciplines such as chemical analysis, biological testing, economic development, and haze
data mining.

Because of the improved human aerospace technology and remote sensing satellite
technology in recent years, the cost of remote sensing satellite imagery has been reduced.
It is more macroscopic than the traditional ground station monitoring data. The satellite
images provide the information of the temporal and spatial changes of haze comprehen-
sively and quickly [12–18]; therefore, researchers utilize remote sensing images in the
monitoring and analysis of haze. Researchers often use remote sensing satellite images
for the inversion of Aerosol Optical Depth (AOD) and further analyze meteorological
features based on the correlation between aerosol depth and atmospheric pollutant con-
centrations. McGowan et al. [19] proposed a PM10 dust concentration of a 500 m vertical
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profile measured during a regional dust event in western Queensland, Australia, based on
MODIS Terra satellite data and a spatiotemporal analysis. Guo et al. [20] used a correlation
analysis between the PM2.5 concentration ground haze monitoring stations in China during
2007 and 2008 and the AOD obtained from the satellite remote sensing image. They also
discussed the feasibility of satellite remote sensing technology for estimating the haze
concentration on the ground. Nordio et al. [21] used MODIS data to study the correlation
between aerosol and PM10 concentration in Lombardy, Italy, and successfully used aerosol
data to predict the haze concentration. Seo et al. [22] compared the aerosol depth based on
ground monitoring stations and MODIS satellite images to PM10 concentrations in Seoul,
Korea. It was concluded that MODIS images are more relevant than ground monitoring
stations, especially in winter.

Another emerging approach to haze research is machine learning. Machine learning
methods, especially the rapid development of neural networks, have shown researchers
great potential to fit complex functions. Therefore, some studies have used haze detection
data to train neural networks to predict haze concentrations. For example, Pérez et al. [23]
used the neural network structure to predict and analyze the average concentration of
haze in the San Diego area in the next few hours. Grivas et al. [24] optimized the structure
and parameters of the neural network based on the previous Pérez study to predict the
concentration of PM10. With the continuous optimization of the network, many scholars
have used neural networks to predict and analyze the haze in time series [25–28].

Comparing the two haze analysis methods, estimating the concentration of haze
pollutants, such as PM2.5 and PM10, using the inversion of AOD on remote sensing satellite
images has a broader research background and relative higher precision. However, the
data preprocessing for obtaining AOD from satellite images is very complicated and often
requires steps such as radiation correction, geometric correction, and processing angle data
for satellite images. By contrast, neural networks have powerful feature capture capabilities
and flexible adjustment capabilities using these learned features. These characteristics allow
neural networks to use simplified data processing compared with traditional inversion
methods. Moreover, the neural network excels in complex function fitting, making it easy
to fit uncertain function expressions or expressions with complex parameters. In the study
of haze, PM2.5 concentration prediction is a complex function fitting problem, since the
concentration of other major pollutants such as PM2.5 depends on many complicated
meteorological and human factors.

This paper aims to simplify complex data processing in traditional AOD inversion
methods by using the feature capture ability and complex function fitting ability of neural
networks by training a haze-level classification network. We directly use remote sensing
satellite images as input and use convolutional neural networks as training models to
classify the level of haze concentration. This paper compares the results from two methods,
one using a traditional AOD inversion method, and the other the proposed neural networks
inversion method. Experiments show that the proposed network can reduce the manual
inversion work, and also achieves good results in fitting the non-linear relationship between
the data and the haze concentration level.

2. Research Area and Dataset
2.1. Research Area

The air pollutant monitoring stations in the Beijing area mainly detect the concentration
of various air pollutant gases (such as carbon monoxide, sulfur dioxide, and ozone) and
PM1 and PM2.5. These monitoring stations are distributed in various districts of Beijing, as
shown in Figure 1. The data and monitoring records collected by the monitoring points
will be published in real-time for easy access and research.
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Figure 1. Distribution map of monitoring stations in Beijing.

There are also some objective reasons for selecting the Beijing area for study. The
Beijing area is one of the more effective observation points of NASA’s meteorological
satellites, and it is also the network point of the ground aerosol automatic observation
network (AREONET). Therefore, different data can be used for comparison. Moreover,
Beijing is the capital of China, with a relatively high population density and frequent haze.
Therefore, the significance and feasibility of the research are high.

2.2. Dataset

Satellite remote sensing data has solid spatial coverage. In remote sensing science,
researchers invert images to obtain AOD and haze concentrations.

This paper hopes to simplify the data processing and replace the traditional AOD
inversion method using the fitting ability of convolutional neural networks, and construct
an end-to-end haze level prediction network. Considering the experimental needs, we
collect several highly relevant experimental data:

(1) MOD02-1 km data for the Beijing area in 2013 and 2014. The MOD02-1 km is a
satellite remote sensing image product of MODIS. The latitude and longitude are
calibrated based on the original data. Subsequently, we will preprocess it and use the
preprocessed data as training and testing data for the traditional inversion method of
AOD and the haze level prediction network.

(2) Real-time haze concentration data covering the entire Beijing area in 2013. We will
preprocess the dataset to obtain the haze level and use this to mark the satellite
imagery of the 2013 Beijing area to build a complete training set.

(3) Real-time haze concentration data covering the entire Beijing area in 2014. The
data include real-time PM2.5 concentrations and PM10 concentrations per hour for
each day in 2014, and Air Quality Index (AQI) information. The data come from
36 automatic monitoring stations for atmospheric pollutants covering the entire main
area of Beijing. The data will verify the correlation between haze concentration and
AOD.

(4) AREONET ground monitoring aerosol data are used to verify the accuracy of aerosol
inversion. This observatory will also provide three levels of data: Level 1.0 (un-
screened), Level 1.5 (cloud-screened and quality controlled), and Level 2.0 (quality-
assured). Among them, the observation accuracy of the AOD of L2 data is the highest.

(5) Remote sensing image products from AQUA and TERRA satellites equipped with
MODIS. The MODIS product models are: MOD02-1 km (MYD-021 km) and MOD04-3
k (MYD04-3 k), secondary satellite products, and processed aerosol products. MOD02-
1 km belongs to the L1b product, the original data after the latitude and longitude
calibration, while MOD04-3 km is the processed second-level product containing
multiple aerosol products.
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3. Comparison with Traditional Method

In order to determine the type of data that can provide information regarding the haze
concentration and the type of input data of the convolutional neural network, it is necessary
to study the data used in the traditional inversion method. Then, from the data processing
process used in the traditional method, the data type and processing method required by
the convolutional neural network are analyzed and obtained. This section presents the
traditional method selected to set up the convolutional neural network in order to obtain
the required information. The method will also be used to examine the performance of the
proposed neural network method.

The data processing process in the traditional method is as follows:

(1) Radiation correction: We used ENVI5.0 to read data from MOD02-1 km, and the
software automatically radiated and corrected the data.

(2) Geometric correction: We used the MODIS data processing tool, Georeference MODIS
in the ENVI software, to geometrically correct the data of the emissivity channel.
In the calibration, we selected the Beijing coordinate system in the World Geodetic
System 1984 (WGS-84) standard to geometrically correct the emissivity file and es-
tablish Ground Control Points (GCPs) as the standard for other channels to maintain
consistent geometric correction results. We used GCPs generated by the emissivity
to correct the reflectance file. After reading the GCPs, the triangulation correction
method and the bilinear resampling method were selected so that the correction result
of the reflectance can match the emissivity.

(3) Interest area extraction and synthesis: We selected the administrative regional geo-
graphic graphic document (shapefile) in the Global Administrator Areas Database
(GADM). According to the administrative area of Beijing: 39.4 N~41.1 N; 115.4~117.4 E,
we tailored the emissivity and reflectivity file, which kept the consistency of the ad-
ministrative scope and the size of the processed data. After the region of interest was
synthesized, the emissivity channel files were placed at the top, and the reflectivity
channel files were placed at the bottom. The result of the image processing is shown
in Figure 2.

Figure 2. Corrected remote sensing images. Here, (a,b) are two remote sensing images with different
haze levels on different dates. The corrected results show that the size and range of the images are
the same.

(4) The processing of angle data: First, we used the ground control point file to correct
the angle dataset geometrically and used the shape-file cutting angle data of the
Beijing area, and then synthesized the angle data according to the order of the solar
zenith angle, the solar azimuth angle, the satellite zenith angle, and the satellite
azimuth angle. Finally, the time sequence stored the processed data for subsequent
inversion processing.
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(5) AOD inversion: The inversion method was the lookup table method (LUT): the lookup
table file is a general-purpose file. Its content is a table of the relationship between
radiation reflection, emissivity, angle data, and AOD. This paper used the aerosol
inversion tool in ENVI to read the data results processed in steps (3) and (4). Then, it
combined the relationship between the corresponding emissivity, reflectivity, angle,
and AOD in the lookup table file to perform the aerosol inversion.

Through the operation of the above five parts, the inversion of the AOD was realized.
We can learn from previous researchers that there is a functional mapping between

the optical depth of aerosol and the sun’s radiation. Holben et al. [29] proposed a radiation
transfer formula that combines AOD with radiation. The relationship between them is
described as Equation (1).

R(xa, µs, µv, φ) = R0(xa, µs, µv, φ) +
Fd(xa, µs)T(xa, µv)ρ

1 + s(xa)ρ
(1)

R(xa, µs, µv, φ) in the above formula denotes a comprehensive signal of all reflected
signals received by satellite, where xa denotes AOD. µs and µv denote the solar zenith
angle and satellite zenith angle when the satellite passes through the region of inter-
est, respectively. φ denotes the corresponding sun azimuth angle and satellite azimuth.
R0(xa, µs, µv, φ) denotes the reflected solar radiation by the atmosphere. Fd(xa, µs) denotes
the solar radiation that is not reflected and injected into the atmosphere, and T(xa, µv)
denotes the satellite emission signal that passes through the atmosphere. ρ is the reflectivity
of the ground to solar radiation. s(xa) denotes the reflectivity of the atmosphere to the
sun’s radiation.

4. CNN Haze Classification Method

The convolutional neural network used in this research adopts an end-to-end idea.
Therefore, the final training process is to fit this mapping relationship using a haze satellite
remote sensing image as input, and the haze concentration level as output. The specific
algorithm flow is shown in Figure 3.

Figure 3. Convolutional neural network (CNN) haze classification flow chart.
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4.1. CNN Data Processing

When the traditional method retrieves the AOD and haze concentrations from remote
sensing images, the information of these angles needs to be extracted, cut, and synthesized,
and this process is relatively cumbersome. After evaluating the zenith and azimuth angles,
we decided not to consider their changes since these angles are relatively fixed when the
satellite passes through the same area in the same season. Therefore, when preprocessing
the remote sensing data, the CNN method only needs to extract, cut, and synthesize
the reflectivity and emissivity. After the data are processed as above, they are stored
chronologically by season. Then, the convolution neural network is used to fit their non-
linear relationship, and finally, the haze level is classified through the classification layer.

According to the channel information, the channels for monitoring the edge and char-
acteristics of the land and cloud are 1–7 channels. The wavelength and spatial resolution
of each channel are shown in Table 1. We want to convert the satellite image into a three-
channel RGB image to the convolutional neural network. Combining the wavelength range
of visible light, as shown in Table 2, the three channels that best fit the three bands of RGB
are channel 1, channel 4, and channel 3, so we combine the data of these three channels to
get a true-color image. The synthesized image is shown in Figure 4. The correspondence
AQI and PM 2.5 concentration of each haze level is shown in Table 3.

Table 1. Spatial resolution and internal wavelength of each channel in MOD02-1 km.

Channel Internal Wavelength (nm) Spatial Resolution (m)

1 620–670 250
2 841–876 250
3 459–479 500
4 545–565 500
5 1230–1250 500
6 1628–1652 500
7 2105–2155 500

Table 2. Internal visible light wavelength.

RGB Internal Wavelength (nm)

Red 622–780
Green 492–577
Blue 455–470

Figure 4. (a) is the satellite image with full channel information, and (b) is the synthesized RGB image.
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Table 3. Correspondence table among haze level, air quality index, and PM2.5 concentration.

Haze Level AQI Daily Average PM2.5 Concentration

1 0~50 0~35
2 51~100 36~75
3 101~150 76~115
4 151~200 116~150
5 201~300 151~250
6 301~500 251~500

4.2. CNN Structure

The general structure of the CNN network proposed in this article is shown in Figure 5.

Figure 5. Structure of convolutional neural network (CNN).

Input layer: If the input data are RGB true-color images, the input data format is:
nh × nw × 3; if they are grayscale image data, the input data format is: nh × nw × 1. More-
over, the input data of the input layer should be normalized, and the size of the image and
the number of data channels should be consistent.

Convolution layer: The convolution operation is expressed as C, where f represents
the length and width of the convolution kernel. The length and width are the same, and
the number of channels is the same as the number of input channels. m represents the
number of convolution kernels. Then, the process of convolution operation is shown in
Equation (2):

yl
i,j =

m−1

∑
r=0

f−1

∑
s=0

f−1

∑
t=0

W(r,l)
s,t xl−1

i+s,j+t + bl (2)

The first-level summation formula means that all convolution kernels are traversed
once. The second- and third-layer summation formulas indicate that a convolution kernel
with a size of f × f is used to perform a convolution operation on the input, where W is
the weight and b is the bias. Where i, j represent the position of the image in the output
layer as shown in Equation (3):

i = 1, 2...(nh − f )
j = 1, 2, ...(nw − f )

(3)

Activation function: Use Sigmoid activation function, as shown in Equation (4):

Sigmoid(x) =
1

1 + e−x (4)

Pooling layer: This is an essential step in a convolutional neural network, also called a
down-sampling layer, and the size is generally a square window with the same length and
width. The pooling process is shown in Equation (5):
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yl
i,j = max

0≤s,t≤ f

[
ReLU(

m−1

∑
r=0

f−1

∑
s=0

f−1

∑
t=0

W(r,l)
s,t xl−1

i+s,j+t + bl)

]
(5)

After the input data are translated and transformed, the output will not change, im-
proving the convolutional network’s robustness to extract features. This kind of translation
invariance is a very practical property.

Fully connected layer: In the studied model, there are six categories according to
the level of haze, and the corresponding labels are: (0 0 0 0 0 0 1), (0 0 0 0 0 1 0), ...,
(0 1 0 0 0 0 0). Among them, data that are disturbed by information such as clouds and
cannot be identified are marked with p position 1, that is, (1 0 0 0 0 0 0).

SoftMax classification layer: The classification process is to judge the probability that
this vector belongs to each category, and the one with the highest probability is the result
of the classification, as shown in Equation (6):

hθ

(
xl−1

i

)
=


p(yi = 1

∣∣∣xl−1
i ; θ)

p(yi = 2
∣∣∣xl−1

i ; θ)

...
p(yi = n

∣∣∣xl−1
i ; θ)

 =
1

∑n
j=1 eθT

j xi


eθT

1 x1

eθT
2 x2
...

eθT
n xn

 (6)

where p(yi = n
∣∣∣xl−1

i ; θ) represents the probability estimation of the classification function
to the data being the nth category, and θ represents the model’s parameters. The rightmost
formula of the equation represents the normalized form of the probability so that the sum
of all the probabilities is 1.

4.3. CNN Parameter Adjustment

We used the stochastic gradient descent method as the parameter adjustment opti-
mization method. Although the convolutional neural network used in this article does not
have many layers, its structure belongs to deep learning. Let θ be a parameter in the neural
network, the negative conditional log-likelihood of the training data can be expressed by
Equation (7):

J(θ) =
1
m

m

∑
i=1

L
(

xi, yi, θ
)

(7)

where L represents the loss function corresponding to the i− th input, then for these cost
functions that you want to add, the gradient descent method needs to be calculated using
Equation (8):

∇θ Jθ =
1
m

m

∑
i=1
∇θ L

(
xi, yi, θ

)
(8)

The calculation time complexity of this optimization process is O(m), where m is the
amount of data in the training set. As training increases, this complexity will increase.
The core of the stochastic gradient descent method is to perform a small-scale sample
approximate estimation. A small batch of training (minibatch) was performed in each
step, and the sample size at this time was m′, and m′ << m, and then pass. The results
obtained in this part were used to estimate the results of the entire sample so that the
amount of calculation will be significantly reduced. The gradient estimation, Equation (9),
is as follows:

g =
1

m′
∇θ

m′

∑
i=1

L
(

xi, yi, θ
)

(9)
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Use the mini-batch described above to train and estimate the entire sample using the
following gradient estimation algorithm as Equation (10):

θ − αg→ θ (10)

The small-batch gradient descent method solves the shortcomings of the gradient
descent method’s time complexity and unreliability of the gradient descent method in the
parameter optimization process. Finally, we optimized the parameters of the classification
layer and used the evaluation function as Equation (11):

J(θ) = − 1
m
[

m

∑
i=1

n

∑
j=1

1{yi = j} log(
eθT

j xi

∑n
k=1 eθT

k xi
)] (11)

The optimization process is the process of minimizing the evaluation function so that
the parameter θ will reach the optimal value.

5. Experiment and Result
5.1. Correlation Analysis between Traditional Method Inversion Results and Haze Concentration

This experiment used traditional methods to analyze the correlation between the
inversion data of MOD02-1 km in Beijing in 2014 and the PM2.5 concentration of ground
monitoring stations in Beijing. The result is shown in Figure 6, where (a–d) represents the
results of the four seasons.

Figure 6. Linear regression between Aerosol Optical Depth (AOD) and PM2.5 (a) The inversion in
spring; (b) The inversion in summer; (c) The inversion in fall; (d) The inversion in winter.

From the results, the highest correlation coefficient is in the spring inversion, which
reaches a high level of 0.86, followed by winter and autumn, and the worst in summer. All
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of the correlation coefficients are above 0.5, indicating a strong correlation between AOD
and PM2.5 concentration, considering their non-linear relationship and complex dynamics.

We also performed a linear fit to the inversion results of AOD in the whole year
of 2014, as shown in Figure 7. The y-intercept a0 is 45.85, the slope a1 is 50.79, and
the correlation coefficient R is 0.59. Compared with the results of the four seasons, the
correlation coefficient of the linear fit for the whole year is 30% lower than that of the
spring. We think this is because the four seasons have different factors, such as different
climatic characteristics, industrial activities, and gas emissions caused by heating demand,
which contribute to the correlation between AOD and PM2.5 concentration. Therefore, we
conclude that studying the correlation performance of AOD and PM2.5 according to the
season division can provide a more accurate basis for analysis.

Figure 7. Overall linear regression between AOD and PM2.5 in 2014.

Figure 7 shows that we can train the processed data through the neural network
method to approximate the coupling relationship between the mapping relation and the
linear relation to achieve the inversion classification method.

5.2. Comparison of CNN Analysis Results

We extracted the image after two 7 × 7 convolution layers to analyze whether the
model can extract the haze characteristics [30–32], as shown in Figure 8.

Figure 8. Convolution feature extraction diagram (a) Convolution diagram during severe haze;
(b) Convolution diagram with a lower haze level.
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Figure 8a is a convolution result diagram when the haze is severe in spring, and the
bright block is in the upper left corner of the image. We find a cloud layer in the area
comparing it with the original image, which indicates that the cloud layer appears bright
in the convolution result. The remaining areas with severe haze are darker, where the
difference between emissivity and reflectance is more significant. Figure 8b is a convolution
result graph containing minimum cloud information and a lower haze concentration level.
The brighter feature in Figure 8 is the area where the AOD is low. The difference between
the emissivity and the reflectance is slight. We found that the haze level prediction model
can effectively distinguish the image characteristics of different haze concentrations by
comparing the results. We labeled the cloud information of the image when marking the
dataset, avoiding the mistakes where the cloud was identified as haze.

We used the MOD02-1 km data of the Beijing area in 2013 and 2014 as the training
set and test set of the haze level prediction model. We extracted satellite images from the
MOD02-1 km data so that the training and test sets contained 730 satellite images. We
marked the haze level on the training set.

To verify whether the model can effectively establish the correlation between satellite
image and PM2.5 concentration and to compare it with the traditional inversion method,
we conducted the same linear regression between the output of the haze level prediction
model and the PM2.5 daily average concentration. The results are shown in Figure 9.

Figure 9. Linear regression between haze level using CNN and PM2.5 (a) Linear regression for
CNN and PM2.5 in Spring; (b) Linear regression in Summer; (c) Linear regression in Fall; (d) Linear
regression in Winter.

In Figure 9a, the y-intercept a0 is −13.88. The slope a1 is 34.74. The correlation
coefficient R is 0.90. In Figure 9b, the y-intercept a0 is 25.07. The slope a1 is 17.11, and the
correlation coefficient R is 0.65. In Figure 9c, the y-intercept a0 is −20.74. The slope a1 is
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40.61. The correlation coefficient R is 0.93. In Figure 9d, the y-intercept a0 is 9.03, and the
slope a1 is 40.67, the correlation coefficient R is 0.65.

A comparison with the traditional inversion method is shown in Table 4.

Table 4. The correlation coefficient between traditional inversion and level prediction.

Season R (Lookup Table) R (CNN Model)

Spring 0.86 0.90
Summer 0.57 0.64

Fall 0.67 0.93
Winter 0.68 0.65

From Table 4, the correlation coefficient of the haze level prediction model based on
the convolutional neural network is superior to the traditional inversion method in spring,
summer, and fall. In particular, the summer and fall results are improved by 12% and
39%, respectively, which indicates that the haze level prediction model can provide a better
PM2.5 concentration prediction than the traditional inversion method. Furthermore, all
correlation coefficients in the haze prediction model are above 0.6, indicating a strong
correlation between haze level and PM2.5 concentration.

6. Discussion

This study first studied the traditional haze inversion method. After studying the
relationship between AOD and haze concentration, we found a non-linear mapping rela-
tionship between the two. Therefore, we propose a CNN-based haze classification model
to take advantage of CNN’s non-linear relationship fitting. Through the experimental
comparison between the traditional method and our proposed model, the correlation coeffi-
cient of the haze classification model based on the convolutional neural network in spring,
summer and fall are better than the traditional inversion method. In particular, the results
in summer and fall increased by 12% and 39%, respectively, which indicates that the CNN
haze classification model can provide better classification results than traditional inversion
methods. In addition, all correlation coefficients in the haze classification model are above
0.6, indicating a strong correlation between the haze level and the PM2.5 concentration.

In general, whether it is a traditional inversion method or a CNN-based method,
summer has the lowest correlation coefficient, followed by winter. The reason may be
that the fog concentration of summer aerosol is higher than that of haze. In winter, there
are many days of heavy haze and uneven distribution of time and space, resulting in
a low recognition rate of the CNN. On the other hand, the increase in fall is due to the
smaller haze level, which is most concentrated in the top four levels, and there is less severe
haze weather.

The result shows consistency with other studies [3,5,20]. The winter is the most
polluted season in this area of China. The pattern may contribute to the high correlation
coefficient in the winter. The result from the CNN shows a better performance in spring,
summer, and fall. The feature capture characteristics of the CNN and its ability to fit with
complex functions could benefit haze classification and prediction [31,32]. Since the CNN
model could improve the inversion results when the haze is less severe, other machine
learning methods could be used on a broader range of areas and haze scenarios. After
considering the limitations of both the proposed method and the comparison traditional
method, the result of both the proposed method and the comparing result is limited.
However, the results still show the potential of combining neural networks with time-
consuming tasks in atmospheric studies.

7. Conclusions

This research is based on experimental research on convolutional neural networks’
classification and prediction of haze levels. We found that a convolutional neural network
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uses images to identify haze concentrations, which can sufficiently fit the non-linear re-
lationship between input and output. It proves the feasibility of a convolutional neural
network to classify and invert haze. At the same time, the use of trained convolutional
neural networks can reduce manual inversion work to a certain extent. Our proposed
CNN-based haze level classification model greatly simplifies data processing compared
to traditional inversion methods. By comparing the correlation coefficients of traditional
inversion methods and CNN-based methods, we prove that the haze prediction network
can provide better PM2.5 concentration classification than traditional inversion methods. It
also proves that the original remote sensing satellite images can provide rich features for
analyzing haze problems.

Since this study still contains many limitations, including the limited data and only
covering a limited range of the haze problem, this method is only the starting point for
further combining machine learning methods with atmospheric problems. Moreover, the
recognition rate reached more than 80%. However, due to insufficient data, the accuracy of
the recognition result is not high, but it is also feasible. Among them, the accuracy rate and
the F1 value of levels 1–4 are higher. However, the values of these three items of grades
5 and 6 all decreased, and the reason is because the concentration span of the latter two
grades is larger.

Since the proposed method aims to replace and replicate the traditional process using
CNN, the proposed method shares the same limitations as the traditional method. The
estimate heavily depends on the satellite image, which contains many other elements that
could be falsely claimed as haze. The traditional method uses various calibration processes
with satellite parameters including azimuth, zenith, emissivity, and reflectivity to reduce
these false results. Some of these calibration processes are removed to fit the network struc-
ture and simplify the network process when constructing a neural network to replace the
labor-intensive traditional method. Although the proposed method has fewer calibrations
and processes than the traditional method, the results are still compatible and even better
than those in several situations. This result is likely caused by the nature of neural networks
that have an outstanding performance in fitting complex natural processes. This study and
previous studies have shown that neural networks have a great capacity and performance
in simulating haze progress and in the prediction of haze states [23–26,28,31,32]. Of course,
due to all of the simplification processes, this study took some time to construct the network,
and the original limitations of the traditional method still remain in the network, there will
be many misfits and false claims of haze phenomena. In order to demonstrate the great
potential of the neural network on the haze problem, we believe that the following aspects
can be further studied to improve the accuracy of haze prediction.

Future studies could further improve the model’s ability to interpret images. In
order to avoid the influence of clouds on the model’s ability to identify polluted areas
and pollutant concentrations, this paper manually annotated cloud information on all
satellite images. This paper also removed some steps in traditional image processing
to reduce complexity and time, which would cause errors in the outcome. In future
research, the model’s ability to process images can be improved to replace manual marking,
which keeps the accuracy and quality. In addition, convolutional neural networks have
good recognition performance for images, but they lack the ability to process time-series
information. Therefore, to obtain the haze characteristics in the time series, utilizing more
network models would benefit future studies.
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