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Abstract: Influenced by stratospheric total ozone column (TOC), cloud cover, aerosols, albedo, and
other factors, levels of daily erythemal dose (Her) in a specific geographic region show significant
variability in time and space. To investigate the degree of randomness and predictability of Her time
series from ground-based observations in Novi Sad, Serbia, during the 2003–2012 time period, we
used a set of information measures: Kolmogorov complexity, Kolmogorov complexity spectrum,
running Kolmogorov complexity, the largest Lyapunov exponent, Lyapunov time, and Kolmogorov
time. The result reveals that fluctuations in daily Her are moderately random and exhibit low levels
of chaotic behavior. We found a larger number of occurrences of deviation from the mean in the
time series during the years with lower values of Her (2007–2009, 2011–2012), which explains the
higher complexity. Our analysis indicated that the time series of daily values of Her show a tendency
to increase the randomness when the randomness of cloud cover and TOC increases, which affects
the short-term predictability. The prediction horizon of daily Her values in Novi Sad given by the
Lyapunov time corrected for randomness by Kolmogorov is between 1.5 and 3.5 days.

Keywords: erythemal dose; Novi Sad (Serbia); Kolmogorov complexity-based measures; chaos;
largest Lyapunov exponent; Lyapunov time; Kolmogorov time; predictability

1. Introduction

The detection of the large depletion of stratospheric ozone over Antarctica almost
40 years ago [1] initiated increased public and scientific interest in the state of stratospheric
ozone levels and variability of UV radiation. According to the definition by the International
Commission on Illumination [2], UV radiation is classified into three primary types: the
UV-C range (100–280 nm), UV-B range (280–315 nm), and UV-A range (315–400 nm). While
UV-C radiation is absorbed by atmospheric oxygen and ozone in the upper atmosphere
and does not reach the surface, UV-B radiation may increase by as much as about six orders
of magnitude due to the interaction with the stratospheric ozone [3]. Ozone depletion
occurs not only over Antarctica but also in mid-latitudes [4,5]. Petkov et al., 2021 [6]
conducted a brief survey of the ozone column over central Europe during spring 2020 and
verify the hypothesis about the effect of the strong ozone depletion event that occurred in
the Arctic on the ozone column at lower latitudes. The identification of ozone depletion
led to the establishment of the Montreal Protocol in 1987, and its implementation has
significantly limited the production of ozone-depleting substances. Mitigation activities
over the last three decades have contributed to the successful reduction in ozone layer
depletion and the associated increase in terrestrial UV radiation [7]. However, despite
the success of the Montreal Protocol and the stabilization of stratospheric ozone levels,
UV levels in many regions of the world remain high. Several studies at mid-northern
latitudes (35–55◦ N) reported positive trends in UV radiation, while those associated with
high northern latitudes (55–70◦ N) reported a decrease in UV radiation [8]. For example,
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Eleftheratos et al. [9] analyzed UV radiation at selected sites located at high latitudes of both
hemispheres in the period 1990–2011 and found a significant decrease in UV irradiance at
305 nm and no significant long-term trend at 325 nm. However, Fountoulakis et al. [10]
reported increases in annual average UV irradiance in Thessaloniki, Greece, of 2–6% per
decade for the period 1994–2014, while Sanchez-Lorenzo et al. [11] reported an increase
of 2 Wm−2 per decade over Central and Eastern Europe for the period 1983–2010. For
certain areas in northern mid-latitudes (Canada, Europe, and Japan), Zerefos et al. [12]
revealed positive trends in UV-B radiation in the period 1995–2006, while De Block et al. [13]
reported an increase in erythemally weighted irradiance over the 1991 to 2013 period at
Uccle, Belgium, which is contrary to the observed positive trends in total ozone.

Influenced by stratospheric total ozone column (TOC), cloud cover, aerosols, albedo,
as well as the combined effect of geographical and astronomical factors such as solar zenith
angle, the Sun–Earth distance, the altitude, and the solar activity, UV radiation levels in a
specific geographic region show significant variability in time and space. The variation of
these influencing elements in the context of a changing global climate is an important issue
regarding the complexity of the UV radiation series. Gaps in our knowledge of the links
between stratospheric ozone, UV radiation, and climate change and their implications for
terrestrial ecosystems are a direct consequence of the complexity of systems characterized
by interactive loops linking climatology, meteorology, and biology [14]. Climate change is
affecting and changing cloud cover, with some regions becoming more cloudy and others
less cloudy [15]. Increased cloud cover generally reduces solar UV radiation on the Earth’s
surface, where the effect depends on the type of the cloud and wavelength. However,
clouds can also increase the level of UV radiation during partly cloudy conditions when
the sun is not obstructed, due to multiple scattering between upper and lower clouds [16].
Atmospheric aerosols absorb and scatter UV radiation, depending on the aerosol type and
amount, which are affected by human emissions, volcanic activity, wildfires, dust storms,
and other factors that are affected by climate change [17,18]. High surface albedo from
snow or ice-covered surfaces can increase the intensity of the solar UV radiation by up to
20–30% [19,20]. However, the reduction in ice or snow cover caused by climate change
reduces the reflection of UV radiation from the surface resulting in reduced UV radiation.
The results presented above reveal that the impact of changes in TOC on the intensity of
UV radiation reaching the Earth’s surface is greater at higher latitudes. In mid-latitudes
besides the TOC levels, the effects of other parameters such as cloud cover, aerosols, and
albedo may be very high and may even predominantly control UV levels. For example,
Fountoulakis et al. [21] compared UV levels in Rome and Aosta and found a significant
effect of aerosols, clouds, and surface albedo on the spectral UV levels at each location.
Fountoulakis et al. [22] revealed that in the period 2006–2020 the levels of UV irradiance
in the Italian cities Aosta, Rome, and Lampedusa generally increased due to changes in
clouds and/or aerosols. Therefore, the space and time variability of solar UV radiation is
very complex and its forecast is still challenging.

Due to the highly variable climate change-driven effects on UV radiation levels, it
is useful to gain a deeper insight into the complexity of UV radiation processes. To un-
derstand the characteristics of daily erythemal dose time series (Her) and the patterning
of their complexity, it is required to use various information measures that can improve
the application of the stochastic process concept in the modeling and measurement of UV
radiation. Entropy-based measures are useful in providing large-scale estimates of random-
ness, but they are sensitive to the structure of the information and are therefore as rough
as the complexity indices [23]. Shannon’s entropy [23] is used for measuring the unpre-
dictability of specific output, while cluster analysis and Principal Components Analysis are
important tools for characterizing of time series analysis of complex systems and assessing
relationships in the data [24]. One of the widely used information measures in science to
examine the complexity of data is Kolmogorov complexity (KC) [25]. Kolmogorov defined
the descriptive complexity of an object as the length of the shortest computer program used
to describe the object. Kolmogorov complexity is a measure of randomness that, unlike
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entropy, is not probability-based [26]. It is a general measure of randomness in a sequence
that gives a degree of regularity or irregularity in a set of binary numbers and how much
the information is compressible [24]. Several information measures offering additional
insight into the behavior of complex systems were derived from Kolmogorov complexity
(KC spectrum, KC spectrum highest value, overall KC, and Kolmogorov time) [27]. The
KC and its derivatives have proven to be reliable tools for quantification of complexity and
predictability of global and UV radiation time series [28–31].

The purpose of this study is to investigate the degree of randomness and predictability
of daily Her time series from ground-based observations in Novi Sad, Serbia, during the
2003–2012 time period using the set of information measures: Kolmogorov complexity
(KC), Kolmogorov complexity spectrum, Running Kolmogorov complexity (RKC), the
largest Lyapunov exponent (LLE), Lyapunov time (LT), and Kolmogorov time (KT). The
study is organized as follows. Section 2 describes measurement sites and an overview of
complexity measures. Section 3 includes both presentations of the results obtained and a
discussion of daily Her time series using mentioned information measures. The concluding
remarks are given in Section 4.

2. Materials and Methods
2.1. Study Area and Data

The measurements used in this study were recorded in the city of Novi Sad situated
in the northern part of the Republic of Serbia between April 2003 and December 2012.
Serbia is a continental country located in south-eastern Europe, in the center of the Balkan
Peninsula. Novi Sad is located in the northern part of the country, in the Autonomous
province of the Vojvodina, which is in Central Europe. Vojvodina encompasses the southern
part of the Pannonian Plain (44◦37′–46◦11′ N, 18◦51′–21◦33′ E and 75–641 m above sea
level), with Fruška Gora mountain to the South. The province is the main food production
area in Serbia, with a total surface area of 21,500 km2 and 2 million inhabitants. It has
a continental climate that is strongly influenced by air masses coming from the north
and west, increasing the continentality of the Vojvodina climate, especially in winter and
summer. According to Beck et al. [32], the Köppen–Geiger climate formula for Novi Sad
is “Cfa” where C = temperate climate, f = without dry seasons, and a = hot summer. The
average temperature in Novi Sad over 30 years period 1981–2010 was 11.47 ◦C (in January
0.18 ◦C; in July 21.93 ◦C, the standard deviation of the monthly mean air temperature
data is 7.72 ◦C), while the mean rainfall was 647.31 mm (maximum in June 91.36 mm,
minimum in February 31.39 mm, the standard deviation of the monthly mean rainfall data
is 38.04 mm).

The target parameter in this study is the daily erythemal dose (Her). The erythemal
dose, Her (in Jm−2), received after an exposure period of t (in s) is shown in [33]:

Her = Eert (1)

where Eer is the erythemal irradiance (in Wm−2). The erythemal irradiance, Eer, is obtained
by weighting the spectral irradiance of the radiation at wavelength λ (in nm) by the
effectiveness of radiation of this wavelength to cause minimal erythema and summing over
all wavelengths present in the source spectrum [33]:

Eer =
∫

E(λ)ser(λ)dλ (2)

where E(λ) is the spectral irradiance at wavelength λ, ser(λ) is the erythema spectral
weighting function normalized to 1 at its maximum, and dλ is the wavelength interval.
The erythema spectral weighting function, ser(λ), assesses the potential of UV radiation to
induce sunburn (erythema) in human skin and it is highly dependent upon the radiation
wavelength. It is usually expressed as unit-less quantity UV index (UVI) [34,35]:

UVI = kerEer (3)
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where ker = 40 m2W−1.
The measurements of UVI are recorded by a broadband Yankee UV-B1 biometer [36].

It is placed at the university campus in Novi Sad (at 45.33◦ N, 19.85◦ E, and 84 m above sea
level). It measures UV radiation every 30 s, while data are recorded as a mean over 10-min
time intervals. The instrument approximates the spectral response of the human skin to
UV radiation by multiplying the output voltage by a conversion function given by the
manufacturer, corrected only for the SZA at the time samples are taken [33,37]. The relative
spectral response of the instrument was checked in laboratory conditions (Laboratory for
plasma spectroscopy, Department of physics, Novi Sad) and found to be in good agreement
with the declared spectral response. The angular response was not checked but assumed to
be as declared by the producer [36]. The analog signal from the output of the instrument
was digitized using a 16-bit A/D converter and then transferred to a PC, where is processed
and converted to physical unit Wm−2 and UVI. The instrument was calibrated by the
manufacturer in 2007, while after that period procedure for a long-term stability check
procedure was applied once a year [38]. No significant deviation of the instrument values
has been noticed, confirming the long-term stability stated by the manufacturer (the long-
term deviation of the output voltage is less than 100 ppm/year) [36,39]. Since there are
no other radiometers in Serbia, “national intercomparison” was not possible in the way
that it is performed in other countries, for example, Italy [40]. Taking into account the
calibration uncertainty reported in [41] for an SZA of less than 65◦, the total uncertainty
of the results was estimated to be <6%. Daily Her values in Novi Sad are calculated by
integrating 10 min measurements from sunrise to sunset. For further processing, we used
measured values for days when more than 80% of 10-min daily values were available. To
fill in the gaps in measured daily Her, an empirical reconstruction technique based on the
parametric numerical model NEOPLANTA is used. The NEOPLANTA model is described
in detail in Malinovic et al. [42], while the reconstruction technique is described in [39,43].

Data on TOC values for the period 2003–2012 were used from Ozone Multi-Sensor
reanalysis, version 2 (MSR-2) [44,45]. MSR-2 is a multi-decade TOC data record constructed
using all available satellite datasets, Brewer–Dobson surface observations, and data assimi-
lation techniques with detailed error modeling [44]. It provides global time series of TOC
in the resolution of 0.5◦ × 0.5◦ and with a time interval of 6 h. An assessment of the quality
of the MSR-2 data showed that the mean bias of the MSR-2 analysis was less than 1% in
comparison with satellite observations without bias after 1979 [44].

The daily data on cloud cover represents the measurement at the nearest meteorologi-
cal station Rimski Sancevi, which is located 8.5 km north of the location of the Yankee UV-B
biometer and, it was provided by the Serbian Meteorological Service.

2.2. Complexity Measures

Kolmogorov complexity is often applied in the analysis of physical time series obtained
by measurement or modeling. It is elementally described in [46], while its comprehensive
description can be found in [47]. Unlike entropy, KC characterizes the amount of random-
ness present in individual strings using the algorithm to quantify the randomness. The
algorithm is used in encoding data, and it refers to the minimum length of a program such
that a universal computer can generate a specific sequence. Based on Kolmogorov’s idea,
Ziv and Lempel [48] developed a widely used tool for computing this complexity based
on symbolic dynamics. If we denote measurements of the Her as X (x1, x2, x3, . . . xN ,), KC
computation begins by encoding X with the Lempel–Ziv algorithm into binary time series
by replacing X with new time series S according to the threshold xT as:

S(xi)

{
0 xi < xT
1 xi ≥ xT

. (4)

The threshold can be determined in different ways, but the time series mean value
is commonly used. Next, in the binary time series, we search for the total possible subset
sequences that differ from each other. The number of subsets that do not match represents
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the complexity of the series. Therefore, the complexity counter C(N) involved in the
binary template S(xi) is increasingly proportional to randomness. The C(N) is defined
as the minimum number of distinct patterns contained in a given character sequence.
The C(N) is a function of the length of the sequence N (when the length N of the binary
series tends to infinity, the number C(N) tends to reach its limit, i.e., b(N) = N/ log2 N).
Finally, the normalized information measure KC(N) is calculated, which is defined as
KC(N) = C(N)/b(N) = C(N) log2 N/N. KC varies between 0 and 1 although it can be
larger than 1 [49]. Using the calculation procedure outlined above, we calculated KC for
Her, TOC, and cloud cover. The calculations were performed for the entire period between
April 2003 and December 2012 and on an annual basis. The mean value of the time series
was selected as the threshold. We also calculated the running complexity (RKC) of the time
series by creating the series of averages of different subsets of the complete data sets which
is a type of finite impulse response filter. From the used data series, we extracted a fixed
window (size 100) and then applied the KC calculation procedure. Next, the window is
moved one step forward, and the KC algorithm is applied until the time series ends [24].

According to Mihailović et al. [27], the disadvantages of KC are its dependence on
the rules of the applied procedure of conversion of time series into a binary string and
the fact that it does not differentiate between time series with different oscillations of
amplitude and similar random components. To overcome this weakness and offer further
insight into the behavior of complex systems, Mihailović et al. [27] introduced two new
aforementioned measures based on the Kolmogorov complexity: Kolmogorov complexity
spectrum (KC spectrum) and the Kolmogorov complexity spectrum highest value (KCH).
The KC spectrum was introduced to take into account sensitivity to the threshold value
used to encode the time series. It allows us to investigate the range of amplitudes in a
time series that is a complex system with highly improved stochastic components. The
KC spectrum explicitly describes the complexity of the time series of each element in the
time series that contributes to the overall physical process from which the physical time
series comes [28]. The shape of the complexity spectrum curve depends on the variability
of time series amplitudes that cannot be captured by the KC, increasing the information
“that is stored in a sequence about a particular environment” [50]. For a large number
of time series samples calculating the KC spectrum can be computationally challenging;
therefore, to calculate the KC spectrum, we first divided the amplitude of the time series
into K subintervals. Next, we stored the assigned amplitude threshold values. Then, we
encoded the time series for different threshold values taken in the threshold set, and we
calculated a set of K KC values that represent the KC spectrum. The highest value of the
KC spectrum is represented by the KCH. The KCH is used to estimate the discrepancy
between the time-series average used as the time series coding threshold and the optimal
threshold [29]. Mihailovic et al. [27] demonstrated the meaning of the KCH in more detail
suggesting that KCH is a better indicator of the complexity of the time series than the
commonly used KC since KCH carries the information about the highest complexity among
all complexities in the Kolmogorov complexity spectrum (unlike KC that carries average
information about the time series).

The Lyapunov exponent of a dynamical system is a measure of the system’s sensitivity
to changes in its initial conditions that can detect the presence of chaos. It presents the rate
of separation with the time of initially close trajectories in parameter space [51]. Since the
separation rate may be different for different orientations of the initial separation vector,
there is a spectrum of Lyapunov exponents whose highest value is usually called LLE. In
this study, the Rosenstein algorithm [52], which was implemented in the MATLAB program
through a function named “lyapunovExponent”, was applied to obtain LLE for daily Her
time-series. The MATLAB built-in code is fast, easy to apply, and noise-robust [53]. The
LLE = 0 implies linear divergence. LLE < 0 implies that trajectories converge, so the initial
separation between two points will decrease in time, and therefore the system is not chaotic.
If 0 < LLE < 1 we have a very sensitive dependence on initial conditions, i.e., chaos, as
points initially close together will diverge exponentially along neighboring trajectories.
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The Lyapunov exponent refers to the predictability of measured time series involving
deterministic chaos as an inherent component. The predictability of the model is here
understood as the degree to which an accurate prediction of the state of a system can be
made either qualitatively or quantitatively [54]. In stochastic analysis, a random process
is considered predictable if it is possible to conclude the following state from previous
observations. Deterministic chaos does not imply complete predictability, but that it
improves prognostic power, at least. In contrast, stochastic trajectories cannot be projected
into the future. We also point out a one-time scale called prediction horizon: the Lyapunov
time LT = 1/LLE [55], where LLE is the largest positive Lyapunov exponent. It is a period
after which a dynamical system becomes unpredictable and enters a chaotic state, so it
indicates the limits of predictability. If LT increases when LLE→ 0 , then long-term accurate
predictions are possible. Research suggested that LLE overestimates the actual value of
the period. To correct this overestimation, Mihailović et al. [54] introduce the Kolmogorov
time KT = 1/KC, where KC is the Kolmogorov complexity. This time quantifies the size of
the time window within which complexity remains unchanged. Hence, the presence of a
narrow window KT significantly reduces the length of the effective prediction horizon.

3. Results and Discussion
3.1. General Features of the Data

The basic descriptive statistics of daily Her for different years are summarized in
Figure 1, where averages, median, minimum, maximum, and interquartile ranges are
indicated for each year. To detect anomalies in Her data AnomalyDetection package in R
was used [56]. No anomalies were detected in the data. It is seen from Figure 1 that the
differences between the mean and the median were in the range of roughly 200 Jm−2 and
500 Jm−2 indicating a positively skewed distribution.

Figure 1. Boxplot of the daily Her in Novi Sad for the period 2003–2012 (the box represents 50% of
the central data, with a line inside that represents the median; the edges of the box are the first and
the third quartile; the whiskers are minimum and maximum values; the dots represent the mean).

Figure 2 depicts the frequency distribution of daily Her over the entire observed period.
The highest frequency distribution of the observed data was for values in the range of 100 to
1100 Jm−2 (~40% of all data). Data in this range are typically recorded in the cold period of
the year (October–March) and occasionally in the hot period of the year (April–September)
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under cloud conditions. Extremely low (<100 Jm−2) and high (>5000 Jm−2) values occur
very rarely, about 2% of all data.

Figure 2. Frequency distribution of the daily Her in Novi Sad for the period 2003–2012.

Figure 3 shows the evolution of the daily (black), monthly (red), and yearly average
(blue) of Her (Jm−2), TOC (DU), and cloud cover (tenths) in Novi Sad, Serbia, for the
period 2003–2012. The curves of the daily and monthly Her show a sinusoidal evolution,
with minimum monthly values in January and December that range between 189 Jm−2

in December 2004 and 233 Jm−2 in January 2008. Monthly maximum Her values ranged
between 3358 Jm−2 in June 2006 and 4582 Jm−2 in June 2012. Daily Her values ranged
between 68 Jm−2 recorded on 12 December 2007, and 5733 Jm−2 on 16 June 2012. As
expected, TOC values were the highest in March and April (ranged between 327 DU in
April 2011, and 392 DU in April 2010), and the lowest in October and November (ranged
between 277 DU in November 2011, and 309 DU in October 2010). The lowest daily TOC of
227 DU was recorded on 25 December 2012. The lowest cloud cover was in July and August
(ranged from 1.61 tenths in August 2012 to 5.06 tenths in August 2006), while the highest
was in December in January (ranged from 4.97 in December 2003 to 8.71 in December 2010).

Figure 3. Cont.
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Figure 3. Evolution of the daily (black), monthly (red), and yearly average (blue) (a) Her (Jm−2);
(b) TOC (DU); and (c) cloud cover (tenths) in Novi Sad, Serbia, for the period April 2003–
December 2012.

To analyze the temporal evolution of the time series of the parameters we used the
non-parametric Mann–Kendall test and Sen’s slope estimator [57–59]. The Mann–Kendall
test is robust to the influence of extremes and does not require an assumption of normality.
The magnitude of the trend has been quantified by Sen’s slope estimator. In this study, the
trend is significant at a 5% significance level. Although there is no statistically significant
annual trend in the daily values of any of the parameters in the observed period, there are
significant monthly trends. Daily Her had a statistically significant positive annual trend
in March, April, and August of +3.01%, +1.96%, and +1.52% per year, respectively. Daily
values of TOC had statistically significant negative annual trend in March, April, June, July,
August, and November from (−0.31% in July to −0.68% in August) and a positive trend in
December (+0.45%). Cloud cover showed a statistically significant decrease of 5.4%, only
in August.

To evaluate the variability of the measured data, we calculated the coefficient of
variation (CV, %) at the monthly level as the ratio of standard deviation to mean (Figure 4).
The highest CV had cloud cover (24.48–122.44%), with maximum monthly values over the
April–October period. The lowest CV had TOC (2.70–15.70%), with peak monthly values
during the winter. CV of the Her varied in the range of 16.04–65.58%, with the highest
values occurring during the cold period of the year (October to March).
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Figure 4. Monthly coefficient of variation (CV, %) of daily values of Her (black), TOC (red), and cloud
cover (blue) in Novi Sad, Serbia, for the period April 2003–December 2012.

3.2. Kolmogorov Complexity and Kolmogorov Complexity Spectrum

The Kolmogorov complexity measures applied in this paper provide additional insight
into the complex behavior and randomness of daily Her time-series and their influencing
factors. Thus, the value of the KC close to zero is associated with less complex deterministic
processes, while a value close to one indicates a complex stochastic process. In the real
world, UV irradiation that is received at the surface is mainly related to the cloud cover
activity in the lower troposphere and the formation and destruction of ozone in the strato-
sphere. The values of KC of daily Her, TOC, and cloud cover data are shown in Table 1
which shows that the KC values for all daily Her were moderate, ranging from 0.279 to
0.583. KC of TOC has some higher values, ranging from 0.558 to 0.745, while cloud cover
exhibits very high complexity ranging in the narrow interval (from 0.861 to 1.048). A simple
inspection of the KC complexity in Table 1 indicates higher complexity over the 2004–2006
period and low complexity over the 2007–2008 period. The higher complexity of daily Her
in 2004 and 2005 can be attributed to unusually high cloud cover in the summer period
(Figure 3c), while in 2006 the reason can be the higher variability in summer cloud cover
and low TOC values in autumn (Figure 3b,c). The lowest complexity of daily Her was in
2008 (0.279) when spring TOC values and summer cloud cover were lower than usual.

Table 1. Kolmogorov complexity (KC) of daily Her, TOC, and cloud cover time series in Novi Sad.

Year
Kolmogorov Complexity (KC)

Her TOC Cloud Cover

2003 0.445 0.572 1.048
2004 0.512 0.558 0.954
2005 0.583 0.676 0.933
2006 0.536 0.676 0.956
2007 0.373 0.723 0.909
2008 0.279 0.605 0.907
2009 0.396 0.560 0.886
2010 0.420 0.630 0.933
2011 0.350 0.560 0.863
2012 0.421 0.745 0.861

To examine changes in complexity as a function of time over the considered period,
we computed running KC complexities of Her, TOC, and cloud cover over a window size
of 100 (which roughly corresponds to a 3-month interval). The analysis was carried out
by converting time series into binary form via the mean threshold value. As can be seen
in Figure 5, the RKC declined sharply up to the summer of 2007 (window position, w.p.,
1500). Low values remained until the beginning of 2009 (w.p. 2100), which was followed
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by a slight increase in RKC until mid-2012 (w.p 3300). The overall RKC of the TOC has
shown a decline up to mid-2012. However, the RKC of TOC has shown seasonal variability,
increasing in the cold period of the year and decreasing in the hot period of the year. The
RKC of cloud cover declined until the beginning of 2012, without visible seasonal variability.
During the last half-year of the observed period, there is a decrease in RKC of Her and an
increase in RKC of TOC and cloud cover.

Figure 5. The running KC (RKC) time series for Her (blue), TOC (green), and cloud cover (orange) for
a fixed window of 100.

Dependence RKC of Her from RKC of TOC and cloud cover is shown in Figure 6. It is
visible that an increase in RKC of TOC and cloud cover increases the RKC of Her.

Figure 6. Dependence of running Kolmogorov complexity (RKC) of Her from RKC of TOC and cloud
cover for a fixed window of 100.

KC provides average information about the complexity of the Her time series since
its complexity has remained hidden in the rules of the applied procedure. Therefore, to
obtain information about the randomness of each amplitude in the Her time series, using
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all samples representing the time series, we presented the KC spectrum and its spectrum
highest value (KCH). Figure 7 depicts the KC complexity spectrum of the normalized Her
for different years. Inspection of this figure reveals that the distribution of years regarding
the order of KCH is similar to those grouped pursuing the order of KC values. If we exclude
2003 because the time series is shorter (starting from April), the highest KCH was in the
period 2004–2006 (from 0.535 to 0.583) and 2011 (0.559). However, in 2011 KCH was above
the average although KC was not high (0.349). The high KCH in 2011 occurred at Her values
between 2700 and 2900 Jm−2, which were most commonly recorded in September 2011.

Figure 7. Kolmogorov complexity spectra of the daily Her time-series in Novi Sad for (a) period
2003-2007 and (b) period 2008-2012.

Figure 8 shows values of the KC spectrum sorted in ascending order of the observed
variable. From Figure 8a can be noticed that the highest values of the KC spectrum are
in the range between 2500 and 3500 Jm−2, which are values usually recorded in spring
(April and May) and late summer and beginning of autumn (second half of August and
September). Figure 8a also reveals that up to Her value of approximately 1100 Jm−2 the
KC spectrum exhibits considerable variability, while at higher Her values the KC spectrum
is smoother. Since the highest frequencies have Her values less than 1100 Jm−2 (Figure 2),
this indicates that low Her values disturb the smoothness of the spectrum. The KCH of
the TOC data was observed in the TOC range between 320 and 330 DU, values commonly
observed in January and July. The KCH of cloud cover is high in the range of 3–8 tenths.
These partly cloudy conditions have a strong influence on the variability of daily Her
values because of the uncertainty of whether the sun disk is covered by the cloud or not.
Additionally, under partly cloudy conditions multiple scattering between the upper and
lower clouds may contribute to the complexity of the Her values. Under conditions of low
cloud cover (0–2 tenths), there is a high probability that the sun will not be obstructed
by clouds. Similarly, under conditions of high cloud cover (9–10 tenths), complete sun
obstruction is most likely. Therefore, both low and high cloud cover conditions can reduce
the complexity of Her values.

In the extension to the previous analysis, we have compared the KCH obtained with
the spectral method and the KC obtained with the mean used as the threshold amplitude.
As mentioned, KCH could be considered a better indicator of complexity than KC, which is
not always an appropriate measure of complexity. This is especially amplified in the case of
asymmetric distributions [27]. Figure 9 shows that over the period 2004–2006 and 2010, KC
and KCH values are high and similar. These are the years when the Her values were the
lowest, confirming the earlier conclusion that low Her values disturb the smoothness of the
spectrum. On the other hand, during the years when Her values were higher (2007–2009,
2011–2012), KCH showed that time series of daily Her were much more complex than it is
shown by KC.



Atmosphere 2022, 13, 746 12 of 16

Figure 8. KC spectrum of (a) Her, (b) TOC, and (c) cloud cover spectrum sorted in ascending order of
the observed variable of the daily Her time-series in Novi Sad.

Figure 9. Kolmogorov complexity (KC) and the highest value in the Kolmogorov complexity spectrum
(KCH) of the daily Her time-series in Novi Sad.

3.3. Largest Lyapunov Exponent and Predictability of Daily Her

Although the words “random” and “chaotic” are often considered synonymous,
they do not have the same meaning. Randomness has no order and does not follow
any pattern, while chaotic systems are characterized by short-term predictability that
deteriorates rapidly over time. As we mentioned earlier, one of the indicators of chaotic
behavior is the Lyapunov exponent whose positive values indicate the presence of chaos.

Figure 10a shows that Her time-series exhibit low chaotic behavior (0.030 ≤ LLE ≤ 0.100)
and moderate randomness (0.350 ≤ KC ≤ 0.583). Generally, years with higher values of
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Her exhibited higher chaotic behavior and lower randomness and vice versa. The more
chaotic behavior of higher Her values that occur in conditions of lower cloudiness shows
that they are also more predictable. Simple inspection of Figure 10b indicates that the
lowest predictability was for the years 2003, 2007, 2008, and 2011 (between 10 and 15 days),
while during the rest of the years, predictability was between 20 and 33 days.

Figure 10. (a) Largest Lyapunov exponent (LLE) and Kolmogorov complexity (KC), and (b) LLE
versus Lyapunov time (LT) of daily Her time-series in Novi Sad.

While LT represents the approximate time limit for which accurate prediction for a
chaotic system is possible, KT is estimated to be proportional to its randomness. Therefore,
if KC is low (tends to 0), KT tends to ∞ and accurate long-term predictions are reasonable,
while if KC is high only short-term predictions can be performed. The Lyapunov time
was corrected for the presence of randomness since the chaos theory generally deals with
the “irregular behavior in a complex system that is generated by nonlinear deterministic
interactions with only a few degrees of freedom, where noise or intrinsic randomness does
not play an important role” [54]. Therefore, the LT of daily Her time-series is corrected
for randomness by Kolmogorov as [0, LT] ∩ [0, KT], and it is presented in Figure 11a. This
figure shows that the prediction effect of KT for KC is between 1.5 and 3.5 days, while for
KCH is between 1.5 and 2.0 days. Figure 11b shows power law dependence between shows
LT and KT. How much the randomness can reduce the LT can be seen from the comparison
of Figures 10b and 11b. According to Figure 10b, the longest predictability in the LT units
for daily Her time-series was around 33 days while following from the fit on Figure 11b the
presence of randomness reduced that number to 28 days.

Figure 11. (a) Predictability of the daily Her data in Novi Sad given by the Lyapunov time (LT, in
days) corrected by randomness versus Kolmogorov complexity (KC), and (b) LT versus Kolmogorov
time (KT, in days).
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4. Conclusions

In this study, we analyzed the complexity and predictability of the daily erythemal
dose (Her) data recorded in Novi Sad (Serbia) from April 2003 to December 2012. For
that purpose, we used the Kolmogorov complexity and related complexity measures
(Kolmogorov complexity spectrum and its highest value, running Kolmogorov complexity,
and Kolmogorov time), largest Lyapunov exponent, and Lyapunov time. The result reveals
that fluctuations in daily Her are moderate random and exhibit low chaotic behavior.
According to Mihailovic et al. [30], complexity is a measure of randomness that conceptually
reflects the number of occurrences of positive–negative or negative–positive deviation of
the daily incident solar energy from the threshold. Our analysis indicated that daily Her
time series show a tendency to increase the randomness as the randomness of cloud cover
and TOC increases, affecting the short-term predictability. We found a higher number
of positive–negative or negative–positive deviations from the mean in time series over
the years with lower values of Her (2007–2009, 2011–2012), which explains the higher
complexity. Conversely, time series over the years with higher values of Her showed lower
randomness and higher chaotic behavior. Analysis of the KC spectrum showed that at
lower Her values (up to approximately 1100 Jm−2) the KC spectrum shows considerable
variability, while at higher Her values the KC spectrum is smoother indicating that low
Her values disturb the smoothness of the spectrum. The prediction horizon of daily Her
values in Novi Sad given by the Lyapunov time corrected for randomness by Kolmogorov,
is between 1.5 and 3.5 days.
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low-level UV radiation—An analysis of ground-based and satellite-derived data. Sci. Total Environ. 2022, 831, 154899. [CrossRef]
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importance of ground-based and satellite observations for monitoring and estimation of UV radiation in Novi Sad (Serbia). J.
Geogr. Inst. Jovan Cvijic SASA 2020, 70, 57–70. [CrossRef]

40. Diémoz, H.; Siani, A.M.; Casale, G.R.; di Sarra, A.; Serpillo, B.; Petkov, B.; Scaglione, S.; Bonino, A.; Facta, S.; Fedele, F.; et al. First
national intercomparison of solar ultraviolet radiometers in Italy. Atmos. Meas. Tech. 2011, 4, 1689–1703. [CrossRef]

41. Hülsen, G.; Gröbner, J. Characterization and calibration of ultraviolet broadband radiometers measuring erythemally weighted
irradiance. Appl. Opt. 2007, 46, 5877. [CrossRef] [PubMed]

42. Malinovic, S.; Mihailovic, D.T.; Kapor, D.; Mijatovic, Z.; Arsenic, I.D. NEOPLANTA: A Short Description of the First Serbian UV
Index Model. J. Appl. Meteorol. Climatol. 2006, 45, 1171–1177. [CrossRef]

43. Malinovic-Milicevic, S.; Mihailovic, D.T.; Radovanovic, M.M. Reconstruction of the erythemal UV radiation data in Novi Sad
(Serbia) using the NEOPLANTA parametric model. Theor. Appl. Climatol. 2015, 12, 131–138. [CrossRef]

44. Van der A, R.J.; Allaart, M.A.F.; Eskes, H.J. Extended and refined multi sensor reanalysis of total ozone for the period 1970–2012.
Atmos. Meas. Tech. 2015, 8, 3021–3035. [CrossRef]

45. Van der A, R.J.; Allaart, M.A.F.; Eskes, H.J. Multi-Sensor Reanalysis (MSR) of Total Ozone, Version 2. Dataset; Royal Netherlands
Meteorological Institute (KNMI): De Bilt, The Netherlands, 2015. [CrossRef]

46. Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: New York, NY, USA, 1991; p. 748.
47. Li, M.; Vitanyi, P. An Introduction to Kolmogorov Complexity and Its Applications; Springer: New York, NY, USA, 1997.
48. Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530–536.

[CrossRef]
49. Hu, J.; Gao, J.; Principe, J.C. Analysis of biomedical signals by the Lempel-Ziv complexity: The effect of finite data size. IEEE

Trans. Biomed. Eng. 2006, 53, 2606–2609. [CrossRef]
50. Adami, C. What is complexity? Bioessays. 2002, 24, 1085–1094. [CrossRef]
51. Boeing, G. Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction. Systems

2016, 4, 37. [CrossRef]
52. Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets.

Phys. D 1993, 65, 117–134. [CrossRef]
53. Liu, H.-F.; Dai, Z.-H.; Li, W.-F.; Gong, X.; Yu, Y.-H. Noise robust estimates of the largest Lyapunov exponent. Phys. Lett. A 2005,

341, 119–127. [CrossRef]
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