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Abstract: Boundary-layer wind associated with extratropical cyclones (ETCs) is an essential element
for posing serious threats to the urban centers of eastern North America. Using a similar methodology
for tropical cyclone (TC) wind risk (i.e., hurricane tracking approach), the ETC wind risk can be
accordingly simulated. However, accurate and efficient assessment of the wind field inside the ETC
is currently not available. To this end, a knowledge-enhanced deep learning (KEDL) is developed
in this study to estimate the ETC boundary-layer winds over eastern North America. Both physics-
based equations and semi-empirical formulas are integrated as part of the system loss function to
regularize the neural network. More specifically, the scale-analysis-based reduced-order Navier–
Stokes equations that govern the ETC wind field and the European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis (ERA) ERA-interim data-based two-dimensional (2D)
parametric formula (with respect to radial and azimuthal coordinates) that prescribes an asymmetric
ETC pressure field are respectively employed as rationalism-based and empiricism-based knowledge
to enhance the deep neural network. The developed KEDL, using the standard storm parameters
(i.e., spatial coordinates, central pressure difference, translational speed, approach angle, latitude
of ETC center, and surface roughness) as the network inputs, can provide the three-dimensional
(3D) boundary-layer wind field of an arbitrary ETC with high computational efficiency and accuracy.
Finally, the KEDL-based wind model is coupled with a large ETC synthetic track database (SynthETC),
where 6-hourly ETC center location and pressure deficit are included to effectively assess the wind
risk along the US northeast coast in terms of annual exceedance probability.

Keywords: knowledge-enhanced deep learning; extratropical cyclones; nor’easters; boundary-layer
winds; risk analysis

1. Introduction

Considered as large low-pressure systems that affect the North American Atlantic
coast, the extratropical cyclones (ETCs), also denoted as nor’easters (over eastern North
America), can generate strong winds [1–3], heavy precipitations (rain and/or snow) [4], and
storm surge [5]. These hazards are of great significance since they can cause widespread
damage to various civil structures and infrastructure systems and are responsible for great
economic and life losses [6,7]. Significant efforts have been made to study the tropical
cyclones (TCs), while comparatively less research efforts are devoted to ETCs, especially in
the engineering field. The ETCs differ in structure and size from the TCs. The latter are
characterized by a warm core with energy resulting from the vertical temperature difference
between the upper and lower atmosphere, while the former are considered as cold-core
cyclones with energy resulting from the horizontal temperature difference between warm
and cold air masses. Nor’easters are the dominant cause of extreme wintertime weather
in the eastern North America [2], therefore, it is crucial to estimate their related hazard
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probabilities and induced risk. The track approach typically used to simulate synthetic
storm events is commonly employed for the risk estimation of TC events. However,
synthetic ETC track generation is much less used for winter storm hazard and has not been
implemented to estimate the ETC hazard probabilities. On the other hand, the effectiveness
of this statistical approach is highly related to the employed hazard models. Since the
boundary-layer wind of ETCs is an essential element for inflicting widespread damage,
accurate and efficient modeling of the wind field is critical to effective mitigation of losses
due to ETCs-related hazards.

A number of schemes have been developed to simulate TC boundary-layer winds,
such as the empirical or semi-empirical vertical wind profiles [8,9], slab or depth-averaged
wind models [10,11], linear height-resolving wind models [12–14], and nonlinear height-
resolving wind fields (e.g., Weather Research and Forecasting model). ETC wind, however,
is currently obtained by fusing high-fidelity wind models and observational data, due partly
to their complicated structure [15,16]. Although these time-consuming schemes are promis-
ing to accurately capture ETC wind hazard, they are not suited for probability and risk
analysis. Data-driven modeling (e.g., artificial neural networks (ANNs)) techniques have
recently gained popularity in wind field simulations [17,18] and other applications [19–22]
due to their high efficiency and accuracy. With the rapid development of efficient training
algorithms for deep networks, they may shed light on effective prediction of ETC boundary-
layer winds. However, the use of black-box deep networks usually requires a large number
of high-quality input-output datasets during the training process. This challenge is es-
pecially serious for many engineering applications, due partially to the high cost of data
generation (using numerical/experimental/field-measurement approach) [23]. To this end,
a more data-efficient ANN approach is needed. Dissanayake and Phan-Thien [24] proposed
a novel ANN-based solution of the nonlinear partial differential equations (PDEs) by using
the governing equations as part of the loss function to regularize the learning process.
This scheme has been further advanced to a physics-informed neural network [25,26].
Recently, Snaiki and Wu [27] proposed a more general knowledge-enhanced deep learning
(KEDL) to simulate TC wind field by leveraging rationalism-/empiricism-based knowl-
edge through the loss function, where the storm parameters are treated as the network
inputs. The developed KEDL significantly enhanced the purely data-driven approach
by reducing the required amount of training datasets and presented improved interpo-
lation and extrapolation results than those from the standard neural networks due to its
physical constraints.

In this study, a KEDL algorithm is proposed to predict the spatial distribution of
Nor’easters boundary-layer winds with high computational efficiency and simulation
accuracy. Both physics-based equations and semi-empirical formulas governing the wind
field inside ETC boundary layer are integrated as part of the system loss function to
regularize the neural network. More specifically, the scale-analysis-based reduced-order
Navier–Stokes equations that govern the ETC wind field and the European Centre for
Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA) ERA-Interim [28] data-
based two-dimensional (2D) parametric formula (with respect to radial and azimuthal
coordinates) that prescribes an asymmetric ETC pressure field are respectively employed
as the rationalism-based and empiricism-based knowledge to enhance the deep neural net-
work. The developed KEDL, using the standard storm parameters (i.e., spatial coordinates,
central pressure difference, translational speed, approach angle, latitude of ETC center and
surface roughness) as the network inputs, can provide the 3D boundary-layer wind field of
an arbitrary ETC with high computational efficiency and accuracy. Finally, the KEDL-based
wind model is coupled with a large ETC synthetic track database (SynthETC) [2], where
6-hourly ETC center location and pressure deficit are included to effectively assess the wind
risk along the US northeast coast in terms of annual exceedance probability.
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2. ETC Background
2.1. Conceptual Model

Nor’easters are large low-pressure systems that affect the North American Atlantic
coast and are characterized by distinct fronts that separate the cold and warm air masses.
They acquire energy from the horizontal temperature differential, and typically form during
the winter season along the U.S. mid-Atlantic coast and move northeastward [29–31]. While
the intensity of nor’easters is in general weaker than that of hurricanes, these ETCs can
cause significant damage since their occurrence is relatively more frequent and duration is
longer, due essentially to the slow movement [31,32].

Two conceptual models were developed to represent the complex structure and gen-
eral evolution of ETCs using general cyclone characteristics identified from the surface
observations, satellite imagery and radar data [28,33]. The first model, denoted as the Nor-
wegian cyclone model [34], describes the ETC evolution from the genesis to the occlusion
stage. In this model, a warm air mass and a cold one are separated by a front, where the
warm air flows over the cold air with a cyclonic rotation. The other conceptual model,
proposed by Shapiro and Keyser [35], describes a more refined life cycle of ETCs based on
the remote sensing techniques and space-borne observations, where the cold front fractures
away from the warm front and they are completely separated at the cyclone center.

2.2. Composite Analysis

Individual ETCs usually present large case-to-case variability [36–38], hence, the
composite analysis is typically employed to underline the most essential features of the
ETC structure (e.g., large-scale coherent structure) and evolution characteristics [28]. Fur-
thermore, the case-to-case variability could be significantly reduced, and the identified
features are more accurate by restricting the composites to special categories (e.g., intense
ETCs) [38–40]. To this end, the reanalysis due to its homogenous and comprehensive results
has become an important and popular technique for studying ETCs [41,42]. Specifically,
the reanalysis results are generated as a combination of numerical weather prediction
systems and atmospheric observations at a typical 6-h frequency based on data assimilation
techniques. In this study, the most intense nor’easters from 1989 to 2009, extracted from the
ERA-Interim data with a horizontal resolution of 80 km and 60 vertical hybrid levels [43,44],
will be utilized to construct the ETC essential structure including the wind and pressure
fields, where ETC tracks have been identified using the filtered 850 hPa relative vorticity
with a temporal resolution of 6 h [28]. It is shown that the pressure contour is not a circular-
type shape, as would be expected from a TC system, but rather presents an elliptic-type
shape with an elongated profile in the upper right quadrant [45,46]. Accordingly, it is
expected that the pressure field would be better characterized by a function of both the
radial and azimuthal coordinates.

2.3. ETC Wind Risk Assessment

To estimate the hazard probabilities and subsequently the ETC wind risk, several
approaches have been implemented. The single site probability approach, pioneered by
Russel [47], has been implemented to estimate the site-specific statistics of the key storm pa-
rameters (e.g., central pressure). This approach involves a Monte Carlo step which samples
from the statistical distribution of each storm parameter. Then, a ETC wind model driven
by the sampled storm parameters is employed to efficiently generate the corresponding
hazard probabilities. However, this approach is only valid for a single site and the limited
record data prevents it from accurately estimating the tails of probability density functions.
Alternatively, the American Federal Emergency Management Agency (FEMA) has adopted
another approach in which a small number of intense historical ETCs are first selected and
perturbed. However, this approach fails to exploit the important information provided by
those ETCs close to a target region without making landfall [48]. Recently, a most advanced
technique, dubbed the track approach, has been widely utilized especially for TC events.
This approach generates large databases of full-track synthetic events [2,49]. A key feature
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of this methodology is its capability of projecting information from a wider geographic
range onto the target region. Therefore, it is capable of determining the annual probability
of low-frequency high-impact events. For instance, Hall and Booth [2] successfully gen-
erated a statistical model trained on historical ETC tracks to estimate the frequency and
intensity of the most severe ETCs. However, no hazard model was coupled with their
generated tracks. Considering machine learning techniques are very good at addressing
unresolved complexities by extracting hidden informative features from data, they offer
a great promise for ETC risk assessment. However, current machine learning and deep
learning applications have not been utilized yet for such a purpose. Actually, most of these
applications are devoted to the simple detection of ETCs from aerial/satellite imagery and
remote sensing data [50–52]. More research efforts are needed to leverage the full potential
of machine learning techniques in solving ETC risk-related problems.

3. Methodology
3.1. Knowledge-Enhanced Deep Learning for ETC Boundary-Layer Wind

One challenge in the application of machine learning techniques and specifically deep
neural networks (DNNs) to many engineering applications is the requirement of a large
number of high-fidelity data which may not be available. Furthermore, these black-box
networks are only constrained by the available data, and hence they are usually criticized
for poor interpolation/ extrapolation performance especially under noisy environment.
By leveraging rationalism-/empiricism-based knowledge through the loss function, the
purely data-driven approach might be significantly enhanced, leading to a more general
machine learning technique denoted here as knowledge-enhanced deep learning networks
(KEDLs), as illustrated in Figure 1.
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3.1.1. Rationalism-Based Knowledge

In the boundary layer of an ETC, the wind fields are governed by the three-dimensional
(3D) Navier–Stokes equations [53]:

∂
→
v

∂t
+
→
v ·∇→v = −1

ρ
∇p− (2Ω sin ϕ)

→
k ×→v +

→
F (1)

where
→
v = wind velocity; Ω = rotation rate of the Earth; ϕ = latitude;

→
k = unit vector in the

vertical direction; p = pressure; ρ = air density; and
→
F = frictional force. A straightforward
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scale analysis of Equation (1) leads to the following equations, which are expressed in a
cylindrical coordinate system (r, θ, z) as [13]:

∂u
∂t

+ u
∂u
∂r

+
v
r

∂u
∂θ

+ w
∂u
∂z
− v2

r
− (2Ω sin ϕ)v = −1

ρ

∂p
∂r

+ Km
∂2u
∂z2 (2)

∂v
∂t

+ u
∂v
∂r

+
v
r

∂v
∂θ

+ w
∂v
∂z

+
uv
r

+ (2Ω sin ϕ)u = − 1
ρr

∂p
∂θ

+ Km
∂2v
∂z2 (3)

where (u, v, w) = wind velocity components with respect to the cylindrical coordinate
system (r, θ, z) and Km = eddy viscosity. In addition, the continuity equation for the case of
incompressible flow is expressed as:

1
r

∂ru
∂r

+
1
r

∂v
∂θ

+
∂w
∂z

= 0 (4)

Two boundary conditions are required for the solution of the ETC wind field compo-
nents, namely at the upper atmosphere and near the ground surface. The widely used bulk
formulation with drag coefficient CD is utilized at the surface level as [15]:

Km
∂u
∂z

∣∣∣∣
z=0

= CDu
√

u2 + v2 (5)

Km
∂v
∂z

∣∣∣∣
z=0

= CDv
√

u2 + v2 (6)

At the top of ETC boundary layer, gradient wind balance is established where pressure
gradient force balances centrifugal and Coriolis forces [54]. Accordingly, the frictional wind
components are negligible, and hence the gradient wind component can be analytically
determined as [54,55]:

vg =
−c sin(θ − θ0)− (2Ω sin ϕ)r

2
+

√(
c sin(θ − θ0) + (2Ω sin ϕ)r

2

)2

+
r
ρ

∂p
∂r

(7)

where c = ETC translational wind speed; and θ0= approach angle (counterclockwise positive
from the East). It should be noted that the unsteady term related to the gradient wind
is expressed as −c·∇vg. On the other hand, the unsteady term related to the frictional
wind can be ignored since it is significantly smaller than turbulence viscosity and inertia
terms. It is noted that the ETC thermodynamics is usually independently examined or
weakly coupled with ETC dynamics in engineering applications, and hence not considered
in this study.

3.1.2. Parametric Pressure Field

Solving the coupled wind-pressure system is extremely challenging, therefore an
alternative approach consists of prescribing the pressure field based on field-measurement
data as it is usually done for TC systems. While the pressure field is typically assumed to
be symmetric inside TCs, the complex ETC structure imposes an azimuthally dependent
pressure profile. To this end, a 2-D parametric formula of the asymmetric pressure field
based on the ERA-Interim data is developed in this study. To derive an empirical expression
of the pressure field, the composite ETC pressure radial variation at various azimuthal
locations will be first examined [28]. As shown in Figure 2, the surface pressure varies with
respect to both radial and azimuthal spatial coordinates.
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Based on the inspection of the collected data, it is found that the pressure field can be
fitted by two different profiles corresponding to the cold and warm sectors, respectively.
Inspired by the work of Holland [56], a generalized ETC pressure formula is accordingly
proposed as:

p(r, θ) = pc + ∆p

{
δ exp

[
−
(

rm(θ)

r

)B(θ)
]
+ (1− δ)

(
r

rsize(θ)

)n(θ)
}

(8)

where pc = central pressure; ∆p = central-pressure deficit; rm(θ) = radius of maximum
winds; B(θ) = shape parameter; rsize(θ) = ETC size (defined as the distance from the ETC
center to the outermost closed isobar); and δ = 1 for the cold sector while it is zero for the
warm sector. It is quite challenging to accurately identify the limits between the cold and
warm sectors (i.e., fronts) at the current stage, therefore, a simplified formula is adopted
here and expressed as:

p(r, θ) = pc + ∆p exp

[
−
(

rm(θ)

r

)B(θ)
]

(9)

Similarly in TC cases, the radius of maximum winds rm(θ) and the shape factor B(θ)
for ETCs are functions of storm parameters [57]. In this study, they are expressed as:

rm = arm + brm pc + crm ln(ϕ) (10)

B = αB + βBrm + γB ϕ (11)

where arm(θ) =
(1−ε2

1)a1
1+ε1 cos(θ−θ1)

; brm(θ) = − (1−ε2
2)a2

1+ε2 cos(θ−θ2)
; crm(θ) =

(1−ε2
3)a3

1+ε3 cos(θ−θ3)
; and the

parameter values for ε1(0.4), ε2(0.3606), ε3(0.2025), a1(2941.2), a2(3.7863), a3(302.0039),
θ1(37.6284), θ2(48.9242), θ3(92.8592), αB(0.7703), βB(0.0019) and γB(0.0021) are obtained
using the Levenberg–Marquardt algorithm [58,59]. It is important to note that the res-
olution in ERA-interim data could potentially affect the derived pressure, and the use
of higher-resolution National Aeronautics and Space Administration (NASA) Modern
Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis data may
provide better simulation results. In addition, the predefined regression equations (i.e.,
Equations (8) and (9)) of ETC pressure field may be further improved for modeling such a
complex system.
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3.1.3. Knowledge-Enhanced Deep Learning Formalization

In this study, ETC boundary-layer winds are approximated by a fully connected,
feedforward KEDL system with a hyperbolic tangent activation function and a network
architecture of 8-100-100-100-100-100-100-100-3. The inputs required for the ETC boundary-
layer wind simulation are the spatial coordinates (r, θ, z) and the ETC parameters denoted
as α = [∆p; c; θ0; ϕ; z0] where z0 is the surface roughness (to obtain the drag coefficient
through CD = κ2[

ln
(

10
z0

)]2 and κ = von Karman constant). The three model outputs of (u, v, w)

representing the wind velocity components with respect to the cylindrical coordinate
system (r, θ, z). While there is a lack of general rules for the determination of the optimal
model architecture [60], an exhaustive trial-and-error approach is usually followed [61].
A simplified representation of the KEDL architecture is presented in Figure 3, where the
governing equations-based cost functions (C f1, C f2, C f3) and the boundary condition-based
cost functions (C f4, C f5 C f6) are incorporated in the system.
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where the additional cost function C f0 includes training data with sampled points Nd;
N f refers to the sampled points from physics-based equations and the semi-empirical
(or purely empirical) formulas; Nbs and Nbt represent sampled points from surface and
top boundary conditions, respectively; and γd, γ f , γb are contribution weights of the
training data from field measurements or numerical simulations, physics-based equations,
and boundary conditions, respectively. In this study, the Xavier’s normal initialization
algorithm is adopted to initialize the network [62]. The numbers of randomly distributed
spatial points within a region of 0 ≤ θ ≤ 360◦, 0 < r ≤ 1000km, and 0 ≤ z ≤ 1500m are
Nd = 10, 000, N f = 100, 000, Nbs = 5000, and Nbt = 5000. The limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) optimization algorithm was selected to minimize
the total loss function [63,64]. The automatic differentiation, which is readily available in
several machine learning packages such as Tensorflow [65], was employed to compute the
necessary derivatives of the output with respect to the input in the physics-based equations
and/or semi-empirical formulas.
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3.2. Risk Assessment

The developed KEDL can be effectively utilized for ETC wind risk assessment due to
its efficiency.

3.2.1. Synthetic ETC Track

A statistical-based approach for the ETC wind risk assessment is adopted in a similar
fashion for the simulation of hurricane wind risk [57,66,67]. The generation of the syn-
thetic ETC tracks (also denoted as SynthETC) consists of four main components, namely
genesis, tracking, intensity (in terms of central pressure), and termination [2]. Accord-
ingly, the information projection from a wider geographic domain onto the target region
can be achieved. Two independent climate covariates are used in SynthETC, namely El
Nino/Southern Oscillation (ENSO) via the Nino3.4 index and the monthly North Atlantic
Oscillation (NAO) index. While the local regression has been used for the modeling of
genesis, tracking, and termination, the intensity was modeled via a weighted sampling
scheme [2]. It should be noted that the SynthETC database has been trained on ETC tracks
extracted from ERA-Interim meteorological reanalysis data from 1979 to 2015. The synthetic
tracks include 6-hourly ETC center latitude and longitude, time, and central pressure deficit.
The full-track synthetic ETC is then coupled with the developed KEDL-based wind model
to generate large sets of synthetic ETC wind and pressure fields, as illustrated in Figure 4.

Atmosphere 2022, 13, 757 8 of 14 
 

 

3.2. Risk Assessment 
The developed KEDL can be effectively utilized for ETC wind risk assessment due to 

its efficiency. 

3.2.1. Synthetic ETC Track 
A statistical-based approach for the ETC wind risk assessment is adopted in a similar 

fashion for the simulation of hurricane wind risk [57,66,67]. The generation of the syn-
thetic ETC tracks (also denoted as SynthETC) consists of four main components, namely 
genesis, tracking, intensity (in terms of central pressure), and termination [2]. Accord-
ingly, the information projection from a wider geographic domain onto the target region 
can be achieved. Two independent climate covariates are used in SynthETC, namely El 
Nino/Southern Oscillation (ENSO) via the Nino3.4 index and the monthly North Atlantic 
Oscillation (NAO) index. While the local regression has been used for the modeling of 
genesis, tracking, and termination, the intensity was modeled via a weighted sampling 
scheme [2]. It should be noted that the SynthETC database has been trained on ETC tracks 
extracted from ERA-Interim meteorological reanalysis data from 1979 to 2015. The syn-
thetic tracks include 6-hourly ETC center latitude and longitude, time, and central pres-
sure deficit. The full-track synthetic ETC is then coupled with the developed KEDL-based 
wind model to generate large sets of synthetic ETC wind and pressure fields, as illustrated 
in Figure 4. 

 
Figure 4. Schematic of knowledge-enhanced deep learning for the simulation of ETC wind risk. 

3.2.2. ETC Wind Hazard 
The estimated ETC wind hazard can be obtained through the mean recurrence inter-

val (𝑀𝑅𝐼), an important parameter in the risk assessment methodology. More specifically, 
hazard levels are assessed based on the annual exceedance probability and then arranged 
in terms of 𝑀𝑅𝐼 or the return period. The 𝑀𝑅𝐼 of a given wind speed V at a selected site 
is determined based on the following formula [68]: 𝑀𝑅𝐼(𝑣௜ ൐ 𝑉) = 1𝜆𝑃(𝑣௜ ൐ 𝑉) (14)

where 𝑃(𝑣௜ ൐ 𝑉) = probability that the peak wind speed 𝑣௜ is larger than a given thresh-
old wind speed V; and 𝜆 = mean annual occurrence rate of ETC wind speeds at the se-
lected site. 

4. Results and Discussion 
4.1. Model Validation 

The trained KEDL for simulation of ETC boundary-layer winds is validated based on 
reanalysis data of two ETCs which occurred on 19 February 2004 (ETC #1) and 17 Decem-
ber 2006 (ETC #2), respectively. The reanalysis data were retrieved from the ETC Atlas 
[28]. The comparison between the observed and simulated wind speeds at the lowest near-
surface winds (925 hPa level) is depicted in Figure 5. The observed maximum wind speeds 
at the radius of maximum winds are 46 m/s and 34 m/s for ETC #1 and ETC #2, respec-
tively, while the corresponding simulated wind speeds are 47 m/s and 35 m/s. The 

Figure 4. Schematic of knowledge-enhanced deep learning for the simulation of ETC wind risk.

3.2.2. ETC Wind Hazard

The estimated ETC wind hazard can be obtained through the mean recurrence interval
(MRI), an important parameter in the risk assessment methodology. More specifically,
hazard levels are assessed based on the annual exceedance probability and then arranged
in terms of MRI or the return period. The MRI of a given wind speed V at a selected site is
determined based on the following formula [68]:

MRI(vi > V) =
1

λP(vi > V)
(14)

where P(vi > V) = probability that the peak wind speed vi is larger than a given threshold
wind speed V; and λ = mean annual occurrence rate of ETC wind speeds at the selected site.

4. Results and Discussion
4.1. Model Validation

The trained KEDL for simulation of ETC boundary-layer winds is validated based on
reanalysis data of two ETCs which occurred on 19 February 2004 (ETC #1) and 17 December
2006 (ETC #2), respectively. The reanalysis data were retrieved from the ETC Atlas [28]. The
comparison between the observed and simulated wind speeds at the lowest near-surface
winds (925 hPa level) is depicted in Figure 5. The observed maximum wind speeds at the
radius of maximum winds are 46 m/s and 34 m/s for ETC #1 and ETC #2, respectively,
while the corresponding simulated wind speeds are 47 m/s and 35 m/s. The simulated
and observed wind fields present similar shapes in terms of magnitude and location of
the maximum wind speed, indicating that the proposed KEDL model captures the key
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wind features inside the ETC boundary layer. Some discrepancies between simulations
and observations can be noted, mainly due to the idealized pressure profile and simplified
governing equations. In addition, the ETC thermodynamics could potentially modify the
boundary-layer wind field. While only the dynamics-based equations are integrated into
the KEDL architecture in the current study, a key advantage of the proposed KEDL is that
it can always be retrained further (using weights and biases of current KEDL as initial ones
of updated KEDL) once improved knowledge (e.g., more accurate pressure distribution
and ETC dynamics) and/or additional knowledge (e.g., ETC thermodynamics and wind
shear) is available.

Atmosphere 2022, 13, 757 9 of 14 
 

 

simulated and observed wind fields present similar shapes in terms of magnitude and 
location of the maximum wind speed, indicating that the proposed KEDL model captures 
the key wind features inside the ETC boundary layer. Some discrepancies between simu-
lations and observations can be noted, mainly due to the idealized pressure profile and 
simplified governing equations. In addition, the ETC thermodynamics could potentially 
modify the boundary-layer wind field. While only the dynamics-based equations are in-
tegrated into the KEDL architecture in the current study, a key advantage of the proposed 
KEDL is that it can always be retrained further (using weights and biases of current KEDL 
as initial ones of updated KEDL) once improved knowledge (e.g., more accurate pressure 
distribution and ETC dynamics) and/or additional knowledge (e.g., ETC thermodynamics 
and wind shear) is available. 

  
Figure 5. Comparison between reanalysis (left) (Dacre et al. 2012) and simulated (right) wind fields 
of ETC #1 (2004) (top) and ETC #2 (2006) (bottom) (Note: the red rectangles indicate the region of 
the most destructive winds). 

4.2. Model Application 
In this study, three ETC scenarios corresponding to storm parameters listed in Table 

1 are investigated. 

Table 1. ETC parameters for wind field simulation. 

Parameter 𝜟𝒑 (𝐡𝐩𝐚) 𝒄 (𝐦/𝐬) 𝜽𝟎 (°) 𝝓 (°) 𝒛𝟎(𝐦) 
scenario 1 80 10 50 45 0.001 
scenario 2 60 8 70 45 0.01 
scenario 3 40 6 90 45 0.1 

Figure 6 depicts the 3D shaded surfaces of simulated wind speed along with the con-
tours of simulated vertical wind profile at the East location (relative to the approach an-
gle). The simulation results indicate that the height of maximum wind decreases with the 
wind speed. Furthermore, an increase of surface roughness leads to a rapid decrease of 

Figure 5. Comparison between reanalysis (left) (Dacre et al. 2012) and simulated (right) wind fields
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most destructive winds).

4.2. Model Application

In this study, three ETC scenarios corresponding to storm parameters listed in Table 1
are investigated.

Table 1. ETC parameters for wind field simulation.

Parameter ∆p (hpa) c (m/s) θ0 (◦) φ (◦) z0(m)

scenario 1 80 10 50 45 0.001
scenario 2 60 8 70 45 0.01
scenario 3 40 6 90 45 0.1

Figure 6 depicts the 3D shaded surfaces of simulated wind speed along with the
contours of simulated vertical wind profile at the East location (relative to the approach
angle). The simulation results indicate that the height of maximum wind decreases with
the wind speed. Furthermore, an increase of surface roughness leads to a rapid decrease of
wind speed from the ground surface, and an increase of central pressure difference results
in an increase of wind speed. The supergradient winds, commonly observed in the TC
boundary layer, are weak in the case of ETC, as shown by Figure 6.
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Figure 6. Three-dimensional shaded surfaces of simulated wind speed along with vertical wind
profile contours.

On the other hand, Figure 7 presents the spatial distribution of simulated wind speed at
three different levels (i.e., 10 m, 500 m, and 1000 m) with ∆p = 50hpa, ϕ = 40◦, c = 10m/s,
θ0 = 35◦, and z0 = 0.01m. The simulation results indicate that the spatial distribution of
the wind field inside ETC presents a comma-like shape, which is a common feature of ETC
boundary-layer winds.
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Figure 7. Spatial distribution of the ETC wind at three different altitudes: (a) z = 10 m; (b) z = 500 m;
and (c) z = 1000 m.

4.3. Risk Analysis

The MRI distribution of the 10 m-height ETC wind speeds at two selected points
(31.23◦; 81.28◦) and (43.00◦; 70.74◦), located in the US southeast and northeast, were
accordingly constructed and depicted in a logarithmic scale as shown in Figure 8. According
to Figure 8, the MRI distribution of wind speed at location (43.00◦; 70.74◦) is higher than
that at location (31.23◦; 81.28◦). This observation is expected, since the northeast location is
more frequently impacted by nor’easters compared to the southeast location.

Atmosphere 2022, 13, 757 11 of 14 
 

 

 

Figure 8. Location of the two selected points (left) along with 𝑀𝑅𝐼 distribution of wind speed (at 

10 m height) (right). 

5. Concluding Remarks 

In this study, a knowledge-enhanced deep learning (KEDL) has been proposed to 

provide the three-dimensional (3D) boundary-layer wind field with high computational 

efficiency and accuracy for an arbitrary ETC using several storm parameters (i.e., central 

pressure difference, translational speed, approach angle, latitude of ETC center, and sur-

face roughness) as network inputs. The KEDL wind model effectively leverages the ra-

tionalism-based knowledge in terms of the scale-analysis-based reduced-order Navier–

Stokes equations that governs the ETC wind field and the empiricism-based knowledge 

in terms of ERA-Interim reanalysis data-based two-dimensional (2D) parametric formula 

(with respect to radial and azimuthal coordinates) that prescribes an asymmetric ETC 

pressure field, and hence enhances the purely data-driven methodology. The developed 

KEDL-based ETC wind model shows good simulation results by presenting similar 

shapes in terms of magnitude and location of the maximum wind speed, indicating the 

proposed KEDL model captures the essential wind features inside the ETC boundary 

layer. However, some discrepancies between simulations and observations can still be 

noted, due mainly to the idealized pressure profile and simplified governing equations. 

In addition, the ETC thermodynamics could potentially modify the boundary-layer wind 

field. While only the dynamics-based equations are integrated into the KEDL architecture 

in the current study, a key advantage of the proposed KEDL is that it can always be re-

trained further (using weights and biases of current KEDL as initial ones of updated KEDL) 

once improved knowledge (e.g., more accurate pressure distribution and ETC dynamics) 

and/or additional knowledge (e.g., ETC thermodynamics and wind shear) is available. 

Due to its high efficiency and accuracy, the KEDL wind model can be readily utilized in 

conjunction with a large set of stochastic tracks under the ETC risk analysis framework. 

Hence, this study offers an effective approach to assess ETC wind risk along the US north-

east coast. 

Author Contributions: Conceptualization, R.S. and T.W.; methodology, R.S. and T.W.; software, 

R.S.; validation, R.S. and T.W.; formal analysis, R.S. and T.W.; investigation, R.S. and T.W.; re-

sources, R.S. and T.W.; data curation, R.S.; writing—original draft preparation, R.S. and T.W.; writ-

ing—review and editing, R.S. and T.W.; visualization, R.S. and T.W.; supervision, T.W.; project ad-

ministration, R.S. and T.W.; funding acquisition, T.W. All authors have read and agreed to the pub-

lished version of the manuscript. 

Funding: This research was funded by the National Science Foundation grant # CMMI 2011396. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: The authors are deeply grateful to Timothy Hall and James F. Booth for provid-

ing the synthetic track database for the ETC risk simulation. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 8. Location of the two selected points (left) along with MRI distribution of wind speed (at
10 m height) (right).



Atmosphere 2022, 13, 757 11 of 14

5. Concluding Remarks

In this study, a knowledge-enhanced deep learning (KEDL) has been proposed to
provide the three-dimensional (3D) boundary-layer wind field with high computational
efficiency and accuracy for an arbitrary ETC using several storm parameters (i.e., cen-
tral pressure difference, translational speed, approach angle, latitude of ETC center, and
surface roughness) as network inputs. The KEDL wind model effectively leverages the
rationalism-based knowledge in terms of the scale-analysis-based reduced-order Navier–
Stokes equations that governs the ETC wind field and the empiricism-based knowledge
in terms of ERA-Interim reanalysis data-based two-dimensional (2D) parametric formula
(with respect to radial and azimuthal coordinates) that prescribes an asymmetric ETC
pressure field, and hence enhances the purely data-driven methodology. The developed
KEDL-based ETC wind model shows good simulation results by presenting similar shapes
in terms of magnitude and location of the maximum wind speed, indicating the proposed
KEDL model captures the essential wind features inside the ETC boundary layer. However,
some discrepancies between simulations and observations can still be noted, due mainly to
the idealized pressure profile and simplified governing equations. In addition, the ETC
thermodynamics could potentially modify the boundary-layer wind field. While only
the dynamics-based equations are integrated into the KEDL architecture in the current
study, a key advantage of the proposed KEDL is that it can always be retrained further
(using weights and biases of current KEDL as initial ones of updated KEDL) once improved
knowledge (e.g., more accurate pressure distribution and ETC dynamics) and/or addi-
tional knowledge (e.g., ETC thermodynamics and wind shear) is available. Due to its high
efficiency and accuracy, the KEDL wind model can be readily utilized in conjunction with
a large set of stochastic tracks under the ETC risk analysis framework. Hence, this study
offers an effective approach to assess ETC wind risk along the US northeast coast.
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