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Abstract: Rapid urbanization and industrialization lead to severe air pollution in China, threatening
public health. However, it is challenging to understand the pollutants’ spatial distributions by relying
on a network of ground-based monitoring instruments, considering the incomplete dataset. To
predict the spatial distribution of fine-mode particulate matter (PM2.5) pollution near the surface, we
established models based on the back propagation (BP) neural network for PM2.5 mass concentration
in North China using remote sensing products. According to our predictions, PM2.5 mass concentra-
tions are affected by changes in surface reflectance and the dominant particle size for different seasons.
The PM2.5 mass concentration predicted by the seasonal model shows a similar spatial pattern (high
in the east but low in the west) influenced by the terrain, but shows high value in winter and low in
summer. Compared to the ground-based data, our predictions agree with the spatial distribution of
PM2.5 mass concentrations, with a mean bias of +17% in the North China Plain in 2017. Furthermore,
the correlation coefficients (R) of the four seasons’ instantaneous measurements are always above 0.7,
indicating that the seasonal models primarily improve the PM2.5 mass concentration prediction.

Keywords: MIV-BP neural network; PM2.5 mass concentration prediction; aerosol optical depth;
satellite remote sensing

1. Introduction

With the rapid development of the social economy in China, atmospheric particulate
matter pollution is increasing each day. The fine particulate matter (PM2.5) can directly reach
and adhere to the human bronchus and lungs, even carrying a variety of germs, leading
to cardiovascular and respiratory diseases, seriously affecting human health [1]. The Air
Purification Act issued by the United Kingdom shows that PM2.5 ranks fourth in major fatal
factors in China [2]. Due to the long-term lack of ground monitoring network in China and
the difficulty in obtaining PM2.5 mass concentrations in a large range, domestic research
on the long-term chronic health impact of PM2.5 is very limited [3]. China also has serious
PM2.5 pollution, especially the North China Plain, which is far higher than the pollution
level of Europe and the United States [4]. In recent years, the rapid industrialization,
urbanization, and continuous consumption of fossil fuel in North China have led to the
frequent occurrence of haze events [5].

Ground monitoring is the most direct way to obtain PM2.5 concentrations. However,
although data can be obtained through PM2.5 ground monitoring stations after 2013, the
incomplete coverage and uneven spatial distributions cannot reflect the PM2.5 distribution
of large regions [6]. The uneven distribution and the limited number of sites greatly reduce
the accuracy of the data and cannot obtain comprehensive data in space. In the past
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20 years, the aerosol optical depth (AOD) [7] product from satellite remote sensing used to
estimate the temporal and spatial distribution of ground PM2.5 concentration has become a
promising technical means. Satellite remote sensing data have good spatial coverage and
can provide large-scale, high-spatial resolution pollution distribution information, which
has great advantages compared with that from ground PM2.5 monitoring sites. A high
correlation between AOD and PM2.5 mass concentration was shown in the study by Zhi [8].

There are mainly four methods for estimating PM2.5 mass concentration based on
satellite remote sensing [9]. The first method is the univariate regression, which simply
establishes the relationship between AOD and PM2.5 [10,11]. However, this relationship
varies greatly in time and space, and is difficult to apply in practice. The second method
is the empirical physical method. This method defines the volume extinction ratio to
construct an estimation formula for PM2.5 based on the physical mechanism [12]. This
method has simple and flexible physical processes, and is more suitable for the processing
of near real-time satellite observation. Zhang et al. [13] and Wei et al. [14] further updated
the hygroscopic growth and mass conversion processes for this method, bringing a wider
range of spatial applicability to this method. The third method is satellite remote sensing
combined with a chemical transport model, usually referred to as CTM-Sat established
by van Donkelaar et al. [15–20], who has made a great contribution in this field and
improved it by assimilating various satellite observations, and then published a global
dataset that provides basic data for health research. However, the CTM-Sat method also
faces the problem of low accuracy in local heavily polluted areas. The fourth method
involves statistical methods, such as the multiple regression method, this kind of model
has relatively higher accuracy. These methods use a large amount of ground monitoring
data to find out the relationship between different variables and PM2.5 mass concentration
through statistical methods, and then the PM2.5 mass concentration can be predicted by
the training models. However, due to the various compositions of PM2.5 and various
meteorological elements, the traditional statistical model method has certain limitations.
In recent years, machine learning methods have shown strong nonlinear adaptability and
have been widely used in the big data processing. Many scholars have tried to use machine
learning algorithms to predict PM2.5 mass concentrations. Hu et al. [21] established a PM2.5
estimation model based on geographically weighted regression (GWR) using the AOD
product from Moderate-resolution Imaging Spectroradiometer(MODIS), meteorological
data from North American Land Data Assimilation System (NLDAS), and land cover
data from as the predictor variables. This model can only fit a linear relationship for a
certain location or time between surface PM2.5 and the influencing variables, significantly
inferior to geographically and temporally weighted neural network [22]. Li et al. [23]
developed a PM2.5 retrieval model using the random forest method, based on MODIS
AOD data, near-ground meteorological data from the NASA Goddard Earth Observing
System (GEOS). However, the development of structural changes of the random forest
method is not as rich as artificial neural network (ANN). Since ANN have broader and
more far-reaching applications than random forest and GWR, evaluating the performance
of the most basic neural network, BP neural network, can provide a basis and benchmark
for the improvement of complex neural networks. Therefore, this study uses the BP neural
network to construct the PM estimation model.

In the above research, AOD at 550 nm is prevalent to predict the PM2.5 mass concentra-
tions, while other variables from remote sensing are ignored, such as AOD at other bands,
fine-mode AOD, cloud reflection, and land reflectance. In order to better predict PM2.5, we
not only selected AOD variables, but also included the other 32 remote sensing variables
in MOD04. Meanwhile, we evaluated the importance of these variables to the prediction
of PM2.5 using the mean impact value (MIV) method to filter the valid variables. Based
on these analyses, a PM2.5 predicting model is established by the back propagation (BP)
neural network method. Combined with the ERA5 meteorological subdivision data of the
European Centre for Medium-Range Weather Forecasts (ECMWF) and the PM2.5 data of
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air quality monitoring stations, the annual near-surface PM2.5 concentration was retrieved
seasonally and a spatiotemporal analysis was conducted.

2. Study Area and Data
2.1. Study Area

In this study, four provinces (or cities) were selected as the study area in the North
China region (109◦ E~120◦ E, 34◦ N~43◦ N, Figure 1), including Beijing, Tianjin, Hebei,
and Shanxi. The topography of this area presents high in the northwest and low in the
southeast due to the influence of two high mountains, the Taihang and the Yanshan. These
areas have rapid economic development and relatively concentrated industries. Moreover,
due to the rich mineral resources, the North China Plain is an important industrial base in
China, and the industrial structure is also one of the important reasons for air pollution [24].
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Figure 1. The study area including Beijing, Tianjin, Hebei, and Shanxi, and the PM2.5 monitoring
sites. The circle and triangle symbols are the PM2.5 monitoring sites, but the triangle symbols have
lower accuracy of the model prediction.

2.2. Data

The data used in this study include satellite remote sensing products, meteorolog-
ical data, and ground-observed PM2.5 mass concentration data. The remote sensing
data from the MODIS C61 MOD04 AOD products from Terra satellite (https://ladsweb.
modaps.eosdis.nasa.gov/search/ accessed on 20 September 2019). The spatial resolution
of the products is 3 km, and the time range is from 1 January to 31 December 2017. Be-
cause the variables in MOD04 are directly or indirectly related to the AOD variables in
MOD04, in order to analyze the influence of other variables on predicting PM2.5, we
did not only select a single AOD variable as other studies did, but included the re-
maining 32 remote sensing variables from MOD04. A comprehensive view of aerosol
properties (multiwavelength retrieved AOD, aerosol types, fine mode AOD, corrected

https://ladsweb.modaps.eosdis.nasa.gov/search/
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AOD), combined with the landcover features (multiwavelength surface reflectance data).
These 32 remote sensing variables contained AOD inversed by other bands, AOD in-
versed by other algorithms, fine mode AOD, cloud reflection, and land reflectance. The
meteorological data used in this study come from the ECMWF ERA5 hourly reanalysis
dataset (https://cds.climate.copemicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
accessed on 10 March 2020), with a spatial resolution 0.25◦ × 0.25◦. The main meteoro-
logical elements selected for the study include ground 2-m temperature, 2-m dew point
temperature, total precipitation, surface pressure, boundary layer height, boundary layer
dissipation, and 10-m wind field, in which the wind field data were divided into u-direction
components and v-direction component. The hourly pollutant monitoring data were from
140 environmental ground stations in the Beijing–Tianjin–Hebei and Shanxi provinces
from 1 January to 31 December 2017. These data were downloaded from the national
urban air quality real-time release platform (http://106.37.208.233:20035/ accessed on
20 September 2019). The spatial distribution of monitoring sites is shown in Figure 1, using
circle and triangle symbols. In the subsequent modeling process, low accuracy presents
at some coastal sites, which may be relatively seriously affected by the oceanic boundary
layer, thus not used in the model training.

3. Methods and Experiment Design
3.1. Data Preprocessing

Because there is a slight variation in the satellite transit time, and the spatial resolution
of the satellite data are inconsistent with the ERA5 data, it is necessary to do space-time
matching of the data. We take the mean value of surface PM2.5 data at the observation
sites within 2 h before and after the satellite transit times as the true PM2.5 concentration.
The ERA5 data were dealt with by bilinear interpolation to obtain the meteorological data
at the site location. The satellite data at the monitoring sites were extracted to obtain the
remote sensing parameters at the site location. The missing values of remote sensing data,
meteorological data, and PM2.5 observation data in the dataset were eliminated, and finally
15,056 samples were obtained.

3.2. MIV Algorithm to Analyze Remote Sensing Variables

This study uses the mean impact value (MIV) as an indicator to evaluate the impor-
tance of each input variable on the output variable. MIV is an indicator used to identify the
influence of input neurons on output neurons. Its value represents the relative importance
of the influence. The specific implementation process is as follows:

(1) After completing the BP neural network training, respectively add or subtract 10% of
each variable in the training sample to form two new training samples;

(2) Take them as simulation samples, respectively, and use the established network to
carry out simulations and obtain two simulation results;

(3) Calculate the difference between these two simulation results, and the obtained value
is the impact value (IV) of the impact of the input variable change on the output;

(4) Calculate the average value of the impact value (IV) of all samples, and then the mean
impact value (MIV) corresponding to this input variable can be obtained;

(5) Repeat the above steps, and calculate the MIV value of each variable in turn;
(6) Sort the calculated MIV values of each variable to obtain the influence weight of each

input parameter on the prediction result.

According to the above method, the MIV value is calculated for each variable of the
network input parameters, and the results are shown in Table A1.

3.3. Network Construction

The BP neural network is a feedforward network where information flows from input
to output. It is based on error back-propagation. When the prediction error exceeds a
certain value, according to the prediction error, back-propagation continuously adjusts
the parameters of the network to be closer to the expected output [25]. Each iteration

https://cds.climate.copemicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
http://106.37.208.233:20035/
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of BP neural network algorithm includes two processes, forward and reverse calculation
process [26]. In forward calculation, the data are weighted and summed, and through the
activation function, the data are transmitted forward, layer-by-layer, to obtain the output.
The reverse calculation is used to update the parameters. When the error performance
function cannot reach the expected value, the gradient descent method will be used to
gradually correct the weight bias of the output layer and the hidden layer in reverse to
reduce the error.

Assuming that the input layer, the hidden layer and the output layer have n, m,
and s neurons, respectively, the input–output relationship of each layer is shown in
Formulas (1)–(3):

Input layer : Xi = xi i = 1, 2, . . . , n (1)

Hidden layer : Aj = f

(
n

∑
i=1

wijXi + bj

)
j = 1, 2, . . . , m (2)

Output layer : Ok = g

(
m

∑
j=1

wkj Aj + bk

)
k = 1, 2, . . . , s (3)

where x is the input variable, w is the connection weight, b is the bias, and f is the activation
function, such as Sigmoid, TanH, and ReLU; g is the linear transfer function.

In the weight update stage, in order to minimize the value of the error performance
function Ek, the gradient descent algorithm can be used to gradually correct the value of
the connection weight and bias between the output layer and the hidden layer. The update
of the error performance function and the weight of each layer is shown in Formula (4)–(6):

Error performance function : Ek =
1
2
(Ok −Yk)

2 (4)

output layer : d = (Yk −Ok)g′
(

wkj

)
, wkjnew = wkj + η1dAj (5)

Hidden layer : h =
s

∑
k=0

dwkj f ′
(
wji
)
, wjinew = wji + η2hxi (6)

Y is the true value, d and h represent the gradient term of the neuron, respectively, and
η1 and η2 are the learning rates. The update step for biases is similar to that for weights.

After many experiments, the settings of the fully connected BP neural network used in
this study are as follows: the activation function of the hidden layer adopts the hyperbolic
tangent s-shaped activation function tanh; the transfer function of the output layer adopts
the linear activation function; the optimization method adopts the Levenberg–Marquardt
algorithm; the hidden layer is set to 18 layers; the learning rate is 0.01; the validity check
is set to 10 times; the maximum number of iterations is 1000 times; the initial weight
is random.

3.4. Experiment Design

The processed data are randomly divided into training set, validation set, and testing
set according to the ratio of 7:1.5:1.5. We normalized each input variable to eliminate the
dimensional difference, add/subtracted 10% of itself, and obtained the absolute value of
MIV for 43 variables to analyze it. Depending on whether or not seasonal factors were
considered, different forecasting models were trained. Then we determined the quality
of the model by calculating the mean absolute error (MAE) and root mean square error
(RMSE) of the real and predicted values. The optimal model was selected to predict the
PM2.5 concentration in Beijing–Tianjin–Hebei–Shanxi, and the spatiotemporal analysis was
carried out. The technical route is shown in Figure 2.
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The changes in PM2.5 mass concentration tend to have strong seasonality as the
weather conditions, underlying surfaces, and pollution sources change. So, three groups
of models were designed for comparison when constructing the AOD-PM2.5 model. The
input of Group 1 were pure data of the whole year without the seasonal flag. The input of
Group 2 was based on Group 1, adding a seasonal flag variable to enhance the sensitivity
to the season, specifically: spring (March, April, May) marked with 1, summer (June,
July, August) marked with 2, autumn (September, October, November) marked with 3,
and winter (December, January, February) marked with 4. Group 3 trained the model for
the four seasons, respectively. All settings were held fixed but the dataset was randomly
assigned and trained again. One must repeat the above operations 30 times to eliminate
the difference caused by the randomness of model training

4. Results
4.1. MIV of Input Variables

In this study, the MIV of AOD and 42 other remote sensing variables, such as the
fine-mode AOD and cloud fractions from satellite products, were all analyzed. Table 1 lists
the MIVs of the most influential variables for the four seasonal models. Among the remote
sensing variables, the PM2.5 mass concentration in spring and autumn was most affected
by the variable called Corrected_Optical_Depth_Land_wav2p1, more correlated with the
AOD at 2.13 µm. The fine mode fraction in spring was lower than other seasons as shown
in Figure A1. This is also related to the dust storm events [27] because the scattering and
absorption for large aerosol particles can also affect the satellite observation at 2.13 µm,
which means large AOD at 2.13 µm, unlike fine particles. Moreover, it can be explained by
the surface reflectance changes due to vegetation growth cycles. The summer PM2.5 mass
concentration is most affected by the variable called Optical_Depth_Land_And_Ocean,
which is more correlated with the AOD at 0.55 µm. In summer, the surface characteristics are
stable and fine-mode particles dominate, so the total AOD can better represent PM2.5 mass
concentration, which is consistent with previous studies [28]. The PM2.5 mass concentration
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in winter is most affected by the variable called Optical_Depth_Ratio_Small_Land, which
is the fine mode optical thickness. This is because the total AOD can be affected by the
coarse particles, such as dust events in the winter in northern China, fine-mode AOD can
better characterize the pollution events related to fine particles. Moreover, the influence of
longitude is greater than latitude in spring, autumn, and winter, indicating that the gap
between the longitudes of PM2.5 is larger, which is due to the blocking effect of the Taihang
Mountains, which run north and south. However, there is no significant difference in the
influence of latitude and longitude in the summer, indicating that the distribution of PM2.5
in the summer is even. The sums of each variable MIV for the four seasonal models are
shown in Table A1, listed from strong to weak.

Table 1. The most influential variable per season.

No. Spring Summer Autumn Winter

1
Corrected_Optical_Depth_

Land_wav2p1 2.13 µm
(6.79%)

Optical_Depth_Land_And_
Ocean 0.55 µm (4.62%)

Corrected_Optical_Depth_
Land_wav2p1 2.13 µm

(4.65%)

Optical_Depth_Ratio_
Small_Land (5.15%)

2 Aerosol_Cloud_Fraction_
Land (6.70%)

Corrected_Optical_Depth_
Land 0.47 µm (4.38%)

Aerosol_Cloud_Fraction_Land
(4.62%) Longitude (5.13%)

3 Optical_Depth_Land_And_
Ocean 0.55 µm (6.51%) Longitude (4.36%) Corrected_Optical_Depth_

Land 0.66 µm (4.53%)
Quality_Assurance_Land

(4.89%)

4 Quality_Assurance_Land
(4.83%) Aerosol_Type_Land (4.28%) Quality_Assurance_Land

(4.42%)
Corrected_Optical_Depth_

Land 0.47 µm (4.74%)

5 Corrected_Optical_Depth_
Land 0.66 µm (4.38%)

Image_Optical_Depth_Land_
And_Ocean 0.55 µm (4.17%)

Corrected_Optical_Depth_
Land 0.55 µm (4.25%)

Image_Optical_Depth_Land_
And_Ocean 0.55 µm (4.37%)

4.2. Evaluation of PM2.5 Models

The fitting performance of each group of models on the testing set is shown in Table 2.
Comparing Groups 1 and 2, it can be seen that the indicators of Group 2 with the sea-
sonal flag are better than that of Group 1, but the improvement is not significant. The
improved fitting performance after adding the seasonal flag reflects the importance of
PM2.5 seasonality.

Table 2. Comparison of the prediction performance of the three groups of models on the test set.

Which Group MAE RMSE R

Group 1 21.5 32.19 0.70
Group 2 20.55 29.46 0.72

Group 3_Spring 21.05 30.50 0.85
Group 3_Summer 18.99 14.28 0.75
Group 3_Autumn 17.26 24.45 0.81
Group 3_Winter 32.86 45.84 0.78

From the comparison of the seasonal models in Group 3, the indicators of MAE and
RMSE show a trend, i.e., summer < autumn < spring < winter, and correlation coefficient
R has a different trend, i.e., spring > autumn > winter > summer. It is indicated that
although the fitting bias in summer is small and the data are more concentrated, the fitting
correlation is low. There is a big difference between summer and winter in MAE and RMSE.
The indicators besides R in winter are more than twice as high as those in summer, the
fitted value and expected output value in winter are relatively scattered. The difference in
R between spring and summer shows that the model performance is good in the spring and
slightly less in the summer. From the comparison of the fitting performance of the three
groups, the changes of PM2.5 mass concentration has a strong seasonality, which needs
seasonal modeling. For the seasonal models, the winter model has the worst evaluation
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indicators because of the lack of available data in this season. Compared with Groups 1, 2,
and 3, the difference in R is not obvious.

In order to further compare the fitting and prediction ability of the four seasonal
models, the scatter points with the predicted and observed values in the testing set for
four seasons are displayed in Figure 3. It can be seen that the predictions of the models are
quite different. Overall, the correlation coefficient R of the four seasons is above 0.7. The R
between the observed and estimated values in spring reaches 0.85, which is the best in the
four seasons. However, the RMSE reaches 30.5 µg/m3 in the spring, which is related to the
high PM2.5 mass concentration in the spring. In the summer and autumn, predictions for
low values are better, while predictions for high values usually underestimate and have
some errors. In the winter, the distribution of the scatter points of predicted and observed
value has relatively large discreteness, but the correlation coefficient remains at 0.78. The
RMSE in the winter reaches 45.84 µg/m3, because there is ice and snow on the surface in
the winter, and MODIS has great uncertainty for the highlighted surface, so the prediction
error is larger than other seasons.
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4.3. Intermonth Variation of PM2.5 Mass Concentration

Based on the BP neural network model constructed above, using the MODIS products
and ERA5 meteorological data of Beijing–Tianjin–Hebei–Shanxi in 2017, we obtained the
regional monthly PM2.5 mass concentrations. Figure 4a shows the intermonth changes
of satellite-derived PM2.5 mass concentrations using seasonal models and that compared
with ground-based values in Beijing, Tianjin, Hebei, and Shanxi in 2017. The monthly
PM2.5 mass concentration shows obvious inter-monthly changes. The monthly PM2.5 mass
concentrations are less than 60 µg/m3 from June to August; they increased significantly
from December to February (more than 80 µg/m3), which is consistent with the observed
intermonth variation, with an average relative deviation of 17.7%. Figure 4b shows the vali-
dation of the satellite-derived monthly PM2.5 mass concentration in 2017. The binning error
(dots and error bars) is close to the 1:1 line, and there is a characteristic of overestimation at
low values and underestimation at high values. The mass concentration of near ground
PM2.5 is concentrated in the range of 20 to 125 µg/m3, which accounts for about 92.2% of
the total samples. The mean value of satellite-derived monthly PM2.5 mass concentration
is 78.98 µg/m3, which is 17.04% overestimated compared with the ground-based value
(67.48 µg/m3). The result by Yan et al. [29] is 69.38 µg/m3, which is roughly consistent with
the results of this study. The underestimation of the satellite-derived monthly PM2.5 mass
concentration occurs when concentration is above 150 µg/m3, which can be explained by
the underestimation of AOD in the case of heavy pollution [14,30]. The slight overestima-
tion occurs at the concentration below 75 µg/m3, which may be related to the bias of cloud
identification in the satellite inversion algorithm.
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Figure 4. (a) The inter-monthly changes of satellite-derived PM2.5 mass concentration with ground-
based values in Beijing, Tianjin, Hebei, and Shanxi in 2017. (b) Validation of satellite-derived monthly
PM2.5 mass concentration in 2017. The total number of samples is 1680, and the color scale indicates
the frequency of the samples at each gear (5 µg/m3). The black dashed line represents the 1:1 line.
Circles and error bars represent the statistical mean and standard deviation of the samples over each
statistical interval (10 µg/m3).

Figure 5 shows the frequency density distribution of near-surface PM2.5 mass concen-
tration, month-by-month, in 2017. The PM2.5 frequency density basically obeys a unimodal
distribution, which is consistent with Lu’s [31] study. The peak of frequency density dis-
tribution from June to September is at the bin of 50 µg/m3, while the peak in the winter
(December–February) appears in bins greater than 100 µg/m3. Other monthly peaks fall
in between. It indicates that PM2.5 mass concentration in north China in the winter is
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significantly higher, and the air quality in the summer is obviously better than that in other
seasons in 2017.
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4.4. Spatial Distribution of PM2.5 Mass Concentration

Figure 6 shows the spatial distribution of the quarterly average of the near-surface
PM2.5 mass concentration in the Beijing–Tianjin–Hebei–Shanxi region in 2017. The blank
regions in Figure 6 is due to satellite-retrieved AOD missed in high surface reflectivity.
More blank regions show up in the winter because there are more snowy/cloudy/rainy
days in winter [3,32]. In terms of spatial distribution, the PM2.5 mass concentration obtained
by this study and ground station observation has a high similarity, with the characteristics
of being high in the winter and low in the summer. The PM2.5 concentration shows similar
spatial patterns in different seasons. The area north of 40◦ N was less polluted. The
Taihang Mountains were the clear boundaries of the pollution intensity. The pollution in
the southeast of the mountain range was significantly higher than that in the northwest,
and there are obvious sudden changes where the terrain changes. Southern Hebei and
Southern Shanxi are the most polluted areas, the surrounding areas are second only to
this area, and the pollution in the north–south direction is slightly higher than that in the
east–west direction. This spatial distribution is consistent with the prediction results in the
study of Li et al. [28] using random forests.

The PM2.5 concentration in Beijing–Tianjin–Hebei–Shanxi is highest in the winter
(Figure 6d), lowest in the summer (Figure 6b), and similar in the spring (Figure 6a) and
autumn (Figure 6c). In the winter, the average monthly PM2.5 concentration in Beijing,
Tianjin, Hebei, and Shanxi exceeded 120 µg/m3. The pollutants less likely to diffuse were
mainly caused by the high atmospheric humidity, the low temperature, and the small
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surface wind speed. The temperature inversion and heating in the Beijing–Tianjin–Hebei–
Shanxi region also can have a significant impact on PM2.5 pollution. In the spring, sunshine
duration increases compared to that in the winter; the vertical exchange is strengthened,
so that the PM2.5 concentration decreases. In the summer, the precipitation and sunshine
duration are the largest and the top of the boundary layer is the highest, the pollutant
diffusion conditions are the best in the four seasons, and the PM2.5 concentration in China
is the lowest, but the Beijing–Tianjin–Hebei–Shanxi region is still generally greater than
35 µg/m3. In the autumn, the atmospheric stratification is relatively stable, the wind speed
is low, so that the PM2.5 pollution begins to accumulate.
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5. Conclusions and Discussion

Based on satellite remote sensing products and meteorological data, we used the BP
neural network to establish a prediction model for the PM2.5 mass concentration. The mean
impact value (MIV) was used to analyze the impacts of remote sensing variables on the
prediction of the PM2.5 mass concentration. There were three groups of models trained
to detect the seasonal influences, and then the seasonal models were applied to predict
the spatial distribution of the PM2.5 mass concentrations. We found that the BP network
model was effective at revealing the spatial and temporal distributions of the regional
PM2.5 mass concentrations. The predicted PM2.5 mass concentrations in different seasons
are affected by changes of surface reflectance and dominant particle size, which provides
experimental support for seasonal training and the use of multivariate remote sensing data.
The model, considering seasonal factors, is better than the annual model in all aspects.
The PM2.5 mass concentration predicted by the seasonal models shows strongly seasonal
changes, while the spatial pattern is similar, which can be related to the distribution of
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anthropogenic emissions and topographic features in the region. Compared with the
ground-based observations, the correlation coefficients (R) in the four seasons are all above
0.7, indicating that the seasonal models can predict PM2.5 mass concentration well.

This work contributes to the evolution of inputting spectral AOD from multiple
algorithms and fine AOD products for PM2.5 prediction. In addition to some land properties,
quality control valuables and accuracy valuables are simultaneously inputted in the model
to improve the prediction. However, there are some limitations of this model. The sufficient
data volume is a necessary guarantee for establishing an available model based on machine
learning methods, although many studies [21,23,32–35] have built PM2.5 estimation models
using one-year data. Considering that only one-year data were used in the training in
this study, the model has limited accuracy and is relatively weak in predicting PM2.5
mass concentration beyond 2017. Based on the development of satellite technologies and
the inversion algorithm, the estimation accuracy of PM2.5 can be improved in steps in
the future.

Although we obtained a good seasonal model to predict PM2.5 mass concentrations,
there is still room for improvement. In this study, the model inputs only considered satellite
products and meteorological parameters, whereas other parameters, such as geographic
elevation data, can be added to test the impacts on the network performance to optimize the
PM2.5 predicting model. Moreover, because the PM2.5 concentration of a site has a spatial
relationship with surrounding sites, a convolutional neural network can be adopted to
take the data of surrounding areas into account on the input. Moreover, PM2.5 has obvious
periodicity in time, and a time series neural network or other recurrent networks can be
used for modeling in the future.
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Appendix A

Table A1. Remote sensing variable information and MIV evaluation result table.

Variable
Number Variable Description Relative Contribution

Rate (Full Year)/%

1 time Day of the year 0.73

2 longitude Longitude 15.86

3 latitude Latitude 8.19

4 Land_Ocean_Quality_Flag Quality flag for land and ocean Aerosol retrievals 4.48

5 Land_sea_Flag Land_sea_Flag 4.37

6 Optical_Depth_Land_And_Ocean AOT at 0.55 µm for both ocean and land 17.85



Atmosphere 2022, 13, 825 13 of 15

Table A1. Cont.

Variable
Number Variable Description Relative Contribution

Rate (Full Year)/%

7 Image_Optical_Depth_Land_
And_Ocean

AOT at 0.55 µm for both ocean and land with all
quality data 15.23

8 Aerosol_Type_Land Aerosol type 8.25

9 Fitting_Error_Land Spectral fitting error for inversion over land 9.28

10–12 Corrected_Optical_Depth_Land
0.47, 0.55, 0.66 µm Retrieved AOT at 0.47, 0.55, 0.66 µm 13.36, 15.69, 16.37

13 Corrected_Optical_Depth_Land_
wav2p1 2.13 µm Retrieved AOT at 2.13 µm 16.75

14 Optical_Depth_Ratio_Small_Land Fraction of AOT contributed by fine dominated
model 15.38

15–16 Number_Pixels_Used_Land 0.47
and 0.66µm

Number of pixels used for land retrieval at 0.47
and 0.66 µm 2.25, 3.91

17–23 Mean_Reflectance_Land 0.47,
0.55, 0.65, 0.86, 1.24, 1.63, 2.11µm

Mean reflectance of pixels used for land retrieval
at 0.47, 0.55, 0.65, 0.86, 1.24, 1.63, 2.11 µm

4.23, 3.61, 2.64, 6.12, 6.46,
4.84, 4.51

24–30 STD_Reflectance_Land 0.47, 0.55,
0.65, 0.86, 1.24, 1.63, 2.11µm

Standard deviation of reflectance of pixels used
for land retrieval at 0.47, 0.55, 0.65, 0.86, 1.24,

1.63, 2.11 µm

8.48, 6.20, 4.67, 4.65, 6.61,
7.29, 5.08

31 Mass_Concentration_Land Estimated column mass (per area) using
assumed mass extinction efficiency 4.26

32 Aerosol_Cloud_Fraction_Land
Cloud fraction from land aerosol cloud mask

from retrieved and overcast pixels not including
cirrus mask

19.64

33–35 Quality_Assurance_Land Runtime QA flags 4.70, 9.99, 15.04

36 10 m wind field (u) 10 m wind field (u) 6.54

37 10 m wind field (v) 10 m wind field (v) 6.93

38 2 m dew point temperature 2 m dew point temperature 5.97

39 2 m temperature 2 m temperature 3.85

40 boundary layer dissipation Boundary layer dissipation 0.02

41 Boundary layer height Boundary layer height 1.10

42 surface pressure Surface pressure 0.07

43 total precipitation Total precipitation 6.56
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