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Abstract: Various studies are currently underway on PM (Particulate Matter) monitoring in view
of the importance of air quality in public health management. Spatial interpolation has been used
to estimate PM concentrations due to that it can overcome the shortcomings of station-based PM
monitoring and provide spatially continuous information. However, PM is affected by a combination
of several factors, and interpolation that only considers the spatial relationship between monitoring
stations is limited in ensuring accuracy. Additionally, relatively accurate results may be obtained in
the case of interpolation by using external drifts, but the methods have a disadvantage in that they
require additional data and preprocessing. This study proposes a modified IDW (Inverse Distance
Weighting) that allows more accurate estimations of PM based on the sole use of measurements. The
proposed method improves the accuracy of the PM estimation based on weight correction according
to the importance of each known point. Use of the proposed method on PM10 and PM2.5 in the
Seoul-Gyeonggi region in South Korea led to an improved accuracy compared with IDW, kriging, and
linear triangular interpolation. In particular, the proposed method showed relatively high accuracy
compared to conventional methods in the case of a relatively large PM estimation error.

Keywords: particulate matter; mapping; interpolation; modified IDW

1. Introduction

Urban air quality affects human life and health [1], and PM (Particulate Matter), one
of the most important factors in determining air quality in industrialized countries, has
adverse effects on physical and mental health [2–4]. PM causes physical health problems, in-
cluding respiratory diseases, cardiovascular diseases, acute stroke, and fatalities [5–12], and
is also known to adversely affect mental health, such as with depression and suicide [13].

As PM emerges as an important factor in public health management, real-time PM
monitoring has become critical for PM control and reduction [14–17]. However, the high
costs for installing and managing PM monitoring sensors and the limited detection range
of these sensors make it difficult to analyze accurately the spatial variability of PM con-
centrations [18]. In other words, given that it is difficult to monitor sufficiently dense PM
concentrations for an entire region of interest, local PM concentration information cannot
be monitored continuously using only sensor measurements. In South Korea, additional
PM stations have been installed during the past 20 years to manage public health through
PM concentration monitoring. However, despite the continually increasing number of
PM monitoring stations, each monitoring station covers an area which is far beyond its
detection range. That is, one PM monitoring station is responsible for an area spanning
approximately 167 km2 based on the entire country, or an area of 11 km2 based on the
capital Seoul, wherein the monitoring stations have been constructed at the highest density.
Therefore, it is challenging to observe the variation and spatial distribution of local PM
concentrations only based on the monitoring station information, while an accurate predic-
tion of PM concentrations is necessary for unmonitored locations to precisely estimate the
public’s exposure to PM [17,19–22].
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Spatial interpolation is one of the most reasonable and effective methods used to
provide PM estimates for unknown points. It has been used in many previous studies
to mitigate the limitations of monitoring networks [23–25]. Interpolation methods for
PM estimation can be classified into (i) conventional methods using only relative location
between points and (ii) methods with external drift. These two methods have opposite
advantages and disadvantages. The conventional methods are relatively simple and easy
to implement. However, they cannot reflect meteorological and geographic characteristics
in PM estimation. Conversely, the interpolations with external drifts might estimate
accurate PM concentration by using meteorological and geographic information, but the
implementation is relatively limited because various additional data are required.

IDW (Inverse Distance Weighting) and kriging are representative conventional inter-
polation methods for PM estimation [18]. One of the most commonly used interpolation
algorithms, IDW, is a deterministic interpolation method that uses the inverse distance
between points for weighting. Various studies used IDW for PM trend evaluation [2,23,26]
and long-term PM exposure analysis [7–9], as the process of IDW is fast and easy to
use [12,27,28]. However, conventional IDW has limitations in local PM estimation, because
it assumes a constant distance decay [27,29,30]. Kriging is a stochastic interpolation method
that considers the distance between the measurement point and the prediction location,
and the overall spatial arrangement between the points [6,23]. Many previous studies used
kriging for macroscopic PM distribution mapping and evaluation [3,21,31–33]. The reason
is that kriging can produce adequate results even with nonlinear data [14] and take into
account variation bias. However, kriging requires care when modeling spatial correlation
structures and needs relatively intensive computing [34].

The common disadvantage of conventional interpolation algorithms is that these
methods are difficult to use for considering the effects of local or short-term characteristics
of a target area in PM estimation [34,35]. This limitation of the conventional methods
makes it difficult to perform accurate and stable interpolation for a local area [36] and also
to distinguish the optimal algorithm [23,37,38]. In many previous studies, competitive
evaluations have been performed to distinguish the best conventional method for PM
estimation; however, the best interpolation method was varied in each different study.
Some studies suggested that IDW is more suitable for PM estimation than the kriging-
based method [6,39–41]. Conversely, in the other studies, the accuracy of the estimated PM
concentration was the highest in the kriging method [1,20,25,42–44].

Interpolation methods with external drifts can reduce the limitation of the conven-
tional method and improve the accuracy of PM estimation by considering the geographic
and meteorological characteristics of the target area in PM estimation. In previous studies,
the PM interpolation methods with external drifts have shown more accurate results than
the conventional methods by using data such as wind, temperature, humidity, visibility,
precipitation, transportation network, land use, DEM (Digital Elevation Model), and pop-
ulation [5,14,19,35,45]. However, interpolations with external drifts have the following
disadvantages. First, the interpolations with external drifts are more difficult to implement
and limited to apply than the conventional methods. The methods with external drifts
require various data and corresponding handling processes in each data. Some algorithms
use a dozen kinds of data in PM interpolation and occasionally require big data such
as DEM, satellite, and aerial imagery [35]. Therefore, additional processes and intensive
computing are entailed in PM interpolation with external drifts. Furthermore, the optimal
method is unclear because essential drifts vary depending on the characteristics of each
target area [18,38,46].

The objective of this study is to suggest a PM interpolation method that solves the
limitations of the previous interpolation methods. More specifically, this study aims to
develop a PM interpolation method that reflects the comprehensive characteristics of the
target area without external drifts. The modified IDW proposed in this study adopts weight
adjustment to reflect the effects of characteristics of the target area. The weight adjustment
of the proposed method is conducted by means of the correction coefficients, which are
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derived empirically using only the observations. Therefore, the proposed method requires
no variable input in addition to the PM observations and is easier to implement compared
with the interpolation methods with external drifts. Additionally, the proposed method
may provide accurate estimations compared with the conventional methods that cannot
reflect geographic and atmospheric characteristics.

This paper describes the research contents in the following order. First, Section 2.1
describes the PM observations used in the experiment and the preprocessing of the ob-
served values. Section 2.2 explains the conventional interpolation methods (IDW, kriging,
linear triangular interpolation) used in the cross validation and a proposed modified IDW.
Subsequently, Section 3 describes the comparative analysis of the interpolation results for
the subject area. Finally, Section 4 draws conclusions on the findings of this research and
looks ahead to upcoming work.

2. Materials and Methods
2.1. Study Area and Preprocessing for Experimental Data

The subject area of this study is the Seoul and Gyeonggi-do regions in Korea. Seoul,
the capital of Korea, and the nearby Gyeonggi-do region, are important areas for estimat-
ing PM concentrations at the local level because there are densely populated cities with
more than 20 million people. Additionally, the study area is suitable for determining the
performance of spatial interpolation, as it encompasses various factors that can affect the
local distribution characteristics of air quality, such as high-rise buildings, roads, vehicles,
and topographical changes.

In this study, the hourly PM2.5 and PM10 concentration data measured at a total of
100 national monitoring stations for 1 year and 6 months (1 January 2020 to 31 May 2021)
were used. The PM concentration data were acquired through sensors that employ a β-ray
absorption method installed in each monitoring station (Figure 1b). In the subject area of
the study, a PM monitoring network, which consisted of a total of 130 national monitoring
stations, was operated. While monitoring station data with measurements omitted for more
than 100 days during the target period of 1 year and 6 months were excluded from the
experiment, PM observation data measured at a total of 100 monitoring stations were used.
Figure 1b shows the monitoring stations (locations of PM concentration measurement)
used in this study. Among all monitoring stations, observations at 70 monitoring stations
(blue dots in Figure 1) were used as reference data, whereas observations at the remaining
30 monitoring stations (red dots in Figure 1) were used for accuracy validation. The average
distance from one reference station to the nearest four reference stations is 7.75 km, and
the average distance from one validation station to the nearest four reference stations is
5.45 km (Table 1).

Table 1. Characteristics of PM monitoring stations used in experiments.

Number of Reference Stations 70

Number of Validation Stations 30

Distance

from a reference
station to the nearest
four reference stations

mean 7.75 km
min 2.42 km
max 22.95 km

from validation
station to the nearest
four reference stations

mean 5.45 km
min 1.59 km
max 15.27 km

In this study, outliers in the PM concentrations were eliminated by preprocessing the
data prior to interpolation. Although the hourly PM concentrations used in the study had
been passed through a simple screening process depending on whether the sensors were
operating normally, and based on the rate of change in the measured values, some outliers
still remained. Therefore, the data in this study were preprocessed for data refinement based
on (i) a comparison between PM10 and PM2.5 concentrations and (ii) local outlier detection.
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in experiments.

In the first step of data refinement, when the PM10 concentration is less than the PM2.5
concentration, both the PM2.5 and PM10 measurements are eliminated. PM2.5 and PM10
indicate Particulate Matter which is smaller than 2.5 µm and 10 µm, respectively, and PM10
includes PM2.5. Therefore, when the PM10 concentration is less than PM2.5, either of these
two levels can be considered an erroneous measurement.

In the second step of data refinement, considerably high or low PM concentrations
are excluded from the PM concentrations measured continuously at a single location. In
this study, “an element that is greater than three scaled media development (MAD)” was
regarded as an outlier among the PM concentration values observed for six consecutive
hours. Herein, the scaled MAD is calculated based on Equations (1) and (2), where M is
an observed PM concentration, k is the scaling factor, median is the median function, and
erfcinv is the inverse comprehensive error function.

MAD = k×median(abs(M−median(M))), (1)

k =
1√

2× er f cinv
( 3

2
) ≈ 1.4826 (2)

2.2. Spatial Interpolation Method for PM Estimation

This study proposes a modified IDW method that introduces a distance weighting
correction coefficient to conventional IDW to improve the accuracy of PM2.5 and PM10
interpolation. In this section, the proposed modified IDW is described in detail. Prior to
the description of the proposed method, the conventional interpolation methods used for
cross validation are described briefly, including IDW, kriging, and linear triangular.

2.2.1. Conventional Spatial Interpolation Method for Cross Validation

The first approach used in the cross validation of the proposed interpolation method
was IDW. IDW interpolation is based on the assumption that the values at points close
to each other are more similar than at points which are further away. That is, IDW is a
deterministic interpolation method that assumes a constant spatial distance–attenuation
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relationship [27,47]. Accordingly, in IDW, a relatively greater weight is assigned to a known
point located close to unknown points, and a relatively smaller weight is given to a known
point located far away. This concept of IDW is expressed as shown in Equations (3) and (4),
where Ẑ is the estimated value used for the target interpolation location, n is the number of
reference (measured) values near the target location, Wi is the weight of the ith reference
(measured value), di is the distance between the target location and the ith point, and α is
a constant power used to adjust the diminishing strength in relationship with increasing
distance. In this study, α was set to the value of two based on previous studies. Previous
studies on PM interpolation [1,8,48] suggested an α value of two as optimal for PM.

Ẑ =
n

∑
i=1

WiZi (3)

Wi =

(
1
di

)α

∑n
i=1

(
1
di

)α (4)

The second conventional interpolation method used in the comparison and valida-
tion of the proposed interpolation method is ordinary kriging (OK). The kriging method
determines a value based on statistical analysis of the neighboring measured values. In
other words, kriging determines the weighting using spatial autocorrelation rather than
the inverse distance between data [25]. Kriging is classified into ordinary, simple, universal
kriging, etc., depending on the stochastic properties of the random field and the variable
degrees of stationarity assumed [40]. Among the different kriging methods, ordinary krig-
ing (OK) was used in this study for the following reasons. OK is one of the most commonly
used kriging methods [14] and has been applied for PM interpolation in several previous
studies [15,16,25,27,33,36,44,45]. Particularly, a few previous studies [25,36,44] suggested
that OK was the most suitable approach among the kriging methods for PM interpolation
in Korea. Son et al. [25] identified OK to be the most suitable for PM interpolation according
to the cross validation of ordinary, simple, and universal kriging. Kim et al. [44] determined
that OK with the Gaussian semivariogram model was the most suitable kriging approach
for PM interpolation in Korea. Accordingly, Gaussian model-based OK was applied in this
study for the cross validation of the proposed method.

The last interpolation method used for cross validation is linear triangular interpo-
lation. This method uses the nearest three known points to interpolate for the unknown
point. That is, the linear triangular method is based on the assumption that x, y, and Z
(measurements) of the unknown point should be placed over a three-dimensional (3D)
triangular plane with the nearest three known points (xi, yi, Zi) as vertices. This method has
the advantage of processing efficiently large-scale data while providing simple calculations
and yielding relatively accurate estimates [49]. As an interpolation method that is easy to
implement with a very short processing time, the linear triangular method was selected as
a method for cross validation in this study.

2.2.2. Proposed Modified IDW Interpolation

The modified IDW proposed in this study does not determine which and how external
drifts affect the PM distribution, but only empirically estimates the total amount of the
influence of various external drifts on the PM distribution to correct the distance-based
weights. In the proposed method, when the observation does not follow the distribution
tendency of the other, the observation is considered to be strongly influenced by external
drifts. Therefore, the weight of this observation is adjusted to be higher, because it reflects
the characteristics of the local area better than other observations. This approach contributes
to efficient and accurate interpolation because characteristics of the target area can be
reflected comprehensively without external drifts.

In the proposed method, it is believed that as the estimation accuracy based on the
use of neighboring (known) points decreases, the observation at the corresponding point
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for the estimation of nearby unknown points becomes more important. Conversely, when
the estimated PM concentration is very similar to the actual measured value, the PM in
the nearby area can be estimated with sufficiently high accuracy using the neighboring
known points, and the corresponding point becomes less important. In other words, in the
proposed method, known points with relatively low estimation accuracy are considered to
have been locally affected by external drifts that are distinctive from other known points,
and are thought to be more important for estimating nearby unknown points, thus resulting
in a greater distance weight. Figure 2 shows the modified IDW process (Figure 2).
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In the first step, the interpolation accuracy for each known point is calculated based on
the Leave-One-Out Cross Validation (LOOCV). Given n measurements (Z1, Z2, . . . , Zn−1,
Zn) for n points (green circles in Figure 3a), an estimate (Ẑi) for the ith point (blue circle in
Figure 3b) is calculated based on IDW interpolation using the neighboring observations
(Figure 3b). That is, the estimated value for each known point is derived by performing
Leave-One-Out interpolation. Subsequently, the absolute error, ei, of LOOCV is calculated
using the observed value, Zi, at the ith point. This first step is repeatedly performed until
the absolute error of LOOCV is calculated at all known points (Figure 3c).

In the second step, the weight correction coefficient for each known point is calculated
by normalizing the absolute error of LOOCV. The normalized absolute error, which is the
weight correction coefficient, is calculated by Equation (5). In Equation (5), ci is the weight
correction coefficient for the ith known point, and emax is the maximum absolute error of
LOOCV. The weight correction coefficient calculated based on this normalization has a
value in the range from one to two. That is, the weight correction coefficient is equal to
one for the point at which the absolute error of LOOCV is zero, whereas the correction
coefficient is equal to two for the point which exhibits the maximum error. This process is
repeated until the correction coefficients of all known points are determined (Figure 3d).
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In the third step, the weight is adjusted using the correction coefficient, and IDW
interpolation is performed. When there is an unknown point T (red circle), as shown in
Figure 3e, the interpolation for the corresponding point is calculated based on Equations
(6) and (7) (Figure 3f), where ẐT is the estimated value of the unknown point calculated
based on interpolation, n is the number of neighboring known points, Wc

i is the corrected
weight for the ith known point, and dT

i is the distance between the ith known point and
point T. In Equation (7), when there is a known point with a correction coefficient of one,
the inverse distance of the corresponding point is reflected in the weight calculation as it is.
Conversely, in the case of a known point with a correction coefficient of two (maximum
error), the inverse distance of the corresponding point is reflected in the weight calculation
as a double value. In other words, the known point with the low accuracy associated with
LOOCV is considered to be a point reflecting local specificity and is considered important
in the interpolation process.

The main difference between the proposed method and conventional IDW is that the
proposed method does not depend solely on the distance between points. In the conven-
tional IDW, once the known and unknown points are determined, the distance between the
points is identified, and the distance weighting does not change by default. Conversely,
given that the weight of the modified IDW is adjusted according to the significance of the
observed value at a specific point in time, the characteristics of the observed value at that
point are considered in interpolation.

ci = 1 +
ei

emax
(5)

ẐT =
n

∑
j=1

Wc
j Zj (6)
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Wc
i =

ci ×
(

1
dT

i

)α

∑n
j=1 cj ×

(
1

dT
j

)α (7)

3. Results and Discussion

The modified IDW proposed in this study is comparatively evaluated through esti-
mations for 30 points using the PM10 and PM2.5 data observed at 70 stations in Seoul-
Gyeonggi-do, Korea. The methods used for estimating the PM concentration included the
proposed modified IDW, IDW, kriging, and linear triangular interpolation. The perfor-
mance of the method was evaluated with the RMSE (Root Mean Square Error) and MAPE
(Mean Absolute Percentage Error) of estimated PM concentrations.

The modified IDW showed better performance than conventional methods for both the
PM10 and PM2.5 interpolation. Table 2 shows RMSE and MAPE of interpolations for PM10
and PM2.5. The results of modified IDW achieve the lowest RMSE and MAPE. The accuracy
of the interpolation methods in terms of RMSE and MAPE decreased in the order of the
modified IDW, IDW, linear triangular, and kriging. Figures 4 and 5 show the comparisons
of the PM10 and PM2.5 concentrations estimated with each interpolation method and the
observed values. The blue dots in the figures indicate the results of the proposed modified
IDW, and the red asterisks indicate the results obtained from the conventional methods.
Figures 4 and 5 show that the proposed interpolation method estimates PM10 and PM2.5
more accurately compared with the other methods

Table 2. PM interpolation errors for different algorithms.

Modified IDW IDW Kriging Linear Triangular

PM10
RMSE (µg/m3) 10.17 10.81 11.06 10.88

MAPE (%) 13.91 15.44 15.86 15.54

PM2.5
RMSE (µg/m3) 6.45 7.12 7.56 7.40

MAPE (%) 20.50 23.02 24.63 24.51
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In this study, in order to more clearly confirm the performance improvement of
the proposed method that came from the reflection of the local specificity that cannot
be explained by the relative positional relationship, the results of interpolations were
compared according to the AE (absolute error) level of the PM estimation. To this end, PM
estimations were classified into six groups according to AE levels: AE top 10%, 10–20%,
20–30%, 30–40%, 40–50%, and bottom 50%.

The performance of modified IDW was generally better than the conventional methods
for all AE groups. In particular, for groups of higher AE, the accuracy differences between
the proposed and the conventional methods were increased. Figures 6 and 7 show the
MAPE and RMSE of the PM10 interpolation for each AE group. These figures confirm the
MAPE and RMSE of PM10 estimations using the proposed method were generally lower
than the conventional methods regardless of the AE groups. Additionally, the larger the
value of AE, the relatively higher the accuracy is in the case of the modified IDW compared
with those of the other algorithms. That is, for the AE top 10% group, the MAPE and RMSE
values of the proposed method were 4.36–4.57% and 1.72–1.93 µg/m3 lower than the other
methods. Figures 8 and 9 show the MAPE and RMSE of the PM2.5 interpolation for each
AE group. The accuracy of the PM2.5 estimation for the AE groups exhibited a similar
tendency to that of PM10. That is, the proposed method achieved the lowest MAPE and
RMSE values. Furthermore, as the AE increased, the differences between the error of the
proposed and other methods increased. In the case of PM2.5, the MAPE and RMSE values
of the modified IDW in the AE top 10% group were 10.10–12.06% and 1.99–2.83 µg/m3

lower, respectively, than those of the other methods.
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In this study, the error is confirmed for each validation station to evaluate the proposed
method precisely (Table 3). Among all the validation stations, those that exhibited the high-
est error based on RMSE were the stations 131192 (20.98 µg/m3) and 131232 (15.10 µg/m3).
The reason that estimations of stations 131192 and 131232 show relatively lower accuracy is
as follows. Most spatial interpolation methods, including the proposed method, determine
the estimate within the maximum and minimum range of observations. Therefore, without
observations for a point showing a significantly different PM concentration, the accuracy
of PM estimations can be decreased, where stations 131192 and 131232 are located near
the industrial areas (Sihwa and Banwol industrial complex), and the reference stations
around them are located in residential areas (Figure 10), and they show consistently higher
concentrations of PM10 and PM2.5, respectively. At the time of observation (the year
2020), monthly mean PM10 concentrations of station 131192 were 19–25 µg/m3 higher, and
monthly mean PM2.5 concentrations of station 131232 were up to 12 µg/m3 higher than
the surrounding reference stations. On the other hand, the PM2.5 concentration of station
131192 and the PM10 concentration of station 131232 did not show a significant difference
from those of neighboring reference stations. This tendency of PM distribution explains the
reason for the highest errors in the two stations.

Table 3. RMSE values for different stations for PM estimation with modified IDW.

PM10 PM2.5

Station ID RMSE
(µg/m3)

Station
Identify (ID)

RMSE
(µg/m3) Station ID RMSE

(µg/m3) Station ID RMSE
(µg/m3)

111124 6.03 131145 12.03 111124 7.45 131145 7.83
111142 8.44 131163 13.67 111142 4.77 131163 5.80
111151 8.74 131192 20.98 111151 2.86 131192 8.46
111202 5.14 131193 8.67 111202 5.48 131193 7.27
111213 7.28 131223 9.59 111213 4.59 131223 6.56
111232 5.65 131232 14.49 111232 2.5 131232 15.10
111241 5.07 131341 10.57 111241 6.69 131341 6.45
111261 6.55 131382 14.26 111261 3.37 131382 5.66
111282 12.37 131383 10.66 111282 5.67 131383 5.97
111311 5.31 131413 9.20 111311 4.44 131413 6.81
131116 11.77 131442 11.72 131116 4.3 131442 7.34
131125 8.16 131502 6.58 131125 6.46 131502 4.61
131126 6.06 131532 7.80 131126 5.14 131532 5.92
131132 6.81 831154 6.67 131132 5.88 831154 6.55
131133 15.96 831155 8.16 131133 7.31 831155 4.74
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4. Conclusions

The aim of this study was to propose an interpolation method to accurately and
efficiently estimate PM10 and PM2.5. To this end, this study proposed a modified IDW
interpolation method. The proposed method does not require external drifts and has the
advantage of performing accurate PM interpolation through IDW weight correction.

In the proposed interpolation method, the inverse distance weight is adjusted using
the correction coefficient derived from empirical evaluations for PM observations. The
proposed method adjusts the weight of the known point higher, as the accuracy of the
corresponding LOOCV is lower. It is based on the assumption that the estimation and
observation values show the distinct difference for a point showing PM distribution that is
differentiated from the neighbors according to the characteristics of the local area.

In this study, the performance of modified IDW was comparatively evaluated with
conventional methods. The proposed method shows better performance in both PM10
and PM2.5 estimations compared with conventional IDW, kriging, and linear triangular
interpolation. The MAPE of PM10 and 2.5 estimations using the proposed method were
1.53–1.96% and 2.52–4.13% lower, respectively, than conventional methods. In particular, the
performance improvement of the proposed method was confirmed when the conventional
methods showed a large error. In the top 10% of the estimation error, the MAPE of PM10
and 2.5 using the proposed method were 4.36–4.57% and 10.10–12.06% lower, respectively,
than the other methods. However, the proposed method shows the limitation that the
estimated value is determined within the range of the minimum and maximum values of
observations, as with many previous spatial interpolation methods. Therefore, when there
is no observation for a point showing a significantly higher (or lower) PM concentration
than the neighboring area, the accuracy of PM estimations can be decreased.

This study will contribute to air quality monitoring in the following ways. The
modified IDW proposed in this study is significant in that it can support efficient spatial-
continuous PM monitoring. Next, we believe that the proposed method can be adopted for
various substances related to air quality. In future studies, we plan to advance further the
proposed method to take into account both spatial and temporal differences. We also intend
to develop air quality monitoring and mapping technologies by applying the proposed
interpolation method and imagery data.
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