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Abstract: A natural experiment conducted on the shrinking Salton Sea, a saline lake in California,
showed that each one foot drop in lake elevation resulted in a 2.6% average increase in PM2.5

concentrations. The shrinking has caused the asthma rate continues to increase among children, with
one in five children being sent to the emergency department, which is related to asthma. In this paper,
several data-driven machine learning (ML) models are developed for forecasting air quality and dust
emission to study, evaluate and predict the impacts on human health due to the shrinkage of the sea,
such as the Salton Sea. The paper presents an improved long short-term memory (LSTM) model to
predict the hourly air quality (O3 and CO) based on air pollutants and weather data in the previous
5 h. According to our experiment results, the model generates a very good R2 score of 0.924 and 0.835
for O3 and CO, respectively. In addition, the paper proposes an ensemble model based on random
forest (RF) and gradient boosting (GBoost) algorithms for forecasting hourly PM2.5 and PM10 using
the air quality and weather data in the previous 5 h. Furthermore, the paper shares our research
results for PM2.5 and PM10 prediction based on the proposed ensemble ML models using satellite
remote sensing data. Daily PM2.5 and PM10 concentration maps in 2018 are created to display the
regional air pollution density and severity. Finally, the paper reports Artificial Intelligence (AI) based
research findings of measuring air pollution impact on asthma prevalence rate of local residents in the
Salton Sea region. A stacked ensemble model based on support vector regression (SVR), elastic net
regression (ENR), RF and GBoost is developed for asthma prediction with a good R2 score of 0.978.

Keywords: air pollution; PM concentrations; Salton Sea; asthma prevalence

1. Introduction

Salton Sea is one of the largest lakes in California. Since the water in the Salton Sea
cannot be flown to the ocean, the concentrated salt level keeps increasing and reaches
50 percent more than the ocean [1]. It can be shown from the natural experiment [2] that the
shrinking of the Salton Sea leaded to increase in the PM2.5 concentrations, which can cause
the asthma rate to keep going up among the kids in the Salton Sea region [3]. Recently, soil
evaluation [4] and water quality prediction [5] of the Salton Sea have been made by using
machine learning (ML) and big data techniques. However, few publications focus on Salton
Sea environmental pollution analysis and impact study. This paper aims to develop data-
driven ML models to forecast the air quality, dust emission due to shrinkage of the Salton
Sea and its impact on human health. The Salton Sea area has one of the worst air qualities
in the U.S. With the industrial emission and the pollution, and the special geographic
environment, their residents, are suffering from the pollution and have many health issues.
The air pollution in the imperial county has a serious impact on their resident’s health,
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especially for the kids still in K–12. In the imperial county, one of the elementary schools
has 17 percent of students suffering from Asthma. Those 64 students have inhalers kept in
the office [6]. That is a relatively high percentage for a single disease in a certain area, which
can show how much the factorial dust affects people’s health. The main factors causing
bad air quality in the Salton Sea area are microparticles in the air. When the particle has a
diameter of fewer than 10 µm, it can enter the human lungs and bloodstream [7]. People
can develop lung diseases like asthma after being exposed to microparticles in the air for a
long time. Because of the poor air quality, lots of residents already have existing diseases
like asthma, and the coronavirus is attacking human beings’ lungs, which leads to a high
mortality rate. The author DeLara claims that, even after more than a decade of controlling
the pollution in the Salton Sea, the number of asthma and chronic obstructive pulmonary
disease (COPD) patients still has not decreased [8].

Our efforts focus on forecasting air quality and dust emission to study the impacts on
the asthma prevalence rate of local residents in the Salton Sea region. The models used in
air quality prediction have connections to either the mechanism models or the ML models.
Due to the significant growth in sensor technologies, a great deal of data has been made
available in the public domain. The potential of ML models has earned a significant amount
of attention. Similar to many previously reported models [9–32], our paper is related to the
ML models.

In this paper, we have proposed an improved long short-term memory (LSTM) model
to predict the hourly O3 and CO based on air pollutant and weather data in the previous
5 h with higher accuracy. In addition, while most of the existing papers generally focus
on one method to predict the particulate matter (PM) concentration [17–21,26], our study
aims to develop two methods based on the different proposed ensemble models to predict
the PM concentration by using the weather data and the satellite data, respectively. This
paper shows real-time satellite-based PM2.5 and PM10 concentration maps in the Salton
Sea area to visualize the regions with the highest and lowest amount of pollutants. While
most of the research focuses on forecasting the asthma prediction by a single model [27–31],
this paper proposes a stacked ensemble the model for asthma prevalence rate of the local
residents in Salton Sea region with a higher accuracy, in which the value of R2 is 0.978.

Structure: The rest of this paper is organized as follows. The related work is sum-
marized in Section 2. Section 3 shows a detailed description of training and testing data
preparation. Section 4 describes the methodology for each selected model and the proposed
ensemble models. In Section 5, the results and case study are provided. Section 6 discusses
the results of this research in the light of other similar studies. Section 7 concludes this
paper.

2. Related Work
2.1. Literature Survey

Due to the lake shrinkage and exposure, dry lake beds are becoming potential sources
of particulate matter, and it further increases the air pollution. According to Gholami et al.,
the dry bed of the Jazmurian great lake is the main source of dust emissions in that region [9].
The models used in air quality prediction have connections to either the mechanism models
or the ML models. Similar to many previously reported models [9–32], our paper is related
to the ML models, which learn from the data and explore the relationship between air
quality data and other parameters.

Many ML and neural network methods have been applied to predict air pollutant
concentrations and dust emissions. Some research is related to the models such as LSTM,
gradient boosting decision trees (GBDT) and deep feed-forward neural networks (DFNN),
which are for shorter time predictions [11]. Other research has tended to focus on models
such as least absolute shrinkage and selection operator (LASSO), support vector regression
(SVR), random forest (RF), k-nearest neighbor (kNN), eXtreme gradient boosting (XGBoost)
algorithm, and artificial neural networks (ANN) for a longer time predictions [10]. Fan et al.
compared the ML model, recurrent neural network (RNN) deep learning (DL) model and
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non-RNN model, and then forecast PM2.5 by using historical data from the past 48 h [11].
In this paper, we focus on making accurate predictions using the fewer features with the
least amount of data, and we can obtain better accuracy with 5 h of historical data for
CO, O3, PM2.5 and PM10 concentration prediction. Azid et al. utilized multilayer perceptron
(MLP) feed-forward ANN (MPFF-ANN) and principal component analysis-artificial neural
networks (PCA-ANN) to predict air pollutant index [12]. In [13], a spatiotemporal DL
(STDL)-based air quality prediction method that inherently considers spatial and temporal
correlations is proposed, which performs better than the spatiotemporal artificial neural
network (STANN), autoregression moving average (ARMA) and SVR models. Silas et al.
provided linear regression (LR) and multivariate LR (MLR) models to monitor and forecast
PM10 [14]. Different from the above-noted existing research, our study aims to develop two
methods based on the different proposed ensemble models to predict the PM concentration
by using the weather data and the satellite data, respectively. Table 1 lists the ML and DL
models for air quality and dust.

Table 1. Machine learning (ML) and deep learning (DL) models for air quality and dust (created
by author).

Reference Region Purpose Model Accuracy Input Parameters

[9] Tehran, Iran

Predicting and
mapping land
susceptibility to dust
emissions

Cforest MAE: 3.2%

Soil, topography, climatic variables,
vegetation, geology, land use

Cubist MAE: 10.6%
Elastic Net MAE: 10.7%
ANFIS MAE: 11%
BMARS MAE: 11.2%
XGBoost MAE: 11.3%

[10] Ankara, Turkey Predicting 24-h PM10

LASSO RMSE: 25.6

PM10

SVR RMSE: 25.2
RF RMSE: 23.5
kNN RMSE: 23.5
XGBoot RMSE: 25.0
ANN RMSE: 20.8

[11] Jingjinji area,
China

Predicting future
1~8-h PM2.5

LSTM RMSE: 35.73 PM2.5, PM10, O3, SO2, NO2, CO,
temperature, wind direction,
wind speed, humidity

GBDT RMSE: 59.03
DFNN RMSE: 44.96

[12] Malaysia Predicting air
pollutant

MPFF-ANN RMSE: 10.026
R2: 0.615 CO, O3, PM10, SO2, NO2, CH4,

NmHC, THC
PCA-ANN RMSE: 10.17

R2: 0.618

[13] Beijing, China Predicting PM2.5

STDL RMSE: 14.96

PM2.5
STANN RMSE: 16.19
ARMA RMSE: 24.40
SVR RMSE: 22.04

[14] Cyprus Forecasting air
pollution

LR R2: 0.8 PM10, aerosol optical depth, and Synoptic
Map DataMLR R2: 0.83

[15] Italy Predicting PM2.5 RF
R2: 0.86 PM2.5, PM10, aerosol optical depth,

weather, vegetation index, spatial dataPredicting PM10 R2 0.84

[16] Kuantan, Malaysia Predicting air quality MLP RMSE: 8.14 Air quality, meteorological variables

[17] Quito, Ecuador Predicting daily PM10 MLP R2: 0.68 Surface reflectance bands of Landsat-8,
NDVI, NDSI, SAVI, NDWI, LST

[18] Chile Predicting daily PM10 MLP R2: 0.58 AOD, meteorological variables

[19] Alberta, Canada Predicting daily PM10 MLP R2: 0.61 AOD, meteorological variables

[20] Malaysia Predicting daily PM2.5 MLP R2: 0.60 AOD, meteorological and spatial variables

[21] Tehran, Iran Predicting daily PM2.5 RF
R2: 0.81
MAE: 9.93
RMSE: 13.58

Satellite image, meteorological variables

[22] Shanghai, China Predicting PM2.5
Ensemble
Model 1

MAE: 6.19
MAPE: 0.162

PM2.5, meteorological data, season data,
timestamp data
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Table 1. Cont.

Reference Region Purpose Model Accuracy Input Parameters

[23] Kuwait Forecasting ozone LSTM MAE < 2 Hourly air quality, meteorological data

[24] Taiwan Predicting hourly air
quality CNN RMSE: 7.37 Hourly ozone, particulate matter PM2.5

and sulfur dioxide

[25] Seoul, South Korea Predicting ozone CNN MAE: 8.90
Ground − level ozone and NO2,
atmospheric pressure, wind speeds and
relative humidity

[26]
Aksaray, Alibeyköy,
Beşiktaş, Esenler,
Istanbul

Forecasting PM10 in
upcoming hours DFN RMSE: 13.67 PM10 density, meteorological data

pollution data, traffic data

Abbreviations: GRU (gated recurrent unit), Ensemble Model 1 (ensemble model of RNN, LSTM, and GRU), CNN
(convolutional neural network), DFN (deep flexible network).

In addition to an air quality comparison, we also performed an existing survey for ML-
based impact analysis. These included papers spread across various regions that use various
ML models for studying the impact of environmental conditions on human health. Table 2
lists the summary of various research papers highlighting the impact of air/dust/other
environmental conditions on human health, particularly in relation to asthma conditions.
Many of these studies related to the impact of indoor or outdoor air quality on human
health. These included asthma predictions, the impact of air pollution on COVID mortality
and the impact on human behaviors due to air pollution [27], which is a unique study for
identifying the impact of pollution on the behavior of people. Razavi-Termeh et al. used
environmental factors along with map locations to locate regions in the city with high
chances of asthma. They have used the spatial correlation between asthma and air pollution
by utilizing patients’ distance from streets and parks [28]. In another study conducted in
Seoul [29], a hybrid deep learning model (HDLM) based on vector autoregressive (VAR)
and DFNN was used, which utilizes time series analysis to show the relationship between
environmental pollutants and asthma statistics predictions. Chavda [30] combined daily
air quality data with hospitalization statistics for asthma patients in California to show the
correlation between the two. Experiments show that the decision tree (DT) outperforms
other models. Kim et al. proved that the LSTM outperformed the Multinomial Logistic
(MNL) by 57–84% increase in the ability to predict the chances of asthma in children because
of inside air pollution [31]. Table 2 lists the literature survey on the air pollution impact.

Table 2. Literature survey of the air pollution impact to human health (created by author).

Reference Region Purpose Model Accuracy Input Parameters

[27] United States
Identifying the impact of
pollution on the behavior
of people

RF NRMSE: 0.0798
Indoor Air quality, O3, SOX, PM,
Volatile Organic CompoundsLR NRMSE: 0.2259

SVR NRMSE: 0.2591

[28] Tehran, Iran
Studying asthma based on
environmental factors
along with map locations

RF Training AUC: 0.987
Testing AUC: 0.921

PM2.5, PM10, CO, NO2, SO, O3,
wind speed, rainfall, humidity
and temperature

[29] Seoul,
South Korea

Predicting the number of
asthma patients on a daily level

VAR MAE: 668.50

SO2, CO, O3, NO2, PM2.5, PM10,
temperature, humidity, air pressure

HDLM MAE: 479.31

DFNN MAE: 691.22

LSTM MAE: 821.72
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Table 2. Cont.

Reference Region Purpose Model Accuracy Input Parameters

[30] California,
United States

Showing the correlation
between daily air quality and
asthma patients

Ridge RMSE: 0.042

Daily air quality

EN RMSE: 0.0413

LASSO RMSE: 0.0412

Gamboost RMSE: 0.039

DT RMSE: 0.026

RF RMSE: 0.71

[31] Seoul,
South Korea

Predicting chances of asthma in
children because of inside
air pollution

MNL LSTM outperformed
MNL by 57–84%
increase in precision

Temperature and particulate matter
indoors (for 10 min internal)LSTM

2.2. Technology Survey

Table 3 lists the comparison of six forecasting and regression models for predicting air
pollution along with the advantages and disadvantages.

Table 3. Comparison of forecasting and regression models (created by author).

Model Purpose Advantages Disadvantages

LSTM [11]

Predicting the future 1~8 h PM2.5
concentration based on the
historical records from the past
48 h

(1) Well designed to classify
and predict time series data.

(2) Handling large series with
many features.

(3) Works well when data
is huge.

(1) Needing lots of resources and
needs high computing for
handling real-life applications.

(2) Prone to overfitting.
(3) Requiring large datasets for

good forecasting.

ANN [12]
Predicting future air quality by
learning from time-series
historical data

(1) Working well for short term
time series forecasting.

(2) Improving the prediction
accuracy while keeping the
parameter counts minimum.

(1) Difficult to forecast when there
are outliers in data.

(2) Often not interpretable.

SVR [13]

Predicting discrete values, which
tries to fit the best line
(hyperplane) within a
threshold value

(1) Effective in the higher
dimension.

(2) Robust to outliers.
(3) Easily updated.
(4) High generalization

capability with high
prediction accuracy.

(5) Easy implementation.

(1) Not suitable for large datasets.
(2) Not robust when the data set

has more noise.

LR [14]

Predicting PM concentrations for
current (d) day by using
particulate matter data at
(d-1) day

(1) Easier to implement with a
much smaller number
of parameters.

(2) Simple and cheapest when
data is less and linear.

(1) Assumes independence
between input features, but this
is not true for air and weather
datasets, and hence this needs
to be handled prior.

(2) Sensitive to outliers and hence
outliers must be dealt with
properly before forecasting.
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Table 3. Cont.

Model Purpose Advantages Disadvantages

RF [15]

Providing a more accurate
prediction by combining
predictions from multiple
ML algorithms

(1) Working well for short term
time series forecasting.

(2) Improving the prediction
accuracy while keeping the
parameter counts minimum.

(1) Difficult to forecast when there
are outliers in data.

(2) Often not interpretable.

ARIMA [32]

Predicting a future response value
by using the current values, past
values, past errors, and past
values of other time series

(1) Working well for short term
time series forecasting.

(2) Improving the prediction
accuracy while keeping the
parameter counts minimum.

(1) Difficult to forecast when there
are outliers in data.

(2) Often not interpretable.

Abbreviation: ARIMA (autoregressive integrated moving average).

3. Data Engineering
3.1. Data Collection

To forecast the hourly air pollutant, we used the California Air Resource Board (ARB)
to collect the hourly air data. The Air Quality Data Query tool (AQDQT) [33] from ARB is
used to collect raw data for air pollutants. The Meteorology Data Query Tool (MDQT) [34]
from ARB is used to collect hourly weather data. There is a separate .csv file for each year
for each pollutant and weather.

Since the PM data from the meteorological station only reflects the PM concentration
around the station. In order to explore the PM2.5 and PM10 situation around the Salton Sea
area and show the temporal and spatial particulate matter change, we collect the data of
normalized difference vegetation index (NDVI), the distance to the Salton Sea, weather,
air pollutants, and historical weather and air pollutants. The data of NDVI can be taken
from the Moderate Resolution Imaging Spectroradiometer (MODIS), which covers the
Riverside and Imperial counties with a spatial resolution of 1 km or 500 m. MODIS data are
available on NASA [35], which can be downloaded from Earth Engine using Cygwin. The
distance to the Salton Sea can be taken from Landsat 8 satellite images in the Salton Sea area,
which can be collected from U.S. Geological Survey and downloaded using Google’s gsutil
tool from Google Cloud Storage [36]. For each Landsat 8 data folder, it contains 11 band
images, one MTL.txt file (product metadata file), and one ANG.txt file, which contains the
angle-coefficient of the sensor-viewing angle. Bands 2–4 are visible in blue, green, and red.
Combining bands 2–4, we obtained a true-colour image. The in situ PM data, weather and
pollutants data are taken from the Environmental Protection Agency (EPA) [37].

To study the health impacts related to asthma prediction, different data sources will
be used. Asthma emergency department (ED) visit rates, hospitalizations and mortality
rates are collected from California Health and Human Services (CHHS) open data portal
for both Imperial and Riverside counties [38,39]. The statistical data of asthma prevalence
was collected from the Ask CHHS website [40]. The health data was combined with air
quality pollutants [41] such as NO2, SO2, CO and O3, and particulate matter, such as PM2.5
and PM10, to study its impact on human health. The change in meteorological data [42]
was also considered such as temperature, humidity, wind, and air pressure to study its
effects on asthma. In addition, surface area data [43] is used to study the impact of Salton
Sea shrinkage on air pollution and asthma.

3.2. Data Preprocessing

In this paper, five different kinds of data or images were preprocessed respectively by
the following steps.
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Step 1: For the AQDQT and MDQT data, we used the following steps to preprocess the
raw data of the air pollutants and meteorological data.

• Merge year-wise files for each pollutant and weather into one;
• Remove descriptive variables like name, units, quality, prelim, met source, and site

name from the dataset;
• Represent each pollutant and weather data by using a unique column for a given date

and hour;
• Use pandas backfill and forward fill to impute null values;
• Create line plots, box plots and statistical correlation plots to make outlier and

anomaly detection.

Step 2: For MODIS data, we used the following steps to preprocess the raw data of NDVI.

• Reproject MODIS data to Universal Transverse Mercator (UTM)-European Petroleum
Survey Group (EPSG): 32611;

• Extract NDVI values using latitude and longitude of the location of monitor stations;
• Merge all the data into one file;
• Drop outliers, obtain dummy variables and do a normalization.

Step 3: For Landsat 8 satellite images, we used the following steps to preprocess the raw
data of the distance to the Salton Sea.

• Generates open water cover mask for Landsat 8 using water detect [44];
• Obtain the shapefile of the Salton Sea area.

Step 4: For the asthma data, we used the following steps to preprocess the raw data.

• Collect the asthma data for Salton Sea counties, zip code and stratified at age group;
• Map zip codes to monitoring sites to merge year-wise air-quality pollutants, weather

and surface area data;
• Perform data cleaning on each dataset separately using pandas and NumPy;
• Impute the missing values with group mean (year, county, monitoring site);
• Drop all the redundant columns from the merged dataset.

Step 5: For the EPA data, the yearly air quality data of six pollutants can be preprocessed
by the following steps.

• List standard air pollution statistics for all six criteria pollutants per single county per
year by each row;

• Merge all the csv into a single data frame that can be used for further analysis.

3.3. Training Data Preparation

In this paper, different features are performed by different models and each model is
trained separately. The corresponding train, validation and test datasets are prepared athe
s following steps.

Step 1: For hourly air pollutant forecasting, we created three new features, which are the
season, weekend flag and peak hours for each time step based on the date of the observation.
The label encoder from scikit learn library was used to encode categorical features. The
standard scalar from the scikit learn library was used to standardize the pollutants and
weather. The lag and lead features are added to forecast future values. The data is shifted
to add 5 h of previous lag features and sorted as per date. We split the data into train, test
and validation sets, which are 2015–2017 for training models, 2018–2019 for validation,
2020 for testing the models and 2021 for analyzing quality, showed in Table 4. The split
data is reshaped to 3D format for DL models.
Step 2: For particulate matter prediction, we divided the prepared data into three datasets,
which are the training dataset (60%), validation dataset (20%), and testing data (20%), as
shown in Table 4.
Step 3: For the health impact study, one-hot encoding was performed to transform categori-
cal features into numeric values. Outliers were handled in the target feature by applying
logarithmic transformation. Min-max normalization was used for feature scaling of data.
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The feature importance method was used to select the feature. The data is split into 80% for
training and 20% for testing, as shown in Table 4.

Table 4. Data statistics (created by author).

Dataset
Hourly Air Pollutant

Forecasting Particulate Matter Prediction Health Impact Study

Air
Pollutants Weather NDVI Distance to

the Salton Sea Weather Air
Pollutants Health Air

Quality Weather Surface

Raw Dataset 334,195 568,168 201 193 449,682 154,567 1431 41 705 985

Total of Raw Dataset 902,363 604,643 3162

Pre-Processed Dataset 52,608 17,920 1181

Transformed Dataset 52,603 17,920 64,133

Prepared
Dataset

Training 26,265 10,752 51,233
Validation 17,520 3584 NA

Testing 8784 3584 12,933

4. Model Development

To perform the impact analysis of saline seas pollution, we have performed three
tasks and hence the models in our paper are divided into three parts. Each part had
its own data needs; hence, separate models were developed, evaluated, and validated
respectively. Firstly, we created time series forecasting models for hourly air pollutant
concentration prediction, which include hourly CO and O3 prediction and hourly PM2.5
and PM10 prediction. Then, we performed an analysis on the prediction of daily PM2.5 and
PM10 based on satellite data in the area highlighting the impact of degrading saline seas on
air. Finally, we created prediction models for showing the impact of saline seas air quality
and decreasing surface area on health, particularly on asthma.

4.1. Hourly CO and O3 Prediction

To perform hourly forecasting of CO and O3, we have improved three base models,
including the LSTM, CNN and DFN [26], by using the previous 5 h of data, as shown
in Figure 1. The previous 5 h of NO2, SO2, O3, CO, PM10, wind speed, temperature,
relative humidity and barometric pressure are given as inputs to each model to predict
the upcoming concentration of CO in the air. The previous 5 h of O3, CO, NO2 relative
humidity, temperature and wind speed are given as input to each model to predict the
upcoming concentration of O3 in the air.

1. LSTM: In this paper, the first step in model development would be to transform
input data into an appropriate 3D format for LSTM. One of the advantages of using
this model is that it retains the time aspect of data and helps identifying complex
non-functional relationships between data compared to statistical models which only
focus on linearity in data. In this paper, we went through various iterations of the fine-
tuning model by changing LSTM units per layer, adding additional LSTM layers and
selecting different features. We got best results for 5 past hours’ data with 50 LSTM
layers for carbon monoxide and further tuned model to avoid overfitting by adding
11 regularizes and 0.5 dropout. We also did an early stop with a patience value of 20 to
save the best model, shown in Figure 1a. Similar to CO, a model for O3 is developed
with a dropout rate of 0.4. It had nine input features from the past 5 h.

2. CNN: In this paper, a one-dimensional CNN is used. We have one CNN layer followed
by a pooling layer and then tune the number of hidden layers with “ReLU” activation
and add a dropout layer if required. We only added a dropout layer after the pooling
layer and the fully connected layer 1 for CO prediction. The final layer would have
one output without any function. Figure 1b shows the CNN model architecture for
hourly CO prediction.

3. DFN: In this paper, the DFN model was employed to forecast air pollutants with
our data, in which the LSTM layer includes 24 LSTM memory units. We removed
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the flexible dropout layer for ozone prediction. For CO prediction, we used the
DFN model with a flexible dropout layer and the dropout rate can be obtained by
0.19 + 0.0025 × g [26], which is 0.2025, in which the window size g was chosen as 5 h
for our data, as shown in Figure 1c.
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by author).

4.2. Hourly PM2.5 and PM10 Prediction

To perform the hourly forecasting of PM2.5 and PM10, we proposed an ensemble
model, which is created by using a RF regressor and gradient boosting (GBoost) regressor.
Models were individually optimized using the Bayes optimization method. This method
uses the surrogate function and the concept of the Bayes theorem for tuning the hyperpa-
rameters of ML models. This method is efficient and fast for models with continuous and
conditional parameters. In this paper, an ensemble model performs the weighted average of
these two models for making final predictions. We assigned different weights to each model
based on their individual scores. RF regressor with weight of 0.75 and GBoost regressor
with weight 0.25 gave the best results. To predict the upcoming hour of PM2.5 concentration
in the air, the model is given 5 h of past concentrations of seven features, which are PM2.5,
PM10, barometric pressure, dew point, wind speed, humidity and temperature, shown in
Figure 2. Similar to PM2.5, the model is given 5 h of past concentrations of seven features,
which are PM2.5, PM10, CO, NO2, O3, SO2 and wind speed to predict the upcoming hour
of PM10 concentration in the air.
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by author).

4.3. Daily Satellite-Based PM2.5 and PM10 Prediction

For the prediction of the PM2.5 and PM10 concentrations based on satellite data, we
have developed three base models, which are the the RF, the SVR and XGBoost. To obtain a
better performance, we created two ensemble models of the above three models, including
a weighted average ensemble model and stacked ensemble, which were implemented
for making the final prediction. To predict the daily PM2.5 concentration in the air, each
model is given the data of NDVI, distance to the Salton Sea, PM2.5, PM10, barometric
pressure, dew point, wind speed, humidity and temperature as input. To predict daily
PM10 concentration in the air, each model is given data of NDVI, distance to the sea we
studied, PM2.5, PM10, CO, NO2, O3, SO2 and wind speed as input. Except for inputs
and model parameters, each model architecture for PM10 prediction is similar to PM2.5;
therefore, we only show each model architecture for the PM2.5.

1. RF: RF is a tree-based ensemble model. It is easy to use and has good performance
on large data. We use Grid Search CV with threefold to optimize the parameters. RF
model architecture for daily PM2.5 prediction is shown in Figure 3a. The parameters of
RF model are “bootstrap: true, max_depth: 50, max_features: auto, min_samples_leaf:
2, min_samples_split: 2, n_estimators: 500” for PM10.

2. SVR: SVR is very similar to support vector machines (SVM), which can be used in
classification and clustering problems. While iterating SVR, we put a Grid Search CV
of parameters, using threefold cross-validation, and search for different combinations
in order to obtain the better result. We use SVM as our base model in the “PM
concentration prediction using satellite images” part. The parameters of SVR model
are “kernel = ‘rbf’, degree = 3, gamma = ‘auto’, C = 100” for PM2.5, and “kernel = ‘rbf’,
degree = 3, gamma = ‘scale’, C = 100” for PM10.

3. XGBoost: XGBoost is simple, efficient and easy to implement, which is suitable for
dealing with a large number of pulsar candidates with an excellent generalization
performance. XGBoost model architecture for daily PM2.5 prediction is shown in
Figure 3b. The parameters of XGBoost model are “colsample_bytree: 1; eta: 0.01;
max_depth: 10; n_estimators: 2500; subsample: 0.8” for PM10.

4. Weighted average ensemble model: The weighted average ensemble model is created
by using SVR, RF and XGBoost for daily PM2.5 prediction. Weights for RF, SVR
and XGBoost are set to 0.1, 0.02, and 0.88, respectively, based on their individual
performance, shown in Figure 3c.

5. Stacked ensemble model: The stacked ensemble model is created by using SVR, RF
and XGBoost, in which the base learners are SVR, RF and XGBoost and the meta
learner is LR. The models of SVR, RF and XGBoost are used as Level-0 stage, and
our meta learner LR is used as Level-1 in order to find target features for daily PM
prediction. Figure 3d shows the stacked ensemble model with linear regression for
daily PM2.5 prediction.
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4.4. Asthma Prevalence Rate Prediction

For health impact prediction, we used air pollutants data, weather data and asthma
data to predict asthma prevalence rate among different ages. Starting with RF, GridSearch
was used to finetune each model. The SVR was also included to obtain the lowest error
rate, thus yielding a better fitting model. The third model, the elastic net regression (ENR)
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model, was employed to reduce overfitting problems in linear models and to eliminate
coefficients about unimportant attributes. Since GBoost is one of the powerful algorithms
in ML, which focuses on minimizing the bias error by combining several weak learners
to form a strong learner. We tuned multiple parameters of GBoost and found the optimal
n_estimators value, which is critical for asthma prediction. To obtain a better performance,
we created two ensemble models of all four models as discussed above. Methods like
weighted average and stacked ensemble are implemented for making the final prediction
as follows. The input of each model is the data of NO2, SO2, O3, CO, PM2.5, PM10, wind
speed, pressure, dew point, temperature, relative humidity and the healthy data. The
output is the prediction of the ED asthma visits.

1. Weighted average ensemble model: The weighted average ensemble model is created
by using RF, SVR, ENR, and GBoost. Weights for RF, SVR, ENR, and GBoost are set
to 0.3, 0.1, 0.1, 0.5, respectively, based on their individual performance, as shown in
Figure 4a.

2. Stacked ensemble model: The stacked ensemble model is created by using RF, SVR,
ENR, and GBoost, in which the base learners are RF, SVR, ENR, and GBoost and the
meta learner is LR. The models of RF, SVR, ENR, and GBoost are used as the Level-0
stage, and our Meta learner LR was used as Level-1 in order to find target features, as
shown in Figure 4b.
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5. Case Study Results

In this section, the Salton Sea, one of the largest lakes in California, is taken as an
example to analysis the environmental pollution and study its impact on health. The water
level is decreasing, and the special terrain makes the Salton Sea react poorly to pollution.
Not only do factories dump industrial waste into it, but the low rainfall precipitation rate
causes the Salton Sea to shrink. The proposed models are developed to forecast the air
quality, dust emission due to shrinkage of the Salton Sea, and their impacts on human
health as following.

5.1. Hourly Air Pollutant Prediction Results

We have developed models for each of the four pollutants, which are O3, CO, PM2.5
and PM10. These are the major pollutants impacting the Salton Sea area. These pollutants
are directly correlated to dust and temperature in the region. Based on these pollutants, the
final Air Quality Level (AQL) will be determined for the upcoming hour in the area. Air
Quality Index (AQI) level will be based on the US EPA standards.

1. Hourly CO and O3 Prediction: Three proposed models, which are the LSTM, the CNN
and the DFN, were developed and evaluated for predicting the upcoming hour CO
and O3 concentration. Models were trained for 100 epochs using the Adam optimizer
and loss was evaluated using mean squared errors (MSE). Training of the LSTM
model compared to the other two models seemed to be stable and learned better after
100 epochs, and the loss of both training and validation data is close to each other.
The results comparison for the different models is shown in Table 5. We obtained best
results with LSTM for CO and O3. Test data samples with predicted and actual values
are shown in Figure 5a,c for CO and O3, respectively. The line chart for predicted and
actual CO and O3 values is shown in Figure 5b,d for the LSTM model, respectively.
Red dotted and blue lines for predicted and actual values of CO and O3 in the test data
are very close to each other for LSTM model. Comparison is drawn after re-scaling
values to the original unit of data, i.e., ppm. Results in Figure 5 showed that there is a
strong relationship between both the values and our model gave accurate results with
very less errors.

2. Hourly PM Prediction Using Meteorological Station Data: ML models were developed
and tuned. DL models are not able to provide the best results, and there is no training
in using the DL models. We developed an ensemble model of RF and GBoost for
PM2.5 and PM10 prediction. Test data samples with predicted and actual values are
shown in Figure 5e,g for PM2.5 and PM10 respectively. Line chart for predicted and
actual PM2.5 and PM10 values is shown in Figure 5f,h for the ensemble model of RF
and GBoost, respectively. We can see in the results that the model has predicted results
accurately. The proposed models in this paper have high capabilities and strengths
over other models for our targeted problem.

Table 5. Comparison of forecasting models evaluation results based on meteorological station data
(created by author).

Pollutant Models RMSE MAE R2

CO
LSTM 0.151 0.075 0.835
CNN 0.175 0.106 0.779
DFN 0.187 0.115 0.747

Ozone
LSTM 0.005 0.004 0.924
CNN 0.007 0.005 0.856
DFN 0.008 0.006 0.839
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Table 5. Cont.

Pollutant Models RMSE MAE R2

PM2.5

RF 4.678 2.851 0.431
GBoost 4.231 2.502 0.535

Ensemble 4.212 2.504 0.539

PM10

RF 37.754 16.612 0.548
GBoost 38.329 16.421 0.534

Ensemble 37.713 16.439 0.549Atmosphere 2022, 13, x FOR PEER REVIEW 14 of 23 
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Figure 5. Proposed models for CO, O3, PM2.5 and PM10 results: (a) Actual and predicted data using
LSTM model for CO; (b) Line chart for predicted and actual CO values; (c) Actual and predicted data
using LSTM model for O3; (d) Line chart for predicted and actual O3 values; (e) Actual and predicted
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5.2. Satellite-Based Daily Particulate Matter Prediction Results

The PM data from the meteorological station only reflects the PM concentration around
the station. As such, in order to explore the PM2.5 and PM10 situation around the Salton
Sea area and show the temporal and spatial particulate matter change, RF, SVR, XGBoost
were developed to explore the relationship between NDVI from the satellite data and
ground-level PM concentration. Three proposed models were tuned using grid search.
Table 6 shows the performance of three base models of SVR, RF, XGBoost and the two
ensemble models. For the PM2.5 prediction, the stacked ensemble outperformed the other
models with a good R2 score of 0.76. Hence, the stacked ensemble model is selected as
a candidate model. For PM10 prediction, the weighted average ensemble model has the
highest accuracy. Additionally, we explored the stacked ensemble and weighted average
ensemble methods to identify the best model for our research.

Table 6. Comparison of forecasting models evaluation results based on satellite data (created
by author).

Pollutant Models R2 RMSE MAE

PM2.5

RF 0.71 3.38 2.35
SVR 0.62 3.89 2.76

XGBoost 0.75 3.14 2.58
Weighted average 0.76 3.09 2.09
Stacked ensemble 0.76 2.83 2.04

PM10

RF 0.68 12.97 8.08
SVR 0.60 14.42 8.76

XGBoost 0.74 11.69 7.11
Weighted average 0.74 11.63 7.11
Stacked ensemble 0.74 11.69 7.11

We focus on showing the daily PM concentration map in the Salton Sea area. As for
the Salton Sea area, the expanding dry lakebed is a significant source of dust during the
late spring to early summer [45]. Satellite-based PM2.5 and PM10 concentration maps were
created to visualize the regions with the highest and lowest pollutants. Figures 6 and 7
show the distribution of PM2.5 and PM10 across different months, respectively. The red line
represents the Salton Sea area. Each small square in the figures represents an area of 2 km
by 2 km. The darker the square, the higher the PM concentration. The PM concentration
around the Salton Sea and its surroundings can be intuitively displayed in the form of
snapshots using ML at different times and places, making it more convenient for people to
compare and analyze the PM concentration. From the comparison, we can see that spring
(from March to May), and summer (from June to August) have the highest concentrations.
This can be due to the fact that wind speed is high around this time.
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5.3. Health Impact Prediction Results

Four models, RF, SVR, ENR, and GBoost, were developed to predict the asthma
prevalence in both counties of the Salton Sea. We conducted hyperparameter tuning for
all the estimators using Gridsearch () with a cv = 5. The best parameters given by the
GridSearchCV are used as the estimators for training. Additionally, we explored the
weighted average ensemble model and stacked ensemble method to identify the best
model for our research. Weights for RF, SVR, ENR, and GBoost were set to 0.3, 0.1, 0.1, 0.5,
respectively, based on their individual performance. The weighted average model has a
good R2 score of 0.95. We further attempted to improve the model performance by creating
a stacked ensemble model. Here, the base learners are RF, SVR, ENR, GBoost, and the meta
learner is LR. The stacked ensemble outperformed the other models with a good R2 score
of 0.978. Hence, the stacked ensemble is selected as a candidate model for predicting the
health impact. Table 7 shows the results of the comparison of all the models.



Atmosphere 2022, 13, 914 19 of 23

Table 7. Comparison of Models for Asthma Prediction (created by author).

Models Model Set Parameter R2 MAE MSE RMSE

RF
Criterion = ‘mse’, max_depth = 50,

n_estimators = 100,
max_features = 20, random_state = 42.

0.945 0.026 0.002 0.045

SVR Kernel = ‘rbf’, gamma = ‘auto’, C = 100,
epsilon = 0.01. 0.897 0.038 0.003 0.062

ENR Alpha = 0.0001,11_ratio = 0.5, max_iter = 1000,
normalize = True. 0.753 0.068 0.009 0.097

GBoost

max_depth = 50, max_features = 20,
min_samples_leaf = 10,

min_samples_split = 50, n_estimators = 100,
random_state = 42.

0.949 0.024 0.001 0.043

Weighted Average Weights for RF, SVR, ENR and GBoost are set
to 0.3, 0.1, 0.1, 0.5. 0.95 0.026 0.001 0.043

Stacked Ensemble Base learners: RF, SVR, ENR, GBoost. Meta
learner: LR. 0.978 0.021 0.001 0.037

6. Discussion
6.1. Comparison of Hourly Air Pollutant Forecasting Models

Table 8 shows the performance of these selected models in various research with time
series data for air quality forecasting. We can see that the DL models tend to perform better
by identifying even nonlinear relationships in time steps. The proposed models in this
paper have high capabilities and strengths over other models for our targeted problem.
Additionally, with these models, it is easier to implement and evaluate multivariate time
series for forecasting even multiple time steps if required.

Table 8. Comparison of forecasting models of air pollutants (created by author).

Papers Region Purpose Model Accuracy Input Parameters

[22] Shanghai, China Predicting PM2.5 Ensemble Model 1 MAE: 6.19
MAPE: 0.162

PM2.5, meteorological data,
season data, timestamp data

[23] Kuwait Forecasting ozone LSTM MAE < 2 Hourly air quality,
meteorological data

[24] Taiwan Predicting hourly air
quality CNN RMSE: 7.37 Hourly ozone, particulate matter

PM2.5 and sulfur dioxide

[25] Seoul, South Korea Predicting ozone CNN MAE: 8.90
Ground-level ozone and NO2,
atmospheric pressure, wind
speeds and relative humidity

[26]
Aksaray,
AlibeyköyBeşiktaş,
Esenler, Istanbul

Forecasting PM10 in
upcoming hours DFN RMSE: 13.67 PM10 density, meteorological

data pollution data, traffic data

This work California, USA Predicting O3 in
upcoming hour LSTM

MAE: 0.004
RMSE: 0.005
R2: 0.924

Air pollutants,
meteorological parameters

This work California, USA Predicting CO in
upcoming hour LSTM

MAE: 0.075
RMSE: 0.151
R2: 0.835

Air pollutants,
meteorological parameters

This work California, USA Predicting PM2.5 in
upcoming hour Ensemble Model 2

MAE: 2.504
RMSE: 4.212
R2: 0.539

PM2.5, PM10, air pressure, dew
point, wind speed, humidity,
and temperature

This work California, USA Predicting PM10 in
upcoming hour Ensemble Model 2

MAE: 16.439
RMSE: 37.713
R2: 0.549

PM2.5, PM10, CO, NO2, O3, SO2
and wind speed

Abbreviations: Ensemble Model 1 (ensemble model of RNN, LSTM, and GRU); Ensemble Model 2 (weighted
average ensemble model of RF and GBoost).
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Once we predicted the individual pollutants, we calculated the overall air quality
index for that hour and compared original and predicted AQI values. Table 9 shows the
comparison of original and predicted AQI results. The final accuracy for the AQI level
is 86.7%.

Table 9. Comparison of Original and Predicted AQI Results (created by author).

Original AQI Level Predicted AQI Level

Good 1719 1758
Moderate 426 393

Unhealthy for Sensitive Groups 9 4
Unhealthy 1 Not Available

6.2. Comparison of Satellite-Based Daily Particulate Matter Forecasting Models

Table 10 shows the performance of the recently proposed models in various research
with satellite data and other variables as the input for particulate matter forecasting. For the
PM2.5 prediction, the proposed weighted average ensemble model of RFR, SVR, and XGB
outperformed most of the other models with a good R2 score of 0.76. For PM10 prediction,
the proposed stacked ensemble model of RF, SVR, XGBoost and LR has the highest accuracy
among all of the other models.

Table 10. Comparison between the models for forecasting particulate matter based on satellite data
(created by author).

Papers Region Purpose Model Accuracy Input Parameters

[17] Quito, Ecuador Predicting daily PM10 MLP R2: 0.68
Surface reflectance bands of
Landsat-8, NDVI, NDSI, SAVI,
NDWI, LST

[18] Chile Predicting daily PM10 MLP R2: 0.58 AOD, meteorological variables

[19] Alberta,
Canada Predicting daily PM10 MLP R2: 0.61 AOD, meteorological variables

[20] Malaysia Predicting daily PM2.5 MLP R2: 0.60 AOD, meteorological and
spatial variables

[21] Tehran, Iran Predicting daily PM2.5 RF
R2: 0.81
MAE: 9.93
RMSE: 13.58

Satellite image,
meteorological variables

This work California, USA Predicting daily PM2.5 Ensemble Model 3
MAE: 2.04
RMSE: 2.83
R2: 0.76

MODIS based NDVI, Landsat 8
based distance to the Salton Sea,
weather, air pollutants

This work California, USA Predicting daily PM10
Ensemble
Model 4

MAE: 7.11
RMSE: 11.63
R2: 0.74

MODIS based NDVI, Landsat 8
based distance to the Salton Sea,
weather, air pollutants

Abbreviations: Ensemble Model 3 (weighted average ensemble model of RFR, SVR, and XGBoost), Ensemble
Model 4 (stacked ensemble model of RF, SVR, XGBoost and LR).

6.3. Comparison of Health Impact Forecasting Models

Table 11 shows the performance of the recently proposed models in various research
with air quality and other variables as the input for health prediction. We can see that
the proposed stacked ensemble model of RF, SVR, ENR, GBoost and LR in this paper
outperformed the other models with a good R2 score of 0.978.
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Table 11. Comparison of Health Prediction Models (created by author).

Papers Region Purpose Model Accuracy Input Parameters

[27] United States
Identifying the impact of
pollution on the behavior
of people

RF NRMSE: 0.0798
Indoor Air quality, O3, SOX, PM,
Volatile Organic CompoundsLR NRMSE: 0.2259

SVR NRMSE: 0.2591

[28] Tehran, Iran
Studying asthma based on
environmental factors
along with map locations

RF Training AUC: 0.987
Testing AUC: 0.921

PM2.5, PM10, CO, NO2, SO, O3,
wind speed, rainfall, humidity
and temperature

[29] Seoul,
South Korea

Predicting the number of
asthma patients at daily level

VAR MAE: 668.50
SO2, CO, O3, NO2, PM2.5, PM10,
humidity,
temperature, air pressure

HDLM MAE: 479.31

DFNN MAE: 691.22

LSTM MAE: 821.72

[30] California,
United States

Showing the correlation
between daily air quality and
asthma patients

Ridge RMSE: 0.042

Daily air quality

EN RMSE: 0.0413

LASSO RMSE: 0.0412

Gamboost RMSE: 0.039

DT RMSE: 0.026

RF RMSE: 0.71

[31] Seoul,
South Korea

Predicting chances of asthma
on children because of inside
air pollution

MNL LSTM outperformed
MNL by 57–84%
increase in precision

Temperature and particulate
matter for indoors
(for 10 min internal)LSTM

This work California,
United States

Predicting the asthma
prevalence rate

Ensemble
Model 5

MAE: 0.021
MSE: 0.001
RMSE: 0.037
R2: 0.976

NO2, SO2, O3, CO, PM2.5, PM10,
wind speed, pressure, dew
point, temperature, relative
humidity, healthy data

Abbreviation: Ensemble Model 5 (stacked ensemble of RF, SVR, ENR, GBoost and LR).

7. Conclusions

In this paper, we have proposed forecasting models to predict the health impacts
caused by the air quality in the Salton Sea, which have been divided into three main parts,
the environmental air pollutants, particulate matter and the asthma ED visits, respectively.
Each model performed relatively well. Firstly, for hourly air pollutant forecasting, the
LSTM model was deployed on both O3 and CO forecasting by using the previous 5 h of all
pollutants and weather conditions. The MSE loss function and Adam optimizer were em-
ployed to evaluate the performance, and the results showed that the LSTM model obtained
the best results due to low error. Secondly, as for hourly PM2.5 and PM10 prediction, the
ensemble model of weighted average method based on RF and GBoost are proposed by
using the previous 5 h of air pollutants and weather conditions. The models are tuned by
implementing Bayes optimization to obtain the best result. We can achieve a 0.9 score for
ozone prediction. Then, for particulate matter prediction, the proposed ensemble model of
weighted average method obtained the best result for predicting daily PM2.5, and daily
PM10 has the best result while using the stacked ensemble model by comparing R2, RMSE
and MAE values. Finally, for the health impact study, we used the SVR, ENR, RF and
GBoost models on asthma ED visits prediction, in which the stacked ensemble was selected
as a candidate model by comparison with the weighted average method with a good R2
score of 0.978.

We have two goals for future work. Above all, we can enhance our satellite data
by incorporating more satellites in future. Our specific goal is to collect data from other
satellites and make a finer prediction of PM concentration around the Salton Sea. In
addition, our broad goal is to develop real-time health impact prediction dashboards to
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highlight the relationship between various environmental factors and asthma prevalence
rates for more cities around the Salton Sea in the future.
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