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Abstract: In this study, two different dust collectors, one based on an inertial separator and the other
based on an electrostatic precipitator (ESP), were developed in order to reduce brake wear particulate
matter (PM) emissions. Additionally, the collection efficiencies for brake wear particles (BWPs) of the
inertial separator and the ESP were evaluated according to brake pad type. In the case of the inertial
separator, the BWP collection efficiencies for the low-metallic (LM) and non-asbestos organic (NAO)
pads were similar, and the cut-off size at 50% collection efficiency (D50) was 2.2 µm. The ESP was
designed without an additional electrostatic charging device because naturally induced electrostatic
charging occurred due to the friction between the brake disc and pad. The BWP collection efficiency
of the ESP was higher for NAO pad than for LM pad because the BWPs generated from the NAO pad
contained a relatively low iron (Fe) component compared to that of the LM pad, thereby generating
more frictional electricity. The maximum ESP collection efficiencies of the BWPs generated from the
LM and NAO pads were determined to be 60% and 75%, respectively, and the remaining BWPs that
were not collected were presumed to be particles that were not frictionally charged.

Keywords: particulate matter (PM); non-exhaust emissions (NEEs); brake wear particles (BWPs);
inertial separator; electrostatic precipitator (ESP); low-metallic (LM) pad; non-asbestos organic
(NAO) pad

1. Introduction

Non-exhaust particulate matter (PM) emissions from road traffic can be generated
as a result of the wearing down of brakes, clutches, tires, road surfaces, as well as road
dust resuspension [1]. While worldwide global regulations for exhaust PM emissions are
becoming more stringent, non-exhaust PM emissions are still unregulated. As a result, the
amount of exhaust PM has continuously decreased, while the relative contribution of non-
exhaust PM emissions has increased. Non-exhaust emissions are expected to be responsible
for the vast majority of PM emissions from road traffic in future years [2,3]. It has been
reported that 19%, 33%, and 31% of traffic-related PM emissions are generated from brakes,
tires, and road pavement, respectively, and only 17% of PM is generated from vehicular
exhaust [4]. Lawrence et al. [5] estimated the emission factor (EF) of exhaust and non-
exhaust PM emissions in a tunnel experiment. The EF had a range of 11.1–12.8 mg/v.km
and 16.7–19.3 mg/v.km for exhaust and non-exhaust PM emissions, respectively, which
showed that non-exhaust PM emissions exceeded exhaust PM emissions in terms of road
traffic sources.

Multiple studies have reported that brake wear particles (BWPs) are the most signifi-
cant emissions source among various non-exhaust PM sources. It has been estimated that
21% of road-traffic-related PM10 in the urban environment is generated from the wearing
down of brakes [6], and that BWP EF is distributed with a large fluctuation that ranges from
1 to 18.5 mg/v.km [7]. Moreover, it is known that exposure to BWPs could result in adverse
health effects, such as acute respiratory infections, lung cancer, and chronic respiratory and
cardiovascular diseases [8].
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As it is known that BWPs have a significant impact not only on urban air quality but
also on adverse health effects, the movement to regulate BWPs is increasing. In June 2020,
the Particle Measurement Program (PMP) group of the United Nations Economic Commis-
sion for Europe (UNECE) published a protocol for measuring BWPs, which incorporates
the driving cycle into BWP measurements; the protocol also provides a procedure for brake
pad burnishing, in addition to methods for measuring brake disc and pad temperatures.
Currently, a round robin testing campaign is being initiated to control the repeatability
(within the labs) and reproducibility (among the labs) of PM and particle number (PN)
measurements with the application of the proposed specifications. Based on a reliable
testing method for measuring BWPs, the upcoming Euro 7 emission standard will regulate
not only exhaust PM emissions, but also brake wear PM emissions.

Various studies, including those that concern improvements in the materials that
constitute brake discs and pads, coating the brake disc surface with an additional material,
resizing the brakes, use of drum brakes, regenerative braking, and aftertreatment devices
to directly collect BWPs, have all been conducted in order to reduce brake wear PM
emissions [9]. Generally, it is known that BWPs can be significantly reduced by using non-
asbestos organic (NAO) brake pads rather than low-metallic (LM) brake pads [10,11]. The
addition of a zinc (Zn) component to the brake pad material could reduce brake wear [12],
and coating the brake disc surface with nickel (Ni) could enhance wear resistance [13].
Additionally, increasing the binding resin content leads to improved abrasion resistance of
the brake pads and reduces their particle emissions under high-temperature conditions [14].
Regenerative braking reduces the use of frictional braking, and hence brake wear PM
emissions, in proportion to the regenerative braking intensity [15].

In regards to directly reducing brake wear PM emissions, several aftertreatment
devices have been proposed. Tallano technology developed a brake particle collection
system designed to trap at least 80% of brake particles directly at the pad–disc interface
without altering braking efficiency. The collection system is composed of a brake caliper
that is specially designed for the integration of grooved pads and of an aspiration system
where brake particles are trapped [16]. Mann+Hummel group [17] also unveiled a BWP
collection system that uses a passive filter. The passive brake dust particle filter with non-
woven metal fibers is fitted directly onto the caliper, and directly retains particle emissions
on the brake. In a similar manner, Hwang and Lee [18] removed BWPs by installing a
passive filter behind the brake caliper. However, these particle-removing methods have
a major drawback. BWPs consist of huge numbers of micron-sized particles [19] which
constitute a significant PM mass, and as a result the filter can eventually become saturated
with them in a short period of time; this makes the replacement cycle of the filter short and
the maintenance cost high.

In this study, two different dust collectors were developed in order to reduce brake
wear PM emissions. An electrostatic precipitator (ESP) that collects BWPs using the fric-
tional electricity generated from the friction between the brake pad and its disc, and an
inertial dust separator that collects relatively larger micron-sized particles, were designed.
Their collection efficiencies were evaluated according to different brake pad types. Finally, a
hybrid dust collector, which connects the electrostatic precipitator and the inertial separator
in series, was tested under the WLTP-brake driving cycle in order to evaluate its maximum
collection efficiency.

2. Materials and Methods
2.1. Designing the Dust Collectors for BWPs

Both the ESP and inertial separator were designed to remove BWPs. First, the inertial
separator was designed based on BWP characteristics. Many previous studies have reported
that most of the mass concentration of BWPs is composed of micron-sized particles [19,20].
The inertial separator is advantageous for removing BWPs because it is specialized to
remove micron-sized particles. Additionally, it is suitable for removing BWPs that are
generated in large amounts in terms of volume and mass, since the separator can con-
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tinuously remove a large amount of dust. Large flow resistance is a disadvantage of the
inertial separator. Large flow resistance is induced by a change in flow direction, which
contributes to separating particles. The inertial separator can classify particles based on
Stokes number (Stk), which is a non-dimensional number composed of inertial and particle
moving distance [21]. The Stk number is defined as follows:

Stk =
ρpd2

pCcU
9µW

(1)

where ρp is the particle density, dp is the particle diameter, Cc is the slip correction factor, µ is
the viscosity of air, U is the flow velocity, and W is the distance of streamline inflection, usu-
ally the nozzle width. A 50% cut-off size indicates the particle aerodynamic diameter when
the collection efficiency is 50%. The inertial separator’s collection efficiency is increased
as the 50% cut-off size decreases. BWPs usually have a 2–4-micrometer mode diameter in
particle mass distribution [19,20]. Therefore, the 50% cut-off size of the inertial separator
should be smaller than BWPs’ mass distribution mode diameter, 2–4 µm. Stk50

1/2, which is
the Stokes number that meets the 50% cut-off size, is fixed at 0.77 in slit impactor laminar
flow conditions [21]. Generally, Stk50

1/2 is not changed in a Reynolds number range of
500 to 3000 [22]. In order to decrease dp in Equation (1) for the same Stk50

1/2, particle
density ρp or flow velocity U must be increased, or the streamline inflection distance W
must be decreased. Flow velocity U and streamline inflection distance W can be controlled
easily. However, increasing flow velocity induces great flow resistance, whereas decreasing
W can decrease the 50% cut-off size without greatly increasing flow resistance. However,
if the structure of the inertial separator is decreased under the limited strength, it can
be broken by flow resistance. Therefore, in this study, W was designed to be as small as
possible within the limit of structural strength in order to minimize the 50% cut-off size.
In this study, the nozzle width used was 1 mm, as shown in Figure 1a. The collection
surface was replaced with the dust receiver in order to collect particles continuously in
the long-term. The particle diameter of 0.77 Stk1/2 of the designed inertial separator was
3.25 µm. Kim et al. [23] reported that Stk50

1/2 was decreased to 0.6 when the collecting
plate was elliptical-concave. It was expected that the dust receiver designed in this study
would decrease Stk50

1/2. Furthermore, during turbulent flow, the impactor collection
efficiency curve was expected to broaden [24]. Therefore, the collection efficiency of the
inertial separator designed in this study would be different from the traditional impactor
collection efficiency curve, because strong turbulence was contained at the inflow of the
inertial separator.
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Figure 1. Schematics of (a) the inertial separator and (b) the electrostatic precipitator (ESP). Figure 1. Schematics of (a) the inertial separator and (b) the electrostatic precipitator (ESP).

BWPs are emitted broadly, with sizes ranging from 6 nm to 10 µm [25]. The ESP
has great dust collection performance, from micron-sized particles to nanoparticles [26].
Generally, particles flowing into an ESP are charged by extreme high voltage corona
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discharge, and the charged particles are then removed into a collecting plate. However,
BWPs can already be charged by triboelectricity [27]. Therefore, it was expected that BWPs
could be removed by the ESP without requiring corona discharge. If the corona charging
part can be omitted, then the high voltage from corona charging in the ESP is no longer
required, and hence ozone emissions could be greatly decreased. Therefore, ESP collecting
plates (ground plates) and high-voltage plates are alternately arranged in this study, as
shown in Figure 1b. The collecting plates and high-voltage plates were created using
0.5-millimeter-thick aluminum sheets coated with polyethylene terephthalate (PET) film.
Breakdown risk is decreased and the supplied voltage can be increased when these ESP
plates are coated with a dielectric layer [28]. In addition, high dust collection efficiency
can be maintained for a long time when the plates are coated with dielectric material [26].
The distance between the collecting plate and the high-voltage plate was 4.5 mm. In total,
11 high voltage plates and 12 collecting plates were installed in the ESP.

2.2. Brake Dynamometer

Figure 2 shows a schematic diagram of the brake dynamometer and test setup used to
determine the BWP collection efficiency of the ESP and the inertial separator. The rotating
weight was 120 cm in diameter and had a mass of 280 kg,; it was installed on the brake
dynamometer axis. The rotation simulated a moment of inertia of 50.4 kg m2, equivalent to
the vehicle curb weight plus one passenger, and assuming a brake force distribution (BFD)
of 7/3 between the front and rear brakes [11]. The vehicle speed was calculated based on
16-inch wheels fitted with 205/65 tires. The dynamometer could simulate vehicle speeds
of up to 150 km/h. The brake disc was composed of cast iron and was 30 cm in diameter.
NAO-type and LM-type brake pads were used in this study. Both the ESP’s and the inertial
separator’s performances for the NAO and LM pads were tested. Brake oil pressure was
activated at 1–50 bar. Brake disc rotating speed and brake pressure were automatically
controlled according to a time–speed schedule. Brake disc temperature was measured
using a non-contact infrared thermometer (LT-SF-CB3, Optris, Berlin, Germany) that was
placed at the disc surface behind the brake caliper. The infrared thermometer measured the
average temperature of a circular area 3 cm in diameter on the brake disc surface behind the
friction surface between the pad and the disc. Considering that the accuracy of the infrared
thermometer was insufficient compared to the sliding or embedded thermocouples, the
absorptivity of the brake disc material was experimentally determined by comparing the
infrared thermometer reading with that of a k-type thermocouple, in order to ensure the
reliability of the infrared thermometer.
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The world harmonized light-duty test cycle (WLTC, Tutuianu et al. [29], Figure 3a)
and the world harmonized light vehicles test procedure for brake emissions (WLTP-brake,
Mathissen et al. [30], Figure 3b) were used in this study. Originally, the WLTC was de-
veloped to evaluate exhaust emissions; however, multiple studies have used the WLTC
to measure BWPs emissions [11,19,20]. Notably, Woo et al. [19] reported that the highest
emission factor of BWPs was measured when using the WLTC. In this study, the WLTC
was used to test the dust collection performance of both the inertial separator and the
ESP, because the cycle length was as short as 30 min. Meanwhile, the WLTP-brake is the
standard cycle to evaluate BWPs emissions, which was determined by the PMP group of
the UNECE. Therefore, the WLTP-brake was used to evaluate BWP EFs of the final hybrid
version of the combined ESP and inertial separator.

Atmosphere 2022, 13, x FOR PEER REVIEW 5 of 14 
 

 

Figure 2. Schematic of brake dynamometer and dust collector (inertial separator, ESP, or hybrid 
precipitator) test module. 

The world harmonized light-duty test cycle (WLTC, Tutuianu et al. [29], Figure 3a) 
and the world harmonized light vehicles test procedure for brake emissions (WLTP-brake, 
Mathissen et al. [30], Figure 3b) were used in this study. Originally, the WLTC was devel-
oped to evaluate exhaust emissions; however, multiple studies have used the WLTC to 
measure BWPs emissions [11,19,20]. Notably, Woo et al. [19] reported that the highest 
emission factor of BWPs was measured when using the WLTC. In this study, the WLTC 
was used to test the dust collection performance of both the inertial separator and the ESP, 
because the cycle length was as short as 30 min. Meanwhile, the WLTP-brake is the stand-
ard cycle to evaluate BWPs emissions, which was determined by the PMP  group of the 
UNECE . Therefore, the WLTP-brake was used to evaluate BWP EFs of the final hybrid 
version of the combined ESP and inertial separator. 

 
Figure 3. Speed–time schedule of (a) the WLTC and (b) the WLTP-brake. 

2.3. BWP Collection Efficiency Measurement Method 
The ESP or the inertial separator was installed in the middle of a 100 mm × 100 mm 

square wind tunnel, downstream of the brake dynamometer circular chamber. The differ-
ential pressure of the ESP or the inertial separator was measured based on the static pres-
sure difference between upstream and downstream regions. The static pressure difference 
was measured using a pressure measurement module (MP210-MPR2500, KIMO, Mont-
pon, France). Circular wind tunnel flow velocity was measured by a pitot tube placed at 
a point in the circular cross-section. The face velocity of the ESP or the inertial separator 
was calculated as a product of the pitot tube value and the cross-sectional area ratio. The 
pitot tube values fluctuated because wind tunnel flow was turbulent. The fluctuations in 
flow velocity and differential pressure were less than ±5%. Particle concentration was 
measured using particle measurement instruments that were located downstream from 
the ESP or the inertial separator. A particle sampling inlet was designed to satisfy isoki-
netic sampling. An aerodynamic particle sizer (APS, 3321; TSI, Shoreview, MN, USA), 
electrical low-pressure impactor (ELPI; Dekati, Tampere, Finland), and a condensation 
particle counter (CPC, 3775; TSI, USA) were used to measure particle concentrations. The 
APS measured particle concentrations from 0.52 to 19.8 µm based on aerodynamic 

Figure 3. Speed–time schedule of (a) the WLTC and (b) the WLTP-brake.

2.3. BWP Collection Efficiency Measurement Method

The ESP or the inertial separator was installed in the middle of a 100 mm × 100 mm
square wind tunnel, downstream of the brake dynamometer circular chamber. The differen-
tial pressure of the ESP or the inertial separator was measured based on the static pressure
difference between upstream and downstream regions. The static pressure difference was
measured using a pressure measurement module (MP210-MPR2500, KIMO, Montpon,
France). Circular wind tunnel flow velocity was measured by a pitot tube placed at a
point in the circular cross-section. The face velocity of the ESP or the inertial separator was
calculated as a product of the pitot tube value and the cross-sectional area ratio. The pitot
tube values fluctuated because wind tunnel flow was turbulent. The fluctuations in flow
velocity and differential pressure were less than ±5%. Particle concentration was measured
using particle measurement instruments that were located downstream from the ESP or the
inertial separator. A particle sampling inlet was designed to satisfy isokinetic sampling. An
aerodynamic particle sizer (APS, 3321; TSI, Shoreview, MN, USA), electrical low-pressure
impactor (ELPI; Dekati, Tampere, Finland), and a condensation particle counter (CPC,
3775; TSI, USA) were used to measure particle concentrations. The APS measured particle
concentrations from 0.52 to 19.8 µm based on aerodynamic diameter. BWPs had to be
diluted 20 times with a diluter because their concentration exceeded the APS measurement
range. Woo et al. [17] reported that APS measurement of BWPs concentration showed good
agreement with the gravimetric method. Therefore, an APS was mainly used to evaluate
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the ESP’s and the inertial separator’s performances. An ELPI measured a particle size
range of 6 nm to 10 µm using an electrometer. The ELPI classified particle size based on an
aerodynamic diameter. Additionally, particle charge could be measured by the ELPI [31].
The BWPs’ charge numbers were measured using the ELPI when testing with the LM and
NAO pads. A CPC measured a particle total number concentration larger than a certain
size, normally 6 nm. The CPC measurement results were compared with the ELPI’s number
concentration values, and we evaluated whether the ELPI was affected by electrons and
ions that were generated from the ESP.

ESP particle collection efficiency, EFESP,dp at particle size dp, was calculated as follows:

EFESP,dp = 1 −
Con, dp

Coff,dp
(2)

where Con,dp and Coff,dp are particle number concentrations at particle diameter dp when
the ESP is activated or not, respectively. The ESP was tested for face velocities of 5.3 m s−1,
8.8 m s−1, and 12.4 m s−1, which represented the low, medium, and high velocity conditions
in this study, respectively.

The inertial separator particle collection efficiency, EFis,dp, was calculated as follows:

EFis,dp = 1 −
Cis, dp

Cnon,dp
(3)

where Cis,dp and Cnon,dp are the particle number concentrations at particle diameter dp
when the inertial separator is installed or uninstalled, respectively. The differences in
face velocities according to the presence or absence of the inertial separator were less
than 5%. Only the 5.3 m s−1 face velocity condition was tested for the inertial separator
because its differential pressure was too high. All experiments were repeated three times to
remove uncertainty.

Since no corona charging part was used in this study, the BWP collection efficiency of
the ESP was insufficient, especially for the larger particles. Hence, a hybrid precipitator,
which is a combination of the ESP and the inertial separator, was used to maximize BWP
collection efficiency. The ESP was installed upstream and the inertial separator was installed
downstream. The hybrid precipitator particle collection efficiency, EFh,dp, was calculated
as follows:

EFh,dp = 1 −
Ch, dp

Cnon,dp
(4)

where Ch,dp is the particle number concentration at particle diameter dp when the hybrid
precipitator is installed. Additionally, EFh,dp can be calculated using previous test results,
EFESP,dp and EFini,dp, as follows:

EFh,dp = 1 −
(

1 − EFESP,dp

)
×

(
1 − EFini,dp

)
(5)

Only the 5.3 m s−1 face velocity condition was tested for the hybrid precipitator, since
its differential pressure was too high.

3. Results and Discussion

The differential pressure versus face velocity curves of the ESP and the inertial separa-
tor are shown in Figure 4. The differential pressure of the inertial separator was as high as
470 Pa for a face velocity of 5 m s−1; the differential pressure of the ESP was as low as 30 Pa
for that same face velocity.
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Particle mass and number concentration distribution of BWPs when using the LM
pad and the NAO pad are shown in Figure 5. The particle number concentration lower
than 23 nm measured by the ELPI fluctuated largely due to electrometer noise. Therefore, a
measurement value of the ELPI larger than 23 nm was used in this study. The measurement
results from the ELPI and the APS agreed very well with each other because the two
instruments classified particles based on aerodynamic diameter. The mode diameters of
BWP mass distributions were 4 µm and 2 µm when using the LM pad or the NAO pad,
respectively. Park et al. [20] as well as Woo et al. [11] also reported that BWPs from the LM
pad were larger than those from the NAO pad.
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LM and NAO pads.

Figure 6 shows the particle number concentration variation measured by the CPC
and the ELPI during the WLTP-brake. A high-efficiency particulate air (HEPA, Class H13
99.95%) filter was installed at the inlet of the brake circular chamber in order to decrease,
as much as possible, background particles. Background particle number concentration
was about 100 particles cm−3. Variations in nanoparticle number concentrations measured
by the ELPI and the CPC agreed well with each other. However, at the moment when
many BWPs were emitted, the ELPI measured particle number concentrations became
1.5–2 times higher than those from the CPC. It was estimated that the triboelectric effect of
BWPs affected the ELPI’s electrometer measurement. However, since mass concentration
distributions of the ELPI and the APS agreed, it was estimated that the triboelectricity from
the BWPs did not affect the micron-sized particle measurements of the ELPI.
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Figure 6. Particle number concentration variations measured by the CPC and the ELPI during the
WLTP-brake.

The mode diameters of BWP number concentrations were 1.56 µm and 1.15 µm when
using LM and NAO pads, respectively. The particle number concentration distributions
were consistently shown in repeated experiments to be above 200 nm. However, the uncer-
tainties in the distributions were high below 200 nm. The highest disc surface temperature
in this study experiment was 150 ◦C. Farwick zum Hagen et al. [32] reported that brake pad
temperature should exceed critical temperature in order to generate brake nanoparticles
through the evaporation/condensation process. The critical temperature from previous
studies was 180–240 ◦C according to experimental conditions [6]. In our experiments, sur-
face temperature did not exceed critical temperature, and therefore nanoparticles smaller
than 200 nm were almost not generated at all. Since it was confirmed that particle mass was
mainly discharged from micron-sized particles for both the LM and NAO pads, particle
collection efficiency was calculated from the APS measurement results.

Figure 7 shows the particle collection efficiency distribution of the inertial separator.
The particle collection efficiency distributions of BWPs from the LM and NAO pads were
almost identical because the inertial separator classifies particle size based on aerodynamic
diameter. The 50% cut-off size was determined to be 2.2 µm. Unlike the typical inertial
separator collection efficiency curve, collection efficiency decreased to 50% when the particle
size was larger than 3 µm. The separator’s collection efficiency increased to 80% from
5 µm to 10 µm. It was estimated that coarse particle collection efficiency decreased due
to the bouncing problem, or that particles became resuspended from the particle receiver
as a result of turbulence. The BWP emissions reduction was calculated by combining the
collection efficiency of the inertial separator (Figure 7) and the particle mass size distribution
(Figure 5a). The BWP emissions reduction of the inertial separator when using the LM
pad was higher than 50% because the mode diameter of the particle mass distribution was
larger than the 50% cut-off size. However, the BWP emissions reduction for the NAO pad
reached as low as 40%, since its mode diameter was smaller than the 50% cut-off size.
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Since BWPs are charged by triboelectricity, collecting parts of the ESP were solely
installed. First, ESP collection efficiency was measured for various face velocities, namely
5.3 m s−1, 8.8 m s−1, and 12.4 m s−1. The applied voltage to the ESP was negative 10 kV, and
the electric field strength was 22.2 kV cm−1. BWPs were collected on the ESP’s collecting
plate, as shown in Figure 8, even though BWPs were not additionally electrically charged.
Similarly with traditional ESPs, the collection efficiency of this ESP decreased as face
velocity increased. However, its collection efficiency curves were not similar to those of
traditional ESPs. Generally, ESP collection efficiency curves appear to be U-shaped, with the
lowest collection efficiency occurring for 300 nm [24]. However, the collection efficiency of
the ESP used in this study was almost constantly from 520 nm to 3–5 µm. It was estimated
that BWPs were not fully charged by triboelectricity, and that the BWPs did not have
enough electrophoresis mobility. The ESP collection efficiency when using the NAO pad
was higher than that for the LM pad. The average collection efficiencies from 520 nm to
5 µm when using the LM and NAO pads were 52% and 64%, respectively, at a face velocity
of 5.3 m s−1. If face velocity was increased to 12.4 m s−1, the collection efficiency when
testing with the LM pad decreased to 10%, and that for the NAO pad decreased to 30%.
The ESP collection efficiency difference according to pad type was due to different charge
numbers on particles. Figure 9 shows the average numbers of charges on BWPs for LM and
NAO pads measured by the ELPI. It was shown that the number of charges when using
the NAO pad was higher than that for the LM pad. Woo et al. [11] reported that the Fe
composition ratio of BWPs when using the NAO pad was only 40%, and other components
such as Ti, Ca, Ba, and Si were largely contained in BWPs. The Fe composition ratio of
BWPs when using the LM pad was above 60%, and there were almost no other elements.
Generally, triboelectricity occurs when different materials rub against each other [33]. The
brake pads rubbed against brake discs made of cast iron. Therefore, it was estimated that
BWPs when using the LM pad would be only slightly frictionally charged, since the LM
pad and brake disc materials were similar; however, the BWPs emitted from the NAO
pad would be highly frictionally charged since the NAO pad material was different to the
material of the brake disc. Therefore, the ESP collection efficiency could be changed if the
brake disc material was changed.
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When using the LM pad, collection efficiency decreased as BWP size increased above
3 µm. The reason for this is because the number of charges in BWPs decreased as BWP size
increased. It was estimated that the Fe composition ratio in BWPs when using the LM pad
increased as BWP size increased; therefore, triboelectricity decreased as BWP size increased.
However, the BWP collection efficiency when using the NAO pad increased as the BWP
size increased from 520 nm to 5 µm. The reason for this is because the number of charges
on BWPs increased as BWP size increased. The increasing number of charges on BWPs
as size increases was due to the Fe composition ratio decreasing as BWP size increased.
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Woo et al. [11] reported that Fe components were mainly observed in sub-micron BWPs,
and potassium hexatitanate (PHT, K2Ti6O13) was the main component of micron-sized
BWPs. It was estimated that micron-sized BWPs emitted from the NAO pad were suitably
frictionally charged since they contained a lot of PHT. The ESP’s BWP collection efficiency
for the NAO pad decreased as BWP size increased above 5 µm when the face velocities
were 8.8 m s−1 and 12.4 m s−1. The reason for this was because the face velocity was too
fast to collect large BWPs which were not charged enough. The BWP collection efficiency of
the ESP increased as BWP size increased above 5 µm when the face velocity was 5.3 m s−1

since there was sufficient time for electrophoresis movement.
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Looking at the collection efficiency curve for various applied voltages, it can be seen
more clearly that BWPs were not frictionally charged enough, as shown in Figure 10. The
collection efficiency of the ESP increased as applied voltage increased from 2 kV to 10 kV,
because BWPs were more strongly pulled by the electric field strength. However, the
collection efficiency of the ESP did not increase further when applied voltage was increased
from 10 kV to 15 kV. This means that frictionally charged BWPs were almost all collected
by the ESP under an applied voltage of 10 kV. The BWPs that were not collected by one
ESP with an applied voltage of 10 kV were particles which cannot be removed by the ESP,
in other words, non-charged particles.
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The BWP collection efficiency increased as applied voltage increased from 2 kV to
10 kV for all particle sizes when using the NAO pad. The BWP collection efficiency was
almost unchanged when the applied voltage was increased from 10 kV to 15 kV, whereas
the BWP collection efficiency increased as the applied voltage was increased from 2 kV to
10 kV when using the LM pad. However, the collection efficiency above 4 µm decreased
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as the applied voltage was increased from 10 kV to 15 kV. The reason for this collection
efficiency reduction is not yet clear, but it is estimated that iron BWPs easily lose charges
when the applied voltage is high. When the NAO pad was used, collection efficiency above
6 µm decreased under a low applied voltage of 2 kV. The reason for this is because the
electric field strength was insufficient to collect large BWPs that were not charged enough.

In order to compensate for the decreasing collection efficiency as particle size increased
when using the LM pad, the inertial separator and the ESP were combined and tested.
The combined inertial separator and ESP unit is called the hybrid precipitator. The hybrid
precipitator was tested under the WLTP-brake in order to measure BWP EF. Figure 11
shows the size distributions of hybrid precipitator collection efficiencies for LM and NAO
pads. The collection efficiency of BWPs over 3 µm in size, which was as low as 50% or
less when only the ESP was used, increased to more than 70%. It was confirmed that the
product of ESP collection efficiency, the inertial separator collection efficiency, and the
experiment results of the hybrid precipitator agreed well.
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Table 1 summarizes the PM10 and PM2.5 EFs of BWPs emitted from the LM pad under
the WLTP-brake. The PM10 and PM2.5 EFs of BWPs emitted from the LM pad decreased
by 60% and 55% when using the hybrid precipitator, respectively. When the NAO pad
was used, PM10 and PM2.5 EFs of BWPs decreased by 75% and 73%, respectively. If an LM
pad is used in a brake system, it is recommended that a filter or inertial separator should
be added to the ESP, since large micron-sized BWPs are not very frictionally charged. If a
NAO pad is used, since BWPs are frictionally charged, a collection efficiency of more than
60% can be guaranteed even if the ESP is solely used. The remaining 40% of BWPs are not
frictionally charged, and the precipitator should be supplemented by using other auxiliary
dust collectors, such as an inertial separator.

Table 1. Emission factor of BWPs when using LM or NAO pads in a brake system for the WLTP-brake.

Pad Type Original BWP EF With Hybrid Precipitator BWP EF

LM
PM10 4.69 mg/km 1.86 mg/km

PM2.5 1.66 mg/km 0.75 mg/km

NAO
PM10 0.59 mg/km 0.15 mg/km

PM2.5 0.40 mg/km 0.11 mg/km

4. Conclusions

The characteristics of removing BWPs via the inertial separator and the ESP were
studied. The BWP removal characteristics according to pad type were tested by using
LM and NAO pads. More than 90% of BWP mass concentrations were measured at
micron-particle levels for both pad types. The mode diameters of the mass concentration
distributions were 2 µm and 4 µm for the NAO and LM pads, respectively. Nanoparticles
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smaller than 200 nm were not emitted since the brake temperatures in this study did not
exceed a critical temperature.

The 50% cut-off size of the inertial separator was 2.2 µm, and was the same for both
the LM and NAO pads. However, because the BWP mode diameter of the NAO pad was
smaller than the 50% cut-off size, total collection efficiency of the inertial separator was
better for the LM pad than the NAO pad. As a result of the bouncing problem and the
resuspended particles from turbulence, 3–10-micrometer particle collection efficiency of the
inertial separator decreased.

BWP collection efficiency of the ESP when using the NAO pad was better than when
using the LM pad. Since BWPs emitted from the NAO pad contain a lower Fe component
than those from the LM pad [10], they were more frictionally charged. When using the
NAO pad, the PHT component ratio increased as particle size increased [11], and micron-
sized particle collection efficiency was high. On the contrary, the BWP collection efficiency
of the ESP when using the LM pad decreased as particle size increased. When using
the LM and NAO pads, no matter how much the electric field strength increased, the
collection efficiency of a single particle size did not exceed 60% and 70%, respectively. It
was estimated that non-collected BWPs on the ESP were not frictionally charged. The
collection efficiency of the ESP was supplemented by adding an inertial separator in order
to collect non-frictionally charged BWPs. The hybrid precipitator reduced the PM10 EF
under the WLTP-brake to 60% and 75% when using the LM and NAO pads, respectively.
The PM2.5 EF under the WLTP-brake decreased to 55% and 73% when using the LM and
NAO pads, respectively.

As a result, when the NAO pad was used in the brake system, the inertial separator
was not efficient in removing BWPs, while the ESP removed frictionally charged BWPs
well. When the LM pad was used, BWPs were not very frictionally charged because they
contained a lot of Fe, and the ESP was not very good at removing BWPs. The ESP must
be supplemented by adding a large particle collector, such as an inertial separator, when
using LM pads in a brake system.

This study is our first step to install dust collectors in actual vehicles, in order to reduce
the brake wear PM emissions. In this study, we evaluated the collection efficiencies of an
inertial separator, an ESP, and a hybrid precipitator, independently. In the next stage, we
will design a suction system that considers the structure and space of the brake system;
then, the full dust collector system setup will be installed on a vehicle. At the final stage,
the actual collection efficiency of the dust collector will be measured under various on-road
driving conditions.
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