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Abstract: The land surface albedo reflects the ability of the surface to reflect solar radiation and is a
critical physical variable in the study of the Earth’s energy budget and global climate change. Algo-
rithms for the retrieval of albedo usually require multi-angle measurements due to surface anisotropy.
However, most of the satellites cannot currently provide sufficient and well-distributed observations;
therefore, the accuracy of remotely sensed albedo is constrained. Based on the Moderate-Resolution
Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) and
albedo product (MCD43A1), this study proposed a method to further subdivide reflectance anisotropy
and build an updated database of BRDF archetype, using both the Anisotropic Flat Index (AFX) and
Perpendicular Anisotropic Flat Index (PAFX). The BRDF archetypes were used to fit the correspond-
ing MODIS BRDF, and the optimal number of BRDF archetype categories was determined according
to the tendency of fitting error. The effect of surface anisotropy and observation noise on albedo
retrieval were explored based on simulated MODIS reflectance. Finally, the BRDF archetype A2P2
was taken as prior knowledge to retrieve albedo from a different number of MODIS observations, and
the result was validated by the high-quality MODIS albedo product. The results show that the fitting
error between BRDF archetypes and MODIS BRDF shows a rapid decline when introducing the PAFX
in the classification process. A 3-by-3 matrix of BRDF archetypes, which occupy 73.44% and 70.13%
of the total decline in the red and NIR band, can be used to represent the characteristics of reflectance
anisotropy. The archetype A2P2 may be used as prior knowledge to improve the albedo retrieval
from insufficient observations. The validation results based on MODIS observations show that the
archetype A2P2-based albedo can reach root-mean-square errors (RMSEs) of no more than 0.03.

Keywords: reflectance anisotropy; AFX; PAFX; BRDF archetype; albedo

1. Introduction

Albedo is defined as the ratio of the reflected solar ration to the total incoming solar
radiation over the whole solar spectrum and is a key factor in the study of global envi-
ronmental change [1,2]. The reflectance characteristics of most of the surface types are
anisotropic. The surface reflectance anisotropy, which is usually described by the Bidirec-
tional Reflectance Distribution Function (BRDF) [3,4], is dependent on the surface structure
and the angles of incidence and reflection. Albedo is the integral of reflectance over the
incident and emitted hemispheric space, so accurate albedo retrieval needs to consider the
anisotropic characteristics of the surface [5,6].

A sufficient number of multi-angular observations describing the anisotropy char-
acteristics of the surface is usually required to estimate the albedo with good quality [7].
Currently, the most widely used satellite multi-angular observations are from the MOIDS
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and Polarization and Directionality of the Earth’s Reflectance (POLDER), which have large-
view zenith angles along and across the track. The multi-angular observations from these
sensors can only be obtained by the accumulation of sequential observations over a speci-
fied period [7,8]. Based on the kernel-driven BRDF model, the MODIS BRDF and albedo
product are retrieved [3,9] and widely used in studying surface reflectance anisotropy and
surface albedo change [10–13]. However, for medium- and high-resolution satellites, it
would be difficult to obtain the multi-angle observations due to the small-view zenith
angles, the long revisit period, and the influence of clouds.

Prior BRDF knowledge may be able to improve the accuracy of albedo retrieval from
insufficient observations, or even one single directional observation [14]. Varying prior
BRDF knowledge has been used in albedo retrieval [10,15,16] and reflectance normaliza-
tion [17]. Based on the prior BRDF of different land cover classes, Strugnell and Lucht [18]
presented a backup BRDF/albedo algorithm when the number of observations is not suf-
ficient. Based on the Bayesian theory of inference, a priori knowledge was introduced
to effectively solve the problem of retrieval instability [14]. Associating the reflectance
anisotropy to land cover types or normalized difference vegetation index (NDVI), different
methods have been proposed to retrieve 30 m Landsat surface albedo according to the prior
BRDF extracted from MODIS [10,15,19]. Landsat albedo was also retrieved based on direct
estimation algorithm [20,21]. For the study of reflectance normalization, reflectance data
have been normalized to the nadir based on the surface reflection anisotropy information
extracted through POLDER or MODIS data [17,22,23]. To classify the complex reflectance
anisotropy, the BRDF model parameters were normalized, and a BRDF archetype database
was established based on the Anisotropic Flat Index (AFX) and MODIS BRDF product [24].
The accuracy of the BRDF archetypes to represent the reflectance anisotropy in albedo
retrieval from multi-angular reflectance has been discussed [25].

Extracting effective information from large amounts of historical BRDF products
can improve the understanding of surface reflectance anisotropy and its effect on albedo
retrieval. Based on the AFX theory, a new Perpendicular Anisotropic Flat Index (PAFX) was
proposed in this study. These two indices were combined to classify the surface anisotropy
characteristics, and a new BRDF archetype matrix was built. The BRDF archetypes were
used as prior knowledge to explore the effect of reflectance anisotropy on albedo and the
possibility of using one specific BRDF archetype for albedo retrieval.

2. Materials and Methods
2.1. Kernel-Driven BRDF Model

The kernel-driven BRDF model was generally used to retrieve the surface albedo
from multi-angle measurements, and a linear combination of kernels of a certain physical
meaning was used to describe the bi-directional reflection properties of the surface [26–28].
The model takes the form of Equation (1):

R(θi, θr, ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θi, θr, ϕ) + fgeo(λ)Kgeo(θi, θr, ϕ), (1)

where fiso(λ), fvol(λ), and fgeo(λ) are the spectrally dependent model parameters, indicat-
ing the percentage of isotropic scattering, geometric-optical scattering, and volumetric
scattering components in the reflectance, respectively. Kvol is derived from volume scat-
tering radiative models [29], and Kgeo is retrieved from surface scattering and geometric
shadow casting theory [30], and they are functions of the incident and observed angles.
R (θi, θr, ψ, λ) is a bidirectional reflectance distribution function in waveband λ, which is
the illumination zenith angle, θi, the view zenith angle, θr, and the reflectance at the relative
azimuth angle, ψ.

The BRDF model is a combination of the volumetric scattering kernel and the geometric-
optical scattering kernel, and the different kernel combinations produce different results.
The kernels chosen in this study are the Ross-Thick and the LiSparseR. It has been proved
by many studies that such a combination has the best fitting effect, as well as extrapolation
ability to estimate the surface reflectance with high accuracy and convenience [3,26,28].
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The Ross-Thick kernel has an improved effect on the reflectivity when the view zenith
angle is large and the BRDF shape is “bowl-shaped”, while the LiSparseR kernels represent
a somewhat dome-shaped BRDF curve in the backward-scattering direction [26]. The
actual BRDF shape is expressed by these two shapes after adding weights, so the different
BRDF shapes can indicate the characteristics of reflectance anisotropy. The BRDF model
parameter (fiso, fvol, and fgeo) can be generated by fitting the multi-angular observation with
the Ross-Thick/LiSparseR model by linear regression. Then the bi-directional reflection in
any viewing and illumination directions can be obtained through the model parameters
and the kernels in the forward mode.

2.2. MODIS Database

MODIS surface reflectance products MOD09GA and MYD09GA are from Terra and
Aqua satellites, respectively. The product provides surface reflectance data from near-
surface measurements, independent of atmospheric absorption and scattering [6]. Based
on a combination of the MODIS operational algorithm and 16 days of atmospherically
corrected surface reflectance data, the MODIS product provides a global 500 m resolution
BRDF/albedo product with a long time series [3]. In particular, MCD43A1 includes BRDF
model parameter products for each band (with parameters fiso, fvol, and fgeo), MCD43A2
describes its quality, and MCD43A3 includes the black sky albedo (BSA) and white-sky
albedo (WSA) products. Many studies have shown that the MODIS BRDF/albedo products
can accurately reflect the conditions of the surface and meet the precision requirements in
different situations [13,31,32].

The global time series MODIS BRDF parameter and the quality products in 2015 in
the red and near-infrared (NIR) bands were used in this study. The global equal interval
sampling method was applied to the MODIS data, with an interval of 2◦. The number of
selected pixels is about 15,000, and the number of high-quality time-series MODIS BRDF
parameter samples is about 2 million. The samples contain most of the IGPB land-cover
types and include a wide variety of surface anisotropy reflectance characteristics.

To further verify the applicability of the extracted BRDF archetype in different observa-
tions, MODIS surface reflectance (MOD09GA) at two periods (2021.101-116 and 305-320) in
tile h20v11 was also used in this study. This tile is located in the southern part of Africa, with
the main surface types being grassland, open shrubland, savanna, and cropland/natural
vegetation mosaic. Only the first layer of the surface reflectance with high quality during
the 16-day period was used. Figure 1 shows an example of the MODIS angular samplings
at the two periods. The observations during the first period are close to the cross-principal
plane (CPP), with the solar zenith angle being around 45◦, while the observations during
the second period are located near the principal plane (PP), with a solar zenith angle range
of 13◦ to 32◦. The surface albedo was retrieved from the MODIS surface reflectance and the
BRDF archetypes, and the accuracy of albedo was validated by the high-quality MODIS
albedo product (MCD43A3).
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Figure 1. MODIS angular sampling within 2021.101-116 (a) and 305-320 (b). The radius represents the
zenith angle with an interval of 15◦, and the polar angle represents the azimuth. Solid dots represent
the locations of the view, and the open circles refer to the locations of the sun.

2.3. The Classification of Reflectance Anisotropy
2.3.1. AFX and PAFX

The extraction of prior BRDF knowledge requires the classification, effective extraction,
and evaluation of information about surface reflectance anisotropy characteristics, with the
help of some classification indices. AFX is an angular index constructed for the anisotropic
reflection pattern of the MODIS sensor and is defined as the ratio of the WSA to the surface
isotropic parameter, fiso [24].

The WSA, which can be obtained by integrating the reflectance over both the viewing
hemisphere and illumination hemisphere, can be derived as Equation (2), according to the
kernel-driven BRDF model. The AFX that relates to the geometric-optical scattering and
volumetric scattering weights can be written as Equation (3).

WSA(λ) = fiso(λ) + fvol(λ)× Kv + fgeo(λ)× Kg, (2)

AFX(λ) =
WSA(λ)

fiso(λ)
= 1 +

fvol(λ)

fiso(λ)
× Kv +

fgeo(λ)

fiso(λ)
× Kg, (3)

where Kv and Kg are the directional-hemispherical integrals of the BRDF model kernels,
and the values are 0.189184 and −1.137762, respectively.

Combining Equation (3) and the shapes of the Ross-Thick kernel and LiSparseR
kernel in the PP, it can be deduced that different values of AFX can show various BRDF
shapes. When the volumetric scattering effect is larger than the geometric-scattering
effect (AFX > 1), the shape of BRDF shows a bowl shape with a low center and high sides.
When the volumetric scattering effect gradually decreases and the geometric-optical effect
occupies the dominant position (AFX < 1), the shape of the BRDF approximates a dome
shape. When the two effects are close to each other, the AFX is close to 1, and the shape of
BRDF is flat [24]. AFX, which is well-associated with the shape of BRDF, provides a new
method for recognizing complex anisotropy of the surface and can be used to quantitatively
evaluate the characteristics of reflectance anisotropy.

In the previous study, the BRDF archetypes were extracted from normalized BRDF
model parameters, which removed the effect of spectral reflectance amplitude and can be
compared directly [24]. The BRDF model parameters were normalized by a scale factor of
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2 × f iso to limit the range of normalized BRDF shapes to 0–1. The normalized BRDF model
parameters (F) can be written as follows:

Fiso = 0.5, Fvol =
fvol(λ)

2 fiso(λ)
, Fgeo =

fgeo(λ)

2 fiso(λ)
, (4)

Then Equation (3) can be rewritten as follows:

Fgeo = −
Kv

Kg
Fvol +

(
AFX− 1

2Kg

)
, (5)

Take the Fvol and Fgeo as independent and dependent variables, and an F parameter
space could be constructed. Setting a specific value of AFX, the parameter space would be
divided into two parts (white and gray parts in Figure 2). In Figure 2, the black line has
the same AFX value; the AFX value in the upper part (white part) is smaller; and in the
bottom part (gray part), the AFX value is bigger. The variation in the BRDF shapes in one
archetype class defined by AFX is still notable due to the large range of model parameters.
To subclassify the surface reflectance anisotropy, a new index PAFX was introduced to
redefine the archetype class. PAFX, which is perpendicular to Equation (5), can be written
as Equation (6). Similarly, given a specific value of PAFX, the parameter space would be
divided into two parts (left part and right part in Figure 2). When combining the two
classification results, the parameter space would be divided into four classes (A1P1, A1P2,
A2P1, and A2P2) in this condition. The variation in the model parameter in the new
category is much smaller than that in the original category. The optimal class number for
AFX and PAFX categories are discussed later in the paper.

PAFX = −
2Kg

Kv
Fvol + 2Fgeo (6)

Figure 2. The relationship between the two indices in parameter space. The region name rule is the
category index number when each of AFX and PAFX is classified independently; for example, A1P1
means that the region belongs to the first category of AFX and the first category of PAFX.

2.3.2. Classification Strategy and Evaluate

Previous research has shown that the AFX can indicate the pattern of reflectance
anisotropy, which can be used to distinguish surface reflectance anisotropy and benefit
the prior BRDF extraction [24]. The extraction of surface anisotropy information by AFX
mainly uses the Iterative Self-Organizing Data Analysis Techniques Algorithm (ISODATA)
that generates n categories of classification schemes based on the numerical classification
of AFX. The mean values of the model parameters within a category were used as the
model parameters of the BRDF archetype. The number of classes is determined by the
difference between archetype BRDF and MODIS BRDF. The classification method used in
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this study is similar, and the main difference is that both AFX and PAFX are used in the
classification process. AFX and PAFX are independently used as classification indicators
for BRDF characteristics. The combination of the two classification results establishes the
final classification result. The parameter space would be divided into an n-by-m matrix
of categories, and the mean value of the model parameter in each category is taken as
parameter for the BRDF archetypes.

The BRDF archetype (BRDF′) is used to fit the corresponding MODIS BRDF, according
to the least-squares method, to evaluate the classification. In this process, the simulated
MODIS multi-angular reflectance (ρ), which has 1440 observations (the solar zenith angle
ranges from 0◦ to 70◦, with an interval of 5◦; the view zenith angles range from 0◦ to 70◦,
with an interval of 10◦; and the relative azimuth angles range from 0◦ to 360◦, with an
interval of 30◦), is used. First, the reflectance (ρ′) that has the same observation geometry
with ρ was simulated from the kernel-driven BRDF model and the BRDF archetypes:

ρ′ = 0.5 + FvolKvol(θi, θr, ϕ) + FgeoKgeo(θi, θr, ϕ), (7)

Then we used an adjustment, a, to minimize the difference between MODIS BRDF and
adjusted BRDF archetypes, using the technique of least-mean squares:

a =
∑n

i=1 ρ× ρ′

∑n
i=1 ρ′ × ρ′

(8)

The adjusted BRDF archetypes and the fitting error (RMSEa) of each sample can be
written as follows:

BRDF = a× BRDF′, (9)

RMSEa =

√
1

n− 1 ∑n−1
i=1 (ρ− a× ρ′)2, (10)

Finally, the mean value of RMSEa is used to evaluate the difference between BRDF
archetypes and MODIS BRDF and the representation of BRDF archetypes to various re-
flectance anisotropy. Beyond that, the WSA can be calculated through the adjusted BRDF
archetypes and Equation (3).

2.4. The Effect of Reflectance Anisotropy and Observation Noise on Albedo Retrieval
2.4.1. WSA Retrieval from BRDF Archetype

In this study, the adjusted BRDF archetypes that can best fit the observations can
be calculated through Equations (7)–(9). The WSA of the BRDF archetype (WSA′) can
be calculated by using Equation (2), and the BRDF archetype-based WSA can be written
as follows:

WSA = a×WSA′, (11)

The high-quality MODIS BRDF product was used to evaluate the accuracy of BRDF
archetype-based WSA (WSAb). The RMSEr and BIAS between the high-quality MODIS
WSA (WSAa) and BRDF archetype-based WSA (WSAb) is used to describe the accuracy of
the BRDF archetype.

RMSEr =

√
1

n− 1 ∑n−1
i=1 (WSAb −WSAa)

2, (12)

BIAS = mean(WSAb −WSAa), (13)

where n is the number of the samples.

2.4.2. Effect of Reflectance Anisotropy and Observation Noise

The BRDF archetypes cover all the reflectance anisotropy characteristics, which can
facilitate the study on the impact of reflectance anisotropy on albedo retrieval from remotely
sensed observations. The number of observations and their distribution characters are
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usually the main factors considered in albedo retrieval from observations [7]. Based on this
analysis, we designed three different types of observations based on simulated MODIS
reflectance. The first type is sufficient multi-angular reflectance, which is distributed in PP
and CPP, with an interval of 10◦ and the maximum view zenith angle of 60◦ (Figure 3). The
second type is the insufficient multi-angular reflectance, which has three observations in the
PP or CPP, with the largest view zenith angle of 15◦. The third type is the only one single
directional reflectance in any direction of the viewing hemisphere, with the largest view
zenith angle of 60◦. The solar zenith angle is set to 30◦ for the three types. Different BRDF
archetypes are used to fit the simulated reflectance to generate albedo (Equations (7)–(11)).
The retrieved albedo is compared with the high-quality MODIS albedo product to show
the effect of reflectance anisotropy and to evaluate the accuracy of albedo.

Figure 3. Same as Figure 1, but for the sufficient multi-angular observations (solid circles) and
insufficient observations (red open points). The red open square refers to the direction of sun.

Since the real observations contain a certain degree of noise, which is not considered
in the simulated reflectance, it is necessary to add random noise (the largest proportion is
20%) to the simulated reflectance to learn the effect of noise on albedo retrieval and further
illustrate the feasibility of using BRDF archetypes for albedo retrieval. In all of the above
cases, the RMSEr and BIAS between MODIS albedo and BRDF archetype-based albedo are
used to quantitatively evaluate the accuracy of albedo.

3. Results
3.1. BRDF Archetype Database Based on AFX/PAFX

The AFX and PAFX values for each sample can be calculated from high-quality MODIS
BRDF parameter products (MCD43A1). To determine the best number of classifications,
first, the AFX and PAFX values are classified into 1 to 10 classes, using ISODATA, according
to the previous study [24]. Then the two classification results are combined to reclassify
the data. The BRDF archetype of each new class can be easily calculated. Finally, the
BRDF archetypes are used to fit the MODIS BRDF within the class. The mean fitting RMSE
(RMSEa) of all samples is used to measure the representativeness of BRDF archetypes to
reflectance anisotropy.

The combination of AFX and PAFX can generate a matrix RMSEa sized 10 by 10.
Figure 4 shows the change in RMSEa with the number of classifications. It shows that, as
the number of AFX and PAFX classifications increases, the RMSEa decreases gradually. As
compared with the RMSE only based on AFX, the decrease in RMSEa is more pronounced.
The RMSEa showed a marked decline with the increase in classification number at the
beginning, while the declining tendency becomes slow when the number of classifications
becomes large. The results suggest that the combination of AFX and PAFX can effectively
improve the classification accuracy of reflectance anisotropy.
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Figure 4. The changes in RMSEa with the number of classifications in the red band (a) and the NIR
band (b). The x-axis and y-axis refer to the number of AFX- and PAFX-based classes. The z-axis refers
to the value of mean fitting error. The colors refer to the magnitude of RMSEa.

Considering the quality of classification results and the convenience of BRDF archetype
application, we chose the combination of three classification results by AFX and PAFX as
the final classification results. At this time, the RMSEa is 0.0092 and 0.0142, which occupy
73.44% and 70.13% of the total decline (the maximum minus the minimum) in the red and
NIR band. The 3-by-3 matrix of BRDF archetypes can better present the surface reflectance
anisotropy characteristics. The ranges of AFX and PAFX for different classes in the red and
NIR bands are shown in Table 1.

Table 1. Range of AFX and PAFX for different BRDF archetypes within a 3-by-3 matrix.

Band AFX Class AFX Ranges PAFX Class PAFX Range

Red
A1 [0.350, 0.782] P1 [0.000, 1.664]
A2 [0.782, 0.985] P2 [1.664, 5.474]
A3 [0.985, 2.090] P3 [5.474, 15.37]

NIR
A1 [0.336, 0.842] P1 [0.000, 1.736]
A2 [0.842, 1.003] P2 [1.736, 5.593]
A3 [1.003, 1.378] P3 [2.769, 13.57]

Figure 5 shows the density distribution of the normalized BRDF model parameters.
The distribution of model parameters shows an aggregated pattern, with most of the
samples distributed in a small area. The colors refer to the number of pixels, and the
lines refer to the threshold of AFX and PAFX for different classes. The combination of
the two classifications divides the parameter space into 3-by-3 classes. We marked the
number of the class as AmPn, where m and n refer to the class number in AFX- and
PAFX-based classification.

Figure 6 shows the three-dimensional BRDF shapes of the 3-by-3 matrix of BRDF
archetypes in red and NIR bands. Each band contains nine BRDF archetypes representing
different surface anisotropy characteristics. Table 2 shows the model parameters for each
BRDF archetype in Figure 6. The A-series BRDF archetypes are distinguished by AFX
proposed by previous research [24]; the pattern of BRDF shape gradually changes from roof-
shaped, with mainly geometric-optical scattering, to bowl-shaped, with mainly volumetric
scattering, with the class number change from A1 to A3.

AFX can effectively indicate the main anisotropic reflectance patterns at the Earth’s
surface, while the PAFX proposed in this study has the ability to detail the BRDF shapes
within an A-series class. With the class number change from P1 to P3, both of the two
parameters increase gradually. The BRDF shapes of P3 have a relatively large (small)
value in the backward (forward) directions as compared with P1. The archetype A1P3
represents the strongest reflectance anisotropy, with the BRDF shapes having the largest
difference, especially in the forward and backward directions. The archetype A3P1 is
flatter since the model parameters are close to 0, and this archetype can be considered
to be the Lambertian assumption. The archetype A3P3 has an obvious bowl shape, with
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the strongest volumetric scattering and a relatively small geometric scattering. The BRDF
archetypes in the red and NIR bands have high consistency, and this is because the effect
of spectral information is removed in the BRDF archetypes, which only keep the pure
reflectance anisotropy characteristics.

Figure 5. The distribution of normalized MODIS BRDF parameters in the red band (a) and the NIR
band (b), the color indicates the density of the point. The lines are the threshold of AFX and PAFX
when data is classified into 3 classes by AFX and PAFX, respectively.

Figure 6. Three-dimensional plot of the shapes of BRDF archetypes in red band (a) and NIR band (b),
assuming a solar zenith angle of 30◦.

Table 2. The parameters of each BRDF archetype in the red and NIR band archetype, where the
isotropic parameters are normalized to 0.5.

Band Class No. [Fvol, Fgeo] Class No. [Fvol, Fgeo] Class No. [Fvol, Fgeo]

Red
A1P1 [0.0242, 0.1327] A1P2 [0.1811, 0.1341] A1P3 [0.4395, 0.1644]
A2P1 [0.0315, 0.0433] A2P2 [0.2231, 0.0760] A2P3 [0.4649, 0.0985]
A3P1 [0.0528, 0.0024] A3P2 [0.2153, 0.0103] A3P3 [0.6851, 0.0243]

NIR
A1P1 [0.0549, 0.1063] A1P2 [0.1981, 0.1100] A1P3 [0.4244, 0.1355]
A2P1 [0.0551, 0.0309] A2P2 [0.2450, 0.0642] A2P3 [0.4317, 0.0806]
A3P1 [0.0764, 0.0020] A3P2 [0.2556, 0.0163] A3P3 [0.5736, 0.0271]
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3.2. The Effect of Reflectance Anisotropy on Albedo Retrieval
3.2.1. Albedo Retrieval from a Specific BRDF Archetype and Multi-Angular Reflectance

Based on Section 2.4.2, we learned the effect of surface reflectance anisotropy and
observation noise on albedo retrieval for different situations by using the extracted BRDF
archetypes. Different BRDF archetypes were used to fit the simulated multi-angular re-
flectance, using the least-squares method. Figure 7 shows the effect of different surface
anisotropies on albedo retrieval from sufficient and insufficient multi-angular reflectance
with a solar zenith of 30◦.

Figure 7. Comparison of MODIS WSA product with WSA retrieved from different BRDF archetypes
and sufficient (a) and insufficient (b) multi-angular reflectance in the red (a,c) and NIR (b,d) bands.
A1P1 to A3P3 refer to the class number of BRDF archetypes. The insufficient multi-angular reflectance
refers to the reflectance in the PP.

As compared with the MODIS albedo product, the WSA retrieved from A1-series
archetypes usually underestimate the albedo, especially for the archetype A1P1, while the
WSA retrieved from A3-series archetypes usually overestimates the albedo, especially for
the archetype A3P3. The WSA retrieved from A2-series archetypes has a high consistency
with the MODIS albedo product. Referring to the shapes of BRDF archetypes in Figure 6,
this pheromone could mainly be caused by the difference in BRDF shapes in the forward
directions. The albedos retrieved from archetype A2P2 are more stable than the other
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archetypes, with the smallest RMSEr and a BIAS nearest to 0 in all three multi-angle
observation situations.

For the insufficient multi-angular reflectance in CPP, similar results also can also be
obtained with a relatively larger RMSEr and BIAS as compared with sufficient reflectance.
The retrieved albedo from the insufficient reflectance in CPP has a similar performance
with the reflectance in PP, and the results are not shown.

3.2.2. Albedo Retrieval from a Specific BRDF Archetype and a Single
Directional Reflectance

The effect of reflectance anisotropy on albedo retrieval from a single directional re-
flectance is discussed in this section. Figure 8 shows the comparison of MODIS albedo
with albedo retrieval from nine BRDF archetypes and nadir reflectance in the red and NIR
bands. Similar to the results of multi-angular observations, the A1-series archetypes would
underestimate the albedo, while the A3-series archetypes would overestimate the albedo.
It also shows that the WSA retrieved from archetype A2P2 has a good agreement with
MODIS albedo, with an RMSEr of 0.021 and 0.036 and a BIAS of 0.002 and 0.006 in the red
and NIR bands, respectively. The retrieved albedo from A2P2 is slightly less accurate than
the albedo retrieved from multi-angular reflectance, but the result still has good consistency
with MODIS albedo.

Figure 8. Comparison of MODIS albedo with albedo retrieval from different BRDF archetypes and
nadir reflectance in the red (a) and NIR (b) bands.

For different observation angles, the effect of the reflectance anisotropy on albedo
retrieval may be different; we further extended the directional reflectance from nadir to
the entire viewing hemisphere. Similarly, the RMSEr in each direction is used to evaluate
the possibility of using the BRDF archetypes and the reflectance in the direction. Figure 9
shows the distribution of RMSEr in the viewing hemisphere with a solar zenith angle of
30◦, and the small value of RMSEr corresponds to a higher accuracy of albedo. Overall, the
archetypes A2P1, A2P2, A3P1, and A3P2 have higher retrieval accuracy, with the RMSEr
having a small value (less than 0.05) in the entire viewing hemisphere, while other BRDF
archetypes have better retrieval results only in some limited directions. Noteworthily, the
albedo retrieved from reflectance on the CPP is relatively stable, while the albedo retrieved
from reflectance on the PP is less accurate, especially in the backward and around the
hotspot directions. This may be caused by the remarkable changes in reflectance anisotropy
on the PP.
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Figure 9. The distribution of RMSEr between MODIS albedo and albedo retrieval from different
BRDF archetypes and directional reflectance in the whole viewing hemisphere with a solar zenith
angle of 30◦ in the red (a) and NIR (b) bands.

In the actual situation, observations obtained by satellites may contain a certain level
of noise caused by internal and external factors (e.g., instrument senescence, climate,
or underlying surface changes). It is necessary to consider the impact of noise when
learning the effect of reflectance anisotropy on albedo retrieval. The impact of random
noise in the multi-angular observation on albedo could be offset by using the least-squares
method. However, when retrieving albedo from BRDF archetypes and a single directional
reflectance, the noise in the reflectance would be delivered to the albedo completely, using
the proposed algorithm. Figure 10 shows the results of the albedo retrieval from different
BRDF archetypes and nadir reflectance with random noise (the largest proportion is 20%).

Figure 10. Comparison of MODIS albedo with albedo retrieval from different BRDF archetypes and
nadir reflectance with a random noise range from −20% to 20% in the red (a) and NIR (b) bands.

For the albedo retrieval form nadir reflectance with noise, the A1-series archetypes
would underestimate the albedo, while A3-series archetypes would overestimate albedo.
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The scatter plot is more discrete, and the RMSEr tends to increase as compared to the
previous results. The RMSEr of archetype A2P2 increased from 0.021 to 0.038 and from
0.036 to 0.058 in the red and NIR bands. For the entire viewing hemisphere (Figure 11),
although the RMSEr values of different BRDF archetypes tend to increase after adding noise,
the albedo retrieval from archetype A2P2 retains an acceptable accuracy. The random noise
in the observation could reduce the accuracy of albedo retrieval from BRDF archetypes
and directional reflectance, and the archetype A2P2 can be used to remove the effect of
reflectance anisotropy.

Figure 11. Same as Figure 9, but for the albedo retrieval from directional reflectance with a random
noise range from −20% to 20% in the red (a) and NIR (b) bands.

3.3. The Application of the Archetype in MODIS Reflectance

To further illustrate the effect of different surface anisotropy reflectance on albedo
retrieval, this section uses real MODIS observations for further validation. For the selected
MOD09GA data, only the first layer of reflectance was used in this study. As the obser-
vations were obtained over the course of 16 days, the number of valid observations for
a pixel range from 0 to 16 after filtering by quality flags. Figure 12 shows the number of
observations for each pixel at the two periods in the red and NIR bands.

Figure 12. The number of observations in each pixel at the two periods: (a) refers to the observations
within 2021.101-116; and (b) refers to the observations within 305-320.

It has been proved that the archetype A2P2 has the best ability to correct the effect
of reflectance anisotropy in albedo retrieval based on the simulated reflectance. In this
section, the archetype A2P2 is further applied to the MODIS observations, and the re-
trieved albedo is compared with the high-quality WSA data from the MCD43A3 product.
Figures 13a,d and 14a,d show the MODIS albedo product and the albedo retrieval from
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archetype A2P2 and multi-angular MODIS observations in red and NIR bands within
2021.101-116 and within 305-320. To further verify the possibility of using archetype A2P2
to correct the effect of reflectance anisotropy on albedo from a single directional reflectance,
albedo (b and e in Figures 13 and 14) is also retrieved from a single directional reflectance
that is selected randomly from the multi-angular observations in this process. The results
show that, although the albedo based on a single directional reflectance shows a certain
degree of discontinuity, both of the two albedos have high spatial consistency with MODIS
albedo products.

Figure 13. Albedo retrieval from archetype A2P2 and MODIS observation within 2021.101-116:
(a–c) refer to the red band albedo; (d–f) refer to the NIR band albedo; (a,d) refer to the albedo retrieval
from multi-angular observations; (b,e) refer to a single directional reflectance; and (c,f) refer to the
MODIS albedo.

Figure 15 shows the comparison of retrieved albedo based on the archetype A2P2 with
the high-quality MODOS albedo product. When based on multi-angular observations, the
RMSEr is 0.007 and 0.12 for red and NIR bands for the data within 101-116, while the RMSEr
is 0.016 and 0.024 for the data within 305-325. The RMSEr is slightly greater for the data
within 305-325, and this is mainly caused by the relatively significant reflectance anisotropy
characteristics around the PP. In comparison, the RMSEr shows a slight increase when there
is only a single directional reflectance. In general, the RMSEr of both multi-angular and
a single directional observation at the two periods satisfies the accuracy requirement of
albedo applications, especially for the observations close to the CPP.

The effect of the number of observations is further explored based on the MODIS
observations. Albedo is calculated from archetype A2P2 and the same number of obser-
vations for different pixels. To make full use of the data, the pixel will participate in the
calculation when the specific number of observations is less than or equal to the number
of observations of the pixel. The subset of observations is selected randomly from the
multi-angular data of the pixels. This strategy could provide sufficient sample for this
study and make the retrieval results more reliable.
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Figure 14. Same as Figure 13, but for MODIS observation within 2021.305-320. (a–c) refer to the red
band albedo; (d–f) refer to the NIR band albedo; (a,d) refer to the albedo retrieval from multi-angular
observations; (b,e) refer to a single directional reflectance; and (c,f) refer to the MODIS albedo.

Figure 15. Scatter plot of MODIS albedo and albedo retrieval from MODIS observations and archetype
A2P2: (a–d) are based on the observations within 101-116 and (e–h) are based on observations within
305-320; (a,b,e,f) refer to multi-angular observations; (c,d,g,h) refer to a single directional reflectance;
(a,c,e,g) are the result of the red band; and (b,d,f,h) are the NIR band.

Figure 16 shows the RMSEr between MODIS albedo and albedo retrieved from differ-
ent numbers of observations in red and NIR bands at two periods. When there is only a
single directional reflectance, the RMSEr reaches its maximum. With the increase in the
number of observations, the RMSEr values decrease gradually. The results indicate that
increasing the number of observations could improve the accuracy of albedo based on
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archetype A2P2. The RMSEr is always less than 0.02 and 0.03 in the red and NIR bands but
it still meets the accuracy requirement. Overall, archetype A2P2 can be taken as prior BRDF
knowledge of reflectance anisotropy in the albedo retrieval from insufficient observations,
even from a single directional observation.

Figure 16. The change in RMSEr with different number of observations. (a) Retrieval results are
based on observations within 2021.101-116, and (c) based on observations within 2021.305-320 in the
red band; (b,d) are in the NIR band.

4. Discussion

At present, more and more satellites with high resolution have been launched. Most
of the satellites cannot provide sufficient multi-angular observations within a short period
due to the narrow viewing field and the long revisiting period. It has been a challenge
to explore how to make the albedo retrieval from the insufficient number of observations
more accurate [3,10,18]. This study focused on the classification of reflectance anisotropy
and explored the effect of reflectance anisotropy on albedo retrieval, and it also explored
the possibility of using a specific BRDF archetype to retrieve from insufficient observations.

MODIS BRDF products have been widely used for the extraction of surface reflectance
anisotropy, but conventional methods need to introduce other indices [18,33] due to the
complexity of reflectance anisotropy. Based on the kernel-driven BRDF model, Jiao et al.
proposed a method to link the BRDF shape and AFX, which can indicate the change pattern
of surface anisotropy reflectance characteristics [24]. AFX was used to classify MODIS
BRDF products, and a BRDF archetype database was built. The BRDF shapes within
each BRDF archetype class still show a certain degree of discretion due to the large range
of model parameters in each class. To solve this problem, we propose a new indicator
which is perpendicular to AFX, named PAFX. The combination of AFX and PAFX can
classify the reflectance anisotropy into a more delicate classification. With the increase in
the number of classifications, the RMSEa declined quickly to the minimal level acquired
merely by AFX. Considering the quality of classification results and the convenience of
BRDF archetype application, a 3-by-3 matrix of BRDF archetype database is taken as the
final classification results. The nine BRDF archetypes can effectively describe all kinds of
reflectance anisotropy.
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Based on the simulated reflectance, this study has proved that the geometric-dominated
A1-series archetypes usually underestimate the albedo, while the volumetric-dominated
A3-series archetypes usually overestimate the albedo. The archetype A2P2 can achieve a
relatively accurate albedo from insufficient observations or even from a single directional
reflectance. This result is consistent with the previous studies [24,34], but it has a higher
accuracy. It is important to point out that the scatter plot of the model parameter usually
has two gathering centers (Figure 5). One of the gathering centers that has a small value of
the model parameter is away from the archetype A2P2. This phenomenon may conflict with
the method that one specific BRDF archetype can be used for all the pixels to correct the
effect of reflectance anisotropy in albedo retrieval. The pixels around the gathering center
usually have a small NDVI value and a relatively high reflectance, and the land-cover type
for the pixels is usually non-vegetated. If the two gathering centers can be divided, the
accuracy of albedo retrieval from a specific BRDF archetype may be further improved.

The archetype A2P2 has the best ability to correct the effect of reflectance anisotropy in
albedo retrieval for the pixels with various reflectance anisotropy characteristics. That may
be because the albedo is the integration of BRDF over both the viewing and illuminating
hemisphere. The integration of BRDF may eliminate the difference of reflectance anisotropy
in albedo retrieval. However, if a specific directional reflectance would be used, for example,
normalizing the directional reflectance to nadir, the applicability of the one BRDF archetype
method needs to be discussed in detail. The varying reflectance anisotropy around the
CPP is relatively weak, while around the PP, it is relatively significant, and the observation
of most satellites is located around the CPP most of the time. In this case, the BRDF
archetype may also be applicable in normalizing the directional reflectance. However, if
the observations are around the PP, the BRDF archetype may be less effective.

Although the new BRDF archetype database improved the classification accuracy
of reflectance anisotropy, the problem of how to link the BRDF archetypes to the surface
remains unresolved. Using the archetype A2P2 for albedo retrieval from insufficient
observations is only a special case. The application of BRDF archetypes requires more effect.

5. Conclusions

In this study, PAFX, which was defined according to the AFX, was added to the
classification of reflectance anisotropy. Both AFX and PAFX were combined to classify the
reflectance anisotropy represented by global MODIS BRDF products. The mean value of the
MODIS parameter within a class was taken as the BRDF archetype, and the BRDF archetype
was used to fit the MODIS BRDF within the class. The best number of classifications
was determined by the changing tendency of fitting RMSEa. The effect of reflectance
anisotropy on albedo retrieval from multi-angular or a single directional reflectance was
analyzed based on the simulated reflectance. The archetype A2P2 was taken as prior
knowledge for the retrieval of albedo from MODIS observations, and the retrieved albedo
was compared with the high-quality MODIS albedo product (MCD43A3). The results
show the following: (1) The combination of AFX and PAFX can classify the reflectance
anisotropy into a more delicate classification. The difference between BRDF archetypes
and MODIS BRDF declines rapidly with the increase in the number of categories. A 3-by-3
matrix of BRDF archetypes, which occupy 73.44% and 70.13% of the total decline in the red
and NIR bands, respectively, can describe the main characteristics of surface reflectance
anisotropy. (2) The BRDF archetype that has relatively strong geometric-scattering or
volumetric-scattering characteristics could underestimate or overestimate albedo, while the
archetype A2P2 can be used to improve the accuracy of albedo retrieval from insufficient
multi-angular reflectance or even a single directional reflectance. The validation results
based on MODIS observations show that the accuracy of albedo retrieval from archetype
A2P2 improved continuously with the different number of observations and can achieve
RMSEs of no more than 0.03.

The algorithm proposed in this study provides a more delicate reflectance anisotropy
classification, and whether the currently extracted BRDF archetype database can be further
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optimized and the application field of the BRDF archetypes should both be studied in the
future research.
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