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Abstract: The projected climate change substantially impacts agricultural productivity and global
food security. The cropping system models (CSM) can help estimate the effects of the changing
climate on current and future crop production. The current study evaluated the impact of a projected
climate change under shared socioeconomic pathways (SSPs) scenarios (SSP2-4.5 and SSP5-8.5) on
the grain yield of winter wheat in the North China Plain by adopting the CSM-DSSAT CERES-Wheat
model. The model was calibrated and evaluated using observed data of winter wheat experiments
from 2015 to 2017 in which nitrogen fertigation was applied to various growth stages of winter wheat.
Under the near-term (2021–2040), mid-term (2041–2060), and long-term (2081–2100) SSP2-4.5 and
SSP5-8.5 scenarios, the future climate projections were based on five global climate models (GCMs)
of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The GCMs projected an
increase in grain yield with increasing temperature and precipitation in the near-term, mid-term, and
long-term projections. In the mid-term, 13% more winter wheat grain yield is predicted under 1.3 ◦C,
and a 33 mm increase in temperature and precipitation, respectively, compared with the baseline
period (1995–2014). The increasing CO2 concentration trends projected an increase in average grain
yield from 4 to 6%, 4 to 14%, and 2 to 34% in the near-term, mid-term, and long-term projections,
respectively, compared to the baseline. The adaptive strategies were also analyzed, including three
irrigation levels (200, 260, and 320 mm), three nitrogen fertilizer rates (275, 330, and 385 kg ha−1),
and four sowing times (September 13, September 23, October 3, and October 13). An adaptive
strategy experiments indicated that sowing winter wheat on October 3 (traditional planting time)
and applying 275 kg ha−1 nitrogen fertilizer and 260 mm irrigation water could positively affect
the grain yield in the North China Plain. These findings are beneficial in decision making to adopt
and implement the best management practices to mitigate future climate change impacts on wheat
grain yields.

Keywords: climate change; SSPs; CERES-wheat crop model; CMIP6; winter wheat; adaptation
technology

1. Introduction

Climate change is accelerating due to rising greenhouse gases concentration in the
atmosphere caused by natural, direct, and indirect anthropogenic activities [1–3]. The
agriculture industry is the most sensitive to the effects of climate change [4–6], which is a
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threat to the food security of a rapidly growing population [7]. According to numerous
research studies conducted worldwide, a changing climate is projected to impact agriculture
negatively [8,9]. Global warming, changes in precipitation, and higher atmospheric CO2
concentrations can increase or decrease crop productivity. The total impact of fluctuations
in climate on crop yield depends on the combination of these various elements [10]. The
most critical climatic factors for crop production are surface temperature and rainfall, which
significantly impact agricultural productivity [11–13]. Surface temperatures have risen by
0.5 to 1.3 ◦C from 1951 to 2010. By the end of the 21st century, global temperatures will
increase by 3.7 ◦C, which will impact food security and crop production positively and
negatively around the world [14,15], varying based on the region of interest and adaptation
strategies [16,17].

Similar to worldwide trends, agriculture in China is also prone to projected climate
change. One of China’s most important agricultural production zones is the North China
Plain (NCP), accounting for 20.7 percent of the country’s total cultivated farmland and
more than 70 percent of the country’s winter wheat production [18]. Crop yields have
been reduced mainly in NCP due to higher temperatures and reduced precipitation [19].
Furthermore, a study of wheat yield data in China from 1979 to 2000 demonstrated that
wheat yields declined by around 3 to 10 percent for every 1 ◦C increase [20]. At the
same time, various other studies revealed that a projected increase in precipitation could
positively impact grain yield with a temperature rise [21,22]. The projected increase in
CO2 can also be beneficial for increasing wheat grain yield in a warming climate [23,24].
It is critical to ensure the long-term strategies development for better crop production
to ensure food security under the projected climate change [25]. It will eventually alter
wheat’s growth cycle and water requirements, influencing production and quality [26].

Given the higher sensitivity of wheat (Triticum aestivum L.) to climate change [7], it
is necessary to simulate and project wheat grain yield using a sophisticated crop model.
Examining the effects of warming on crop yield will assist farmers in increasing net profits
and mitigating risk [27,28]. Various crop simulation models have recently been adopted
to evaluate the influence of the ecological risk in agriculture, specifically, the impact of
expected climate variability on agriculture yields [29,30]. These models can efficiently
simulate the effect of climate variability on crop yield by using a set of genetic coefficients,
initial soil conditions, crop management, and meteorological parameters to anticipate
crop growth and productivity [31]. These models use climate change scenarios developed
from multiple GCMs that account for various climatic considerations. Several studies
have used the DSSAT CERES-Wheat model to forecast the effect of changing climate on
crop growth and production under different representative concentration pathway (RCP)
scenarios [32,33]. It is a CSM that is part of the DSSAT [34,35], which helps to investigate
the effects of soil, management of the field (such as fertilizer, irrigation, cultivar, date
of planting, and planting density), and climate variability on plant development and
yield [32]. The model considers climate, soil, genetic factors, and management options
when predicting wheat growth, water balance, nitrogen balance, aboveground biomass,
and grain yield [36].

Several studies have been published examining the influence of changing climate on
agricultural output under RCP scenarios of GCMs from CMIP5 using the crop modeling
approach [33,37–39]. In CMIP5, precipitation intensity was typically underestimated, and
spatial resolution was lower than in CMIP6 [40]. Including several new variants and exper-
iments has improved the projected climate in CMIP6 compared to the previous CMIPs [41].
Researchers have found that the new state-of-the-art CMIP6 GCMs can more accurately
predict climate extremes by studying biosphere variations due to climate change and un-
derstanding how cloud cover affects climate sensitivity compared to CMIP5 models [42].
A key focus of CMIP6 is on coordinating experiments to understand climate variability
better, and with CMIP6, potential bias is expected to be minimized to a greater extent than
CMIP5 [42]. Recent studies have revealed that CMIP6 GCMs perform better at simulating
the climatic indexes in China and other regions [43–46]. However, the climate change
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impacts on winter wheat grain yield have not been investigated in depth, which could
provide adaptation strategies for sustainable grain production in the future.

The current study hypothesized that the CSM-DSSAT CERES-Wheat model could help
examine the future climate change impacts on winter wheat yield in the NCP and decision
making for adapting best management strategies based on various crop management prac-
tices. According to the projected climate change, the current study can help policymakers
in the decision-making process for agricultural sustainability. Therefore, the objectives of
the study were to (1) calibrate and evaluate the CSM-DSSAT CERES-Wheat model with
an experimental dataset and simulation of phenology, grain yield, total dry-matter, and
harvest index; (2) examine the impact of changes in temperature and precipitation on
projected winter wheat grain yield under SSP4.5 and SSP8.5 scenarios by using 5 GCMs
from CMIP6; and (3) evaluate the effect of projected increasing CO2 concentration on winter
wheat grain yield under various SSP scenarios, developing adaptive strategies to mitigate
the adverse impact of a warming climate in the NCP region.

2. Materials and Methods
2.1. Study Area

In the winter wheat growing season from 2015 to 2017, a two-year field study was
carried out at the Tongzhou Experimental Station of China Agricultural University located
in Beijing, China (39◦41′59′ ′ N, 116◦41′01′ ′ E; elevation of 21 m). The experimental site is
in the NCP (Figure 1) and has warm, temperate, semi-humid, and continental-monsoon
weather with an average annual temperature of 11.3 ◦C. The average yearly precipitation
is 620 mm, most of it occurring during summer. The meteorological data were collected
from the experimental site using an automatic weather station during the two years of
experiments (Figure 2). The soil texture is silt loam; the soil physicochemical properties of
the site are provided in Table 1.

Figure 1. Experimental site location at the Tongzhou experimental station of the China Agricultural
University, Beijing, China.
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Figure 2. Daily maximum temperature, minimum temperature, and precipitation during (a) 2015–2016
and (b) 2016–2017 winter wheat growing seasons.

Table 1. Soil physicochemical properties of the study area used in CSM CERES-Wheat calibration.

Depth
(cm)

Silt
(%)

Clay
(%)

Bulk
Density
(g cm−3)

Field
Capacity

(cm3 cm−3)

Wilting
Point

(cm3 cm−3)

NH4
+-N

Content
(mg kg−1)

NO3−-N
Content

(mg kg−1)

Soil
Organic

Carbon (%)
pH

0–20 52.4 9.2 1.45 0.265 0.099 5.05 17.08 0.99 8.15
20–40 54.8 8.4 1.64 0.267 0.096 3.25 7.94 1.02 8.25
40–60 57.2 7.9 1.64 0.270 0.094 2.80 5.63 0.95 8.29
60–80 63.9 5.5 1.57 0.273 0.084 2.26 6.46 0.88 8.35
80–100 65.7 4.7 1.46 0.273 0.080 2.16 6.35 0.60 8.32

2.2. Experimental Design, Nitrogen Treatments, and Center Pivot Irrigation-Fertigation System

The winter wheat cultivar Nongda 211 was planted on 9 October 2015, and 3 October
2016, with a four-row planter during two-year experiments. The winter wheat was sown at
15 cm row spacing, 4 cm seeding depth, and a 300 kg ha−1 seeding rate. The experiment
was conducted under a center-pivot irrigation and fertigation system. The pivot has
two-span lengths of 43.3 and 37.5 m for the first and second spans, respectively, and an
overhang length of 8.4 m. A P85A impact sprinkler with an 8.7 mm nozzle diameter was
installed without a booster pump at the end of the overhang. On the first and second spans,
polythene flexible drop pipes were used to install D3000 sprinklers 1.6 m above ground.
The upstream of each sprinkler was connected to 15 psi (103 kPa) pressure regulators.
The inlet pressure was 240 kPa at the pivot, while the overall system’s inlet flow rate was
24.7 m3 h−1.

During the two years of winter wheat experiments, five nitrogen (N) application
treatments were applied at different stages, including farmer practice (FP) N application
treatment. In the 2015–2016 growing season, the total N fertilizer rate was 315 kg ha−1,
from which the basal N fertilizer amount of 108 kg ha−1 was applied, according to the
local farmer practice in the study area region. In the 2016–2017 growing season, according
to the local average maximum production and crop N requirements, the total N rate was
determined as 275 kg ha−1, from which the basal N fertilizer amount of 68 kg ha−1 was
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applied. However, in two growing seasons, the amount of topdressing nitrogen fertilizer
application was equal and applied at different growth stages (Table 2). A modified tractor-
mounted seeding device was used to apply the basal fertilizer to the soil at the sowing
time. The source of nitrogen fertilizer was urea (46% N). Based on the Zadoks scale (Z), the
stages of crop development were classified [47]. In two years of experiments, topdressing
N fertilizer was applied at different growth stages, including the regreening stage (Z25),
jointing stage (Z35), anthesis stage (Z60), and filling stage (Z70). In the FP, the broadcasting
method was used for one-time N fertilizer (207 kg ha−1) application at the jointing stage.
The other four N treatments were applied under the center pivot fertigation system. The
center pivot fertigation system comprises a 2000-L tank for storing fertilizer and a piston
injection pump capable of flowing 285.5 L per hour. A piston pump injected the urea
solution into the irrigation system, then sprinkled it with irrigation water. The winter
wheat was irrigated at the overwintering, regreening, jointing, anthesis, and filling stages
at a rate of 30 mm, 30 mm, 45 mm, 30 mm, and 30 mm, respectively. However, due to the
29.2 mm of precipitation in November 2015, overwintering irrigation was not carried out
in the first growing season. Other field management procedures were followed to promote
optimal crop growth throughout the growing season, using the same standards as local
fields. The experiments were randomized complete block designs with three replications,
and the plots were 6 m × 10 m in size. The fertigation treatments were applied to the plots
in the first, second, and overhanging irrigated areas. The plots of the FP treatment were
placed outside the sprinkler area.

Table 2. Topdressing split nitrogen fertilizer application at different growth stages of winter wheat
during the 2015–2017 growing seasons.

Years Treatments N Frequency
N Rate at Different Growth Stages (kg ha−1)

Regreening Jointing Anthesis Filling

2015–2016

FP 1 - 207 - -
S1 1 - 207 - -
S2 2 - 138 - 69
S3 3 69 103 - 35
S4 4 69 69 35 34

2016–2017

FP 1 - 207 - -
S1 1 - 207 - -
S2 2 - 138 - 69
S3 3 69 103 - 35
S4 4 69 69 35 34

Note: FP, farmer practice nitrogen application by broadcasting at the jointing stage; S1, one-time nitrogen
fertigation at the jointing stage; S2, two split nitrogen fertigations at jointing and filling stages; S3, three split
nitrogen fertigations at regreening, jointing, and filling stages; and S4, four split nitrogen fertigations at the
regreening, jointing, anthesis and filling stages of winter wheat.

2.3. DSSAT CERES-Wheat Model Description, Calibration, and Evaluation

This study employed the CSM-Crop Environment Resource Synthesis (CERES)-Wheat
of the Decision Support System for Agrotechnology Transfer (DSSAT) [34]. A set of vari-
ables, such as crop management, climatic conditions, and soil profile parameters, were
used in this model to simulate crop development and yield [48]. DSSAT is a powerful tool
for analyzing climate change and is widely used [34]. This tool can be used to evaluate
crop management strategies at the farm level and crop responses to climate change at the
global level. Data needed for DSSAT simulations include crop type, genotype coefficients,
sowing, harvest date, plant spacing, fertilizer rates, irrigation levels, tillage operations, soil
organic amendments, crop phenology, and grain yield [35,49,50]. The minimum climate
data sets were maximum and minimum temperatures, solar radiation, and precipitation. A
soil profile’s parameters include depth, texture, and chemical and physical characteristics.
The study area soil was classified as sandy loam in the model. The information about soil
physicochemical properties stored in the soil input file is shown in Table 1. During each
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growing season, crop data were collected, including crop phenology, grain yield, total dry
matter, and harvest index. For the calibration and evaluation of the DSSAT model, input
files, such as weather, crop management, soil, genotype, and A files (average measured data
files), were developed. CSM-DSSAT CERES-Wheat model was calibrated and evaluated
first so that the grain yield under future climate scenarios could be simulated in the seasonal
analysis of the well-calibrated model.

The CERES-Wheat model from DSSAT version 4.8 developed by International Bench-
mark Sites Network for Agro-technology Transfer Project, Florida, USA was adopted [34].
We collected daily meteorological data, including precipitation, maximum and minimum
temperatures, and solar radiation, at our experimental site using an automatic weather
station for two years of experiments. The genetic parameters used for the calibration of
winter wheat variety “Nongda 211” included the generalized likelihood uncertainty estima-
tion (GLUE) method in DSSAT [51] and the trial and error method [9]. The CERES-Wheat
model was calibrated and evaluated with winter wheat data for two growing seasons.
Other researchers also used two growing seasons data for CERES-Wheat model calibration
and evaluation [52,53]. We calibrated the genetic parameters based on observations of
phonological dates (anthesis and maturity dates), total dry matter, grain yield, and harvest
index at maturity from minimum stress treatment (S4) in the 2016–2017 growing season [7].
Calibration fits genetic parameters into crop models per local conditions [54]. When new
cultivars/hybrids are added, many genetic coefficients must be adjusted according to the
local conditions. The calibration process was performed using the field experiments’ five
crop parameters (days to anthesis, days to maturity, grain yield, total dry matter, and
harvest index). The genetic coefficients adjusted for model calibration are listed in Table 3.
After calibration, the CERES-Wheat model was evaluated for wheat phenology, grain yield,
dry matter, and harvest index using the other nine treatments from the 2015–2016 and
2016–2017 growing seasons [53]. The model was evaluated with the crop data from other
treatments that were not considered in the calibration process. In this study, we applied the
well-calibrated DSSAT model to analyze prospective changing climate impacts on winter
wheat grain yield under SSPs scenarios for the near-term (2021–2040), mid-term (2041–281),
and long term (2081–2100) in the NCP [55].

Table 3. Adjusted winter wheat genetic coefficients for the CSM DSSAT CERES-Wheat model.

Parameter Definition Range Calibrated Value

PIV The number of days, the optimal vernalizing temperature (d) 5–65 45.45
PID Responses to the photoperiod 0–95 65.44
P5 Grain-filling stage period (◦C d) 300–800 723.80
G1 At anthesis, the number of kernels per unit canopy weight (no. g−1) 15–30 20.50
G2 Size of a standard kernel at optimum conditions (mg) 20–65 29.62
G3 The weight of mature, non-stressed tillers 1–2 1.715

PHINT Leaf tip appearance interval (◦C d) 60–100 71

The model’s accuracy and predictability, such as root mean square error (RMSE),
percent error (PE), normalized root mean square error (nRMSE), and Pearson correlation
coefficient (r), were evaluated [53,56]:

RMSE =

√
1
n

n

∑
i=1

(Si−Oi)2 (1)

PE =

(
Si−Oi

Oi

)
× 100 (2)

nRMSE =

√
∑n

i=1
(Si−Oi)2

n
× 100

O
(3)
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r =
∑n

i=1
(
Oi−O

)
+ (Si− S)√

∑n
i=1
(
Oi−O

)√
∑n

i=1
(
Si− S

) (4)

Si represents the i-th simulation value, Oi represents the i-th observation value,
and n represents the number of samples. O and S with bars are the mean observed and
simulated values.

Low RMSE is statistically indicative of excellent model performance [57]. The PE rep-
resents the variation between simulated and experimental data, and the MAPE represents
the forecasting method’s prediction accuracy as a percentage. PE and MAPE values which
are lower, indicate the greater precision and accuracy of the model. The simulation models
with lower PE or MAPE values represent better accuracy and precision [53]. A nMRSE
value of <10% indicates ‘excellent’ simulation, 10% ≤ nMRSE < 20% indicates ‘good’ sim-
ulation, 20% ≤ nRMSE < 30% indicates ‘fair’ simulation and nRMSE > 30% indicates a
‘poor’ simulation of the model [58]. Interpretation of the correlation coefficients suggests
an r value near 1 or −1 is a perfect correlation between the simulated and observed data
values [59].

2.3.1. Seasonal Analysis

The DSSAT seasonal analysis option explores the interaction between genotypes and
crop management in different environments, especially under changing climate condi-
tions [35]. In the well-calibrated DSSAT model seasonal analysis, the simulations were run
for each unique crop management and weather scenario. In the present study, based on the
crop management practices of the optimal treatment (S4, in which topdressing nitrogen
fertigation was applied in four split-doses at regreening, jointing, anthesis, and filling
stages of winter wheat), seasonal analysis files were generated [60]. In the model, the daily
climate data from the historical baseline period (1995–2014) and climate scenarios under
SSP2-4.5 and SSP5-8.5 for near-term, mid-term, and long-term were used to prepare weather
files of all GCMs. According to the Intergovernmental Panel on Climate Change (IPCC)
sixth assessment report, the impact of the expected CO2 concentration increment on grain
yield under SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios were analyzed
in the seasonal analysis for the near-term, mid-term, and long term [61]. The projected
increment in the CO2 concentration were included in the environmental modification tool
in the baseline seasonal analysis file. After analysis, the baseline average grain yield and
environmental modification of CO2 concentration-based average grain yield under various
SSPs scenarios were compared. In future scenarios, 165 mm irrigation was applied at the
overwintering (30 mm), regreening (30 mm), jointing (45 mm), anthesis (30 mm), and filling
(30 mm) stages of winter wheat. The mode of irrigation was a sprinkler irrigation system.

2.3.2. Sixth Phase of Coupled Model Intercomparison Project

Climate change assessments are critical for better understanding the climate system
and addressing social hazards and mitigation strategies [44]. For the CMIP6, the Scenario
Model Inter-comparison Project (ScenarioMIP) develops a series of predictions for the
future climate using simulations based on concentration [62]. In the CMIP6, GCMs were
developed with the latest SSPs incorporating greenhouse gas emissions and socioeconomic
developments to show future climate [63]. Based on integrated assessment models and
alternative predictions of changes in land use and emissions in the future in CMIP6,
ScenarioMIP provides multi-model climate projections. Simulations of global climate
using the coupled atmosphere-ocean general circulation model (AOGCM) and the Earth
system model (ESM) are bundled under the umbrella name GCM as part of CMIP6s [64].
According to the sixth assessment report (AR6) of the IPCC, the updated CMIP6 ensemble
holds great potential to evaluate climate change processes and produce updated climate
change projections globally, providing a unique exploration of the climate system and its
relationship to climate change.
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The SSPs are the latest generation of scenarios used in CMIP6 and the IPCC AR6 [61].
These scenarios are part of a new framework for addressing climate change impact, vulner-
ability, adaptation, and mitigation, which climate change researchers developed. The SSP
scenarios in the current study are indicated by SSP1.9, SSP2.6, SSP4.5, SSP7.0, and SSP8.5,
respectively. In the SSPs, five themes specify alternative socioeconomic development,
including sustainable growth, regional rivalry, inequalities, fossil-fueled improvement, and
middle-of-the-road development [65]. The researchers can use the SSPs and associated
scenarios to examine the effects of climate change and the corresponding resiliency needs
under various socioeconomic growth and climate change scenarios.

2.3.3. Statistical Downscaling and Global Circulation Models

A local perspective on climate change can be challenging to address with GCMs’ coarse
spatial resolution (approximately 150 km) [66]. Because of this, statistical downscaling is
typically used to present fine-scale regional information. The statistical downscaling is
based on the relationships between climatic surface variables and large-scale atmospheric
variables (usually circulation) [67]. Most agricultural and hydrologic models’ climatic
outputs and data requirements can be bridged using downscaling, which can be used for
local and site-specific climate change implications on crop productivity and food security.
The Statistical Downscaling of General Circulation Models (SD-GCM v2.0) software was
used in this study. It is a useful tool for downscaling the CMIP6 models’ daily, monthly, or
yearly climate data under SSP scenarios. Our statistical downscaling approach was based
on the delta method, which is widely used with GCM outputs, easy to run, and relatively
straightforward [68].

The historical meteorological data for 20 years, including daily precipitation, solar
radiation, and maximum–minimum air temperature from 1995 to 2014, were collected
from China Meteorological Data Sharing Service System (CMDSSS, http://cdc.cma.gov.cn,
accessed on 10 October 2021) [69]. The five GCMs were chosen from CMIP6 with SSP4.5 and
SSP8.5 scenarios for near-term, mid-term, and long-term periods. These five GCMs were
selected based on their climatology; each GCM belongs to a different region [7]. The details
of the chosen GCMs of CMIP6 are presented in Table 4. The GCMs climate data under
SSP4.5 and SSP8.5 scenarios were obtained from the Earth System Grid Federation (ESGF)
website (https://esgf-node.llnl.gov/search/cmip6/, accessed on 25 October 2021) [70]. For
each GCM in the near-term under SSP4.5, the Taylor diagram [71] was used to represent
GCM performance [72] visually. It is a robust graphical plot integrating three statistical
measures of Pearson correlation coefficient (r), centered root-mean-square error (CRMSE),
and standard deviation (SD) [73].

Table 4. The GCMs of CMIP6 are used for future climate projections under SSP4.5 and SSP8.5
scenarios.

Code GCM Name Abbreviation Institute ID Country Climate Zone Run
Used

Atmospheric Model
Spatial Resolution

1 ACCESS-CM2 ACC CSIRO–ARCCSS Australia Arid and
Tropical r1i1p1f1 1.9◦ × 1.3◦

2 CanESM5 CAN CCCMA Canada Continental and
Temperate r1i1p1f1 2.8◦ × 2.8◦

3 EC-Earth3 ECE EC–EARTH Europe Temperate r1i1p1f1 0.7◦ × 0.7◦

4 GFDL-ESM4 GFD GDFL USA Continental r1i1p1f1 1.0◦ × 1.2◦

5 MIROC6 MIR MIROC Japan Sub-tropical r1i1p1f1 1.4◦ × 1.4◦

2.3.4. Projections of Climate Change Impact and Adaptive Management Scenarios for
Winter Wheat Production in a Warming Climate

Future climate projections provide information on the climate system and data prod-
ucts used in climate impact assessments [74]. In the near-term, mid-term, and long-term
climate change projections, the winter wheat grain yield in NCP was analyzed using a

http://cdc.cma.gov.cn
https://esgf-node.llnl.gov/search/cmip6/
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CSM-DSSAT CERES-Wheat seasonal analysis tool [7,60]. The current study focused on
the projected daily maximum and minimum temperature and precipitation under SSP4.5
and SSP8.5 scenarios, while it was assumed that all other atmospheric parameters would
remain unchanged. A similar approach was used by other researchers as well [4,9,52]. The
weather files were created in the CERES-Wheat model using daily baseline climate data
(1995–2014) [75] and daily future climate data of GCMs under SSP4.5 and SSP8.5 scenarios
for near-term, mid-term, and long term. According to IPCC-AR6, expected CO2 concen-
tration increases under SSP1.9, SSP2.6, SSP4.5, and SSP8.5 scenarios were also evaluated
in the environmental modification tool in the CERES-Wheat model. The projected CO2
concentration increment for the near-term, mid-term, and long-term period under SSP1.9,
SSP2.6, SSP4.5, and SSP8.5 scenarios [61] were used in the environmental modification
of the baseline management file in the seasonal analysis tool (Supplementary Table S1).
The historical climate data (1995–2014) were used as the baseline climate data, and the
default concentration of CO2 380 ppm in the DSSAT model was considered the baseline
level. Various other studies also used a similar approach to investigate the impact of CO2
on grain yield under RCP scenarios [7,9].

The following equation was used to determine the influence of changing climate on
winter wheat grain yields:

∆Y =

(
Si−Oi

Oi

)
× 100 (5)

where ∆Y is the change in grain yield, Si is the average future expected, and Oi is the
average observed grain yield in the baseline period.

The adaptive strategies to mitigate the adverse impact of the warming climate on
winter wheat grain yield were examined in the seasonal analysis of the well-calibrated
CSM CERES-Wheat model [4,9,52]. The 20-year climate data (maximum temperature,
minimum temperature, and precipitation) in the near-term of GCM were used to develop
adaptation strategies to reduce the negative impact of a warming climate on winter wheat
grain yield. The GCM that predicted the decrease in grain yield with the rise in temperature
and reduced precipitation in the near-term than the historical baseline period was selected.
The model evaluated the sowing times, nitrogen application rates, and irrigation amounts
to establish the optimal management practices for future winter wheat production under
a warming climate. The irrigation water (W) amounts of 200 mm (FP) [76], 260 mm
(30% more than FP), 320 mm (60% more than FP), and N fertilizer rates of 275 kg ha−1

(FP) [77], 330 kg ha−1 (20% more than FP), and 385 kg ha−1 (40% more than FP) were
analyzed under four sowing times (13 September, 23 September, 3 October, and 13 October).
The sowing dates were designed at 10-day intervals according to the recommended and
traditional sowing in early October in NCP (October 3 was considered a recommended
sowing date in adaptive strategies management) [78]. The grain yield was compared in nine
combinations of irrigation water and N fertilizer management scenarios (3 irrigation water
and 3 N fertilizer levels) under four sowing dates to develop the optimal management
strategy for enhancing winter wheat grain yield in a warming climate.

3. Results
3.1. DSSAT CERES-Wheat Model Calibration and Evaluation

The model was calibrated with minimal stress-based optimal treatment (S4), in which
the maximum grain yield was also observed in the 2016–2017 wheat growing season. The
genetic coefficients of the model were recalculated to match the simulated and measured
data. In the wheat cultivar file of the model, the coefficients were determined through
several iterations such that observed and simulated values of phenology and yield were
close to each other. The estimated genetic coefficients for PIV, PID, P5, G1, G2, G3, and
PHINT were 45.45, 65.44, 723.80, 20.50, 29.62, 1.715, and 71, respectively (Table 3). The
model’s calibration results showed that it performed well in simulating phenology, grain
yield, total dry matter, and harvest index. During the calibration process, the simulated
maturity date was the same as the observed date with no PE. The PE between simulated
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and observed anthesis date, grain yield, total dry matter, and HI were 0.47%, 1.15%,
0.33%, and 0.73%, respectively (Supplementary Table S2). The lower PE showed that the
CERES-Wheat model was calibrated successfully with a reliable result according to the
study area environment.

Further evaluation of the calibrated CSM DSSAT-CERES-Wheat model was conducted
with field data from the other treatments of both years of the experiment, which was not
considered in the calibration process, as described in the following section.

3.1.1. Model Performance for Nitrogen Application Effects on Winter Wheat Phenology

The simulations were consistent with observed days to anthesis, with an average
PE of 1.92% and 0.47% in the 2015–2016 and 2016–2017 growing seasons, respectively
(Supplementary Table S2). At the same time, the average PE days to maturity were 0.8%
and 0 in the 2015–2016 and 2016–2017 growing seasons, respectively. The RMSE of days to
anthesis were 4 and 1 days, and days to maturity were 2 and 0 days in the 2015–2016 and
2016–2017growing seasons, respectively. While nRMSE, days to anthesis were 2% and 0.5%,
and days to maturity were 0.8% and 0 in the 2015–2016 and 2016–2017 growing seasons,
respectively (Table 5).

Table 5. DSSAT CERES-Wheat model performance simulates crop phenology, grain yield, total dry
matter, and harvest index during 2015–2016 and 2016–2017.

Year Parameter Anthesis Date
(DAP)

Maturity Date
(DAP)

Grain Yield
(kg ha−1)

Total Dry Matter
(kg ha−1) Harvest Index

2015–2016 RMSE 4.00 2.00 239.83 733.49 0.02
(n = 5) nRMSE (%) 2.00 0.80 3.00 3.70 5.30

r - - 0.94 0.59 0.88
2016–2017 RMSE 1.00 0.00 137.64 745.75 0.02

(n = 4) nRMSE (%) 0.50 0.00 1.60 3.50 4.60
r - - 0.97 0.94 0.47

Note: n, number of treatments, DAP, days after planting; RMSE, root mean square error; nRMSE, normalized root
mean square error; r, Pearson correlation coefficient.

3.1.2. Model Performance for Nitrogen Application Effects on Grain Yield

During both growing seasons, 2015–2016 and 2016–2017, simulated grain yields were
very close to observed yields. The average PE recorded for grain yield in the 2015–2016
and 2016–2017 growing seasons were 1.33% and 0.56%, respectively (Table S2). During
2015–2016, PE ranged from 3.16 to 4.63 %, and in 2016–2017 it was from 1.15 to 2.97%. The
RMSE values for grain yield were 238.83 and 137.64 kg ha−1 in 2015–2016 and 2016–2017.
Model performance was better in the lower RMSE. The nRSME and r values were 3% and
0.94 in 2015–2016, and 1.60% and 0.97 in the 2016–2017 winter wheat season (Table 5).
The lower nRMSE indicated that the observed and model-simulated values were close to
each other.

3.1.3. Model Performance for Nitrogen Application Effects on Total Dry Matter

The simulated and observed values for total dry matter with different split nitrogen
applications were in good agreement. In the 2015–2016 and 2016–2017 growing seasons, the
average PE recorded for the total dry matter was 2.59% and 2.57%, respectively (Table S2).
Minimum PE was recorded in 2015–2016, ranging from 1.75 to 5.99% and 1.03 to 7.59% in
the 2016–2017 growing season. In 2015–2016 and 2016–2017, the RMSE values for total dry
matter were 733.49 and 745.75 kg ha−1, respectively. For winter wheat season 2015–2016,
the nRSME and r values were 3.70%, and 0.59, while 3.50% and 0.94 were in 2016–2017
(Table 5). Observed and model-simulated values were as close as possible, due to the lower
RMSE and nRMSE.
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3.1.4. Model Performance for Nitrogen Application Effects on Harvest Index

Based on different split nitrogen applications, the simulated and observed values of
the harvest index were in good agreement. The average PE for the harvest index in the
growing seasons of 2015–2016 and 2016–2017 were 3.38% and 3.17%, respectively (Table S2).
The RSME values were 0.021 and 0.018 in the 2015–2016 and 2016–2017 growing seasons.
In the winter wheat growing season of 2015–2016, the nRSME and r were 5.30% and 0.88,
respectively, while they were 4.60% and 0.47, respectively, in 2016–2017 (Table 5).

3.2. Climate Change Impact on Grain Yield in the Near-Term, Mid-Term, and Long-Term under
Global Climate Models

The current study predicted future winter wheat grain yields in response to climate
change in the near-term, mid-term, and long-term using five GCMs and two SSPs datasets
(SSP4.5 and SSP8.5) of CMIP6 (Figures 3–5). Mostly, the GCMs showed an increase in
average grain yield under climate change. The changes in average maximum temperature
(Tmax), minimum temperature (Tmin), and precipitation (Pr) in the near-term, mid-term,
and long-term under SSP4.5 and SSP8.5 scenarios are shown in Table 6, compared with the
baseline period. The average maximum temperature of 13.7 ◦C, minimum temperatures of
3.4 ◦C, and average seasonal precipitation of 147 mm were observed during the baseline
period. Overall, from all the GCMs, the average maximum grain yield of 9211 kg ha−1

was noticed in the ACCESS-CM2 model in the near-term under the SSP8.5 scenario with
a projected 0.9 ◦C rise in the average minimum, 1.0 ◦C in the maximum temperature,
and 48 mm increase in precipitation, compared with the baseline period (7190 kg ha−1).
Meanwhile, in the mid-term (2041–2060), GFDL-ESM4 forecasted the highest average grain
yield of 9084 kg ha−1 under the SSP4.5 scenario with 0.7 ◦C rises in each average maximum
and minimum temperature, and 66 mm increase in the average seasonal precipitation,
compared with the baseline period (7190 kg ha−1). In the long term, GFDL-ESM4 GCM
projected the highest average grain yield of 8783 kg ha−1 under the SSP4.5 scenario with
increases of 1.3 ◦C in minimum temperature, 1.1 ◦C in maximum temperature and 59 mm
in average seasonal precipitation, compared with the baseline period (7190 kg ha−1).

Table 6. Changes in the winter wheat seasonal mean of climate projections of five GCMs in the
near-term, mid-term, and long-term.

Near-Term: 2021–2040

GCMs SSP4.5 SSP8.5

Tmax (◦C) Tmin (◦C) Pr (mm) Tmax (◦C) Tmin (◦C) Pr (mm)

ACCESS-CM2 0.6 0.8 43.1 1 0.9 48
CanESM5 0.6 0.8 −4.5 0.4 0.8 29.5
EC-Earth3 1.2 0.8 −51.5 1.2 0.9 −39.5

INM-CM5-0 1.1 0.1 37.5 1.3 0.1 41.5
MIROC6 0.4 0.3 52.5 0.8 0.5 55.5

Mid-term: 2041–2060

ACCESS-CM2 1.7 1.7 39.5 1.6 1.6 20.5
CanESM5 1.1 1.5 64.5 1.6 2 22.5
EC-Earth3 1.4 1.3 −12.5 1.8 1.7 20.5

INM-CM5-0 1.5 0.2 43.5 1.6 0.6 49.5
MIROC6 0.6 0.7 38.5 1 1 36.5

Long-term: 2081–2100

ACCESS-CM2 2.1 2.1 8.5 3.2 3.7 46.5
CanESM5 1.5 2 64.5 3.9 4.5 10.5
EC-Earth3 2 1.9 −16.5 3.2 3.7 3.5

INM-CM5-0 1.4 0.4 42.5 2.5 1.5 10.5
MIROC6 1.1 1.1 27.5 2 2.5 35.5

Note: Tmax, maximum temperatures; Tmin, minimum temperature; and Pr, precipitation (-ve sign shows the
reduction in precipitation).
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The grain yield across all GCMs based on maximum and minimum temperature
and precipitation changes under SSP4.5 and SSP8.5 scenarios differed in the near-term,
mid-term, and long-term. In the near-term, under the SSP4.5 scenario, GCMs forecasted
a 9% more average grain yield with a 0.7 ◦C increase in average minimum and 0.8 ◦C in
maximum temperature and a 17 mm rise in average seasonal precipitation compared to
the baseline period. In the mid-term, with a 1.3 ◦C rise in each average maximum and
minimum temperature and a 33 mm increase in precipitation, most GCMs predicted a 13%
more average grain yield than the baseline period. While in the long-term, a 3% increase
in average grain yield was observed with an increase of 2.5 ◦C in average minimum
temperature and 2.2 ◦C in average maximum temperature, and a 29 mm increase in
precipitation compared to the baseline period. These findings proposed that the increased
precipitation can counteract the warming climate impact and increase the winter wheat
grain yield. According to most of the GCMs predictions, the winter wheat yield is likely to
increase significantly in the near-term and mid-term under the SSP4.5 and SSP8.5 scenarios
due to the increase in precipitation with increasing temperature than the baseline period.

Figure 3. Projected winter wheat grain yield for near-term under SSP4.5 (a) and SSP8.5 (b) scenarios
of five GCMs. ACC represents ACCESS-CM2, CAN represents CanESM5, ECE represents EC-Earth3,
GFD represents GFDL-ESM4, and MIR represents MIROC6 GCM. The baseline period is from 1995
to 2014.

Figure 4. Projected winter wheat grain yield for mid-term under SSP4.5 (a) and SSP8.5 (b) scenarios
of five GCMs. ACC represents ACCESS-CM2, CAN represents CanESM5, ECE represents EC-Earth3,
GFD represents GFDL-ESM4, and MIR represents MIROC6 GCM. The baseline period is from 1995
to 2014.
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Figure 5. Projected winter wheat grain yield for long-term under SSP4.5 (a) and SSP8.5 (b) scenarios
of five GCMs. ACC represents ACCESS-CM2, CAN represents CanESM5, ECE represents EC-Earth3,
GFD represents GFDL-ESM4, and MIR represents MIROC6 GCM. The baseline period is from 1995
to 2014.

3.3. Effect of CO2 Concentrations Scenarios on Future Winter Wheat Grain Yield

A model’s response to CO2 concentration in the near-term, mid-term, long-term, and
baseline period (1995–2014) is presented in Figures 6–8. According to the sixth assessment
report of IPCC, the increase in CO2 concentrations in the near-term, mid-term, and long-
term is shown in Table S1. The increase in grain yield was observed as the CO2 concentration
increased in the near-term, mid-term, and long-term scenarios compared to the baseline
CO2 level (380 ppm) in the baseline climate data. The average maximum grain yield
of 7590 kg ha−1 and minimum grain yield of 7446 kg ha−1 was under the SSP8.5 CO2
concentration scenario (456 ppm) and the SSP4.5 scenario (429 ppm), respectively, in the
near-term. In the mid-term (2041–2060), the average maximum and minimum grain yield
was 8161 kg ha−1 and 7480 kg ha−1 under the SSP8.5 and SSP1.9 scenarios, respectively,
compared to the baseline level yield (7190 kg ha−1). During the long term (2081–2100), the
minimum and maximum average grain yields were 7325 kg ha−1 and 9601 kg ha−1 under
the SSP1.9 and SSP8.5 scenarios, respectively, compared to the baseline average grain yield
(7190 kg ha−1).

It should be noted that there was no substantial difference in grain yield among all
CO2 concentration scenarios (SSP1.9, SSP2.6, SSP4.5, SSP7.0, and SSP8.5) in the near-term
due to the lower projected CO2 concentration than mid-term and long-term. However,
compared to the baseline average grain yield, a 4 to 6% increase in average grain yield
was observed in the near-term. In the mid-term, 4 to 14% more average grain yield was
noticed under the increasing CO2 concentration scenarios. However, the CO2 concentration
scenarios in the long-term demonstrated a significant increase in the average grain yield
from 2 to 34% due to the higher rise in CO2 concentration than the baseline period. The
increasing concentration of CO2 in the future can positively affect the winter wheat grain
yield in a warming climate.

3.4. Optimal Management Scenario for Winter Wheat under a Warming Climate and
Taylor Diagram

The irrigation water and N fertilizer management scenarios positively affected the
grain yield under various sowing dates in a warming climate of the near-term (Figures 9–12).
The EC-Earth3 daily climate data, including maximum temperature, minimum temperature,
and precipitation, were used to develop adaptive strategies to mitigate the warming climate
impact on winter wheat grain yield. The average maximum grain yield of 9676 kg ha−1 was
observed on 260 mm irrigation water and 275 kg ha−1 N fertilizer application (W260N275)
with sowing winter wheat at the recommended sowing time (the first week of October
and 3 October was used in this study). It was 74% higher than the EC-Earth3 average



Atmosphere 2022, 13, 1275 14 of 25

grain yield (5885 kg ha−1, without any management strategy to mitigate the warming
climate impact on grain yield) in the near-term. The average minimum grain yield was
5841 kg ha−1, noticed with the 200 mm irrigation water and 385 kg ha−1 N fertilizer
management scenario (W200N385) under sowing on 23 September. It was also noticed
that a higher level of irrigation water and N fertilizer rate did not enhance the grain
yield under all sowing dates. In this study, 320 mm irrigation water and 385 kg ha−1 N
fertilizer application (W320N385) showed a 6696 kg ha−1 grain yield, which was 45% lower,
compared with the grain yield in 260 mm irrigation water and 275 kg ha−1 N fertilizer
application (W260N275) under sowing on 3 October. Overall, this study found that sowing
winter wheat on 3 October and applying 260 mm irrigation water, and 275 kg ha−1 N
fertilizer can be optimal management strategies for mitigating the adverse impact of the
warming climate on winter wheat grain yield in the near-term.

Figure 6. Effect of CO2 concentration increasing scenarios for near-term on projected winter wheat
grain yield under various SSPs scenarios, compared to the baseline period. In the SSP1.9, SSP2.6, SSP4.5,
SSP7.0, and SSP8.5 scenarios, the CO2 concentrations are 429, 437, 444, 453, and 456 ppm, respectively.

The GCM performance was also analyzed in the near-term using the Taylor diagram.
The Pearson correlation was examined between GCMs and historical baseline climate data
(Supplementary Figure S1). On the x-axis, Ref = 1 represents the reference data (historical
climate data from 1995 to 2014). The maximum Pearson correlation of 0.89 was observed
for the maximum and minimum temperatures in ACCESS-CM2 under the SSP4.5 scenario.
However, CanESM5 and ACCESS-CM2 demonstrated a higher Pearson correlation of 0.11
for precipitation under the SSP4.5 scenario. This study found that the ACCESS-CM2 can
be the best GCM for the maximum and minimum temperatures and CanESM5 for the
precipitation simulation in the near-term.



Atmosphere 2022, 13, 1275 15 of 25

Figure 7. Effect of CO2 concentration increasing scenarios for mid-term on projected winter wheat
grain yield under various SSPs scenarios compared to the baseline period. In the SSP1.9, SSP2.6, SSP4.5,
SSP7.0, and SSP8.5 scenarios, the CO2 concentrations are 436, 467, 506, 542, and 569 ppm, respectively.

Figure 8. Effect of CO2 concentration increasing scenarios for long-term on projected winter wheat
grain yield under various SSPs scenarios compared to baseline period. In the SSP1.9, SSP2.6, SSP4.5,
SSP7.0, and SSP8.5 scenarios, the CO2 concentrations are 405, 457, 595, 790, and 999 ppm, respectively.
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Figure 9. Effects of various irrigation management scenarios on winter wheat grain yield under
sowing on 13 September in a warming climate. W with values represents the irrigation water amount
in mm, and N values are nitrogen fertilizer rates in kg ha−1.

Figure 10. Effects of various irrigation management scenarios on winter wheat grain yield under
sowing on 23 September in a warming climate. W with values represents the irrigation water amount
in mm, and N values are nitrogen fertilizer rates in kg ha−1.
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Figure 11. Effects of various irrigation management scenarios on winter wheat grain yield under
sowing on 3 October in a warming climate. W with values represents the irrigation water amount in
mm, and N values are nitrogen fertilizer rates in kg ha−1.

Figure 12. Effects of various irrigation management scenarios on winter wheat grain yield under
sowing on 13 October in a warming climate. W with values represents the irrigation water amount in
mm, and N values are nitrogen fertilizer rates in kg ha−1.
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4. Discussion

In the current study, we calibrated and evaluated the DSSAT-CERES-Wheat model
with field crop data for two growing seasons. The observed data for two growing seasons
are enough for CERES-Wheat model calibration and evaluation. Several researchers used
two seasons in their studies to calibrate and validate the crop model [52,53]. The model
demonstrates good performance in simulating days to anthesis, days to maturity, grain
yield, total dry matter, and harvest index, as shown in Table 5. Our findings are consistent,
as reported in previous studies [7,53,79,80]. Simulations of anthesis and maturity dates
were close to the observed dates, with PE and nRMSE of less than 5%, and the RMSE
was less than five days in all treatments in both seasons of experiments. Timsina and
Humphreys [81] observed the nRMSE of 4 to 5% anthesis and maturity time in the CERES-
Wheat model. Feng et al. [82] noticed RMSE of 1.83 and 3.56 days for winter wheat anthesis
and maturity time. The average RMSE values were less than 300 kg ha−1, 800 kg ha−1,
and 0.03, and average r values were 0.95, 0.77, and 0.68 for grain yield, total dry matter,
and harvest index, respectively, in both growing seasons. Meanwhile, the nRMSE values
were less than 10% in all treatments in two years of the experiment for grain yield, total
dry matter, and harvest index. Our findings are consistent with the Malik and Dechmi [83]
study, which reported a nRMSE of less than 10% for the simulated yield in the CSM CERES-
Wheat model. The calibrated model was then used to analyze the climate change impact
assessment on wheat yields.

Five GCMs were selected for forcing the calibrated crop model because a single
GCM cannot be relied upon in climate change impact studies [52,84]. Multiple models
may effectively assess the climate change’s impact on crop yield [9,85]. In the study,
most GCMs predicted a rise in projected temperature and increased precipitation in
the near-term, mid-term, and long-term with an increase in grain yield compared to
the baseline period (1995–2014). Lopes [21] also observed that increasing precipitation
and temperature favor wheat growth and photosynthesis, resulting in increased grain
yield. In the near-term, ACCESS-CM2 GCM showed a 28% more average grain yield under
the SSP8.5 scenario with 1.0 ◦C rises in each average maximum and 0.9 ◦C minimum
temperature and a 29% increase in seasonal precipitation compared to the baseline
average grain yield (1995–2014). The rainfall might be a primary factor that counteracts
temperature-induced adverse effects on crop yield, which is in agreement with Kukal and
Irmak’s [86] observations. It shows that the rise in temperature and increased precipitation
can be beneficial for increasing the winter wheat grain yield [87]. This study also found
that the increase in temperature and reduction in precipitation can adversely impact the
winter wheat grain yield, consistent with the findings of Zhao et al. [88]. The increasing
temperature and decreasing precipitation will increase daily crop water consumption;
crop growth and development are expedited by higher temperatures, which can adversely
impact crop production [89]. This study finding suggests that the projected increasing
precipitation trend with rising temperature in the near-term, mid-term, and long-term
under SSP4.5 and SSP8.5 scenarios can compensate for the warming climate impact on
winter wheat grain yield.

The winter wheat average grain yield increased with increasing CO2 under all SSPs
scenarios of CMIP6 in the near-term, mid-term, and long term. Various researchers
observed similar findings [4,9,90]. Kimball et al. [91] reported that wheat, among all
C3 crops, is known to be positively affected by increased CO2 concentration. In the
near-term (2021–2040), the projected average grain yield is increased from 4 to 6%, with
increased CO2 concentration from 429 to 456 ppm in the baseline period. The average grain
yield is increased from 4 to 14% with the rise of CO2 concentration from 436 to 569 ppm in
mid-term scenarios compared with the historical baseline period. For long-term scenarios,
with increasing CO2 from 405 to 999 ppm, there is a 2 to 34% increase in future winter
wheat grain yield compared with the baseline yield. The higher CO2 concentration in
the long-term under SSPs scenarios show more increase in grain yield than the near-term
and mid-term. Amthor [92] noticed the 31% increase in wheat grain yield with increasing
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CO2 from 350 to 700 ppm. These outcomes are also in agreement with the findings of
Helman and Bonfil [23], Ahmed et al. [93], and Ullah et al. [94] that increasing CO2 level is
beneficial for increasing the future grain yield. The increased CO2 generally maximizes the
crop yield by rising CO2 concentration in the intercellular space (resulting in greater net
photosynthesis) and reducing stomatal conductance (reducing transpiration) and increasing
light-use and water-use efficiencies [95,96]. Climate change studies indicate that increased
CO2 levels could help crops maintain or possibly improve grain yields amid future climate
change [97,98].

An optimal adaptation strategy would be required in the future to deal with the severe
impacts of the warming climate. In the projected warming climate scenario, changing
management methods, including planting dates, fertilizer rates, and irrigation applications,
could help increase grain yield [52]. In this study, the CSM-CERES-Wheat model predicted
the increase in grain yield under management scenarios of irrigation water, N fertilizer, and
sowing dates in warming climatic conditions. The 260 mm irrigation water and farming
practice 275 kg ha−1 N fertilizer (W260N275) management scenario under the sowing of
winter wheat on the recommended date of early October (this used the October 3 sowing
date) showed a significant increase in grain yield compared to the average grain yield
predicted by EC-Earth3 GCM in a warming climate. Similarly, Zheng et al. [99] suggested
October 7 to 17 as the optimal sowing dates for winter wheat in Guanzhong in the Southern
China Plain to increase grain yield. The rise in temperature and reduction in precipitation
increases the evapotranspiration (ET) of the crop and lowers the moisture in the soil, which
requires more irrigation water for the crop to maintain the soil moisture at an optimal
level [100,101]. In this study, the increase in irrigation water and N fertilizer above 260 mm
and 275 kg ha−1 did not increase the grain yield in warm climatic conditions. When
excessive irrigation water is used, nutrients are highly susceptible to leaching from the root
zone and can negatively impact the grain yield [102]. Similar findings were observed by
Rahman et al. [9] that a higher dose of N fertilizer and irrigation water did not significantly
increase the crop yield in a warming climate. Choosing the optimal sowing date, irrigation
water, and nitrogen fertilizer application can reduce the adverse effects of a warming
climate [52,103]. Winter wheat yield can improve significantly in a warming climate in
the near-term with the sowing of wheat on 3 October (which is earlier than the traditional
planting) and by applying 30% more irrigation water than farming practice and farming
practice with N fertilizer application.

Further, this study analyzed the performance of GCMs compared with observed using
the Taylor diagram. Salehnia et al. [72], Ullah et al. [104], and Hamed et al. [73] also used a
similar approach for examining the performance of the GCMs with observed climate data.
Among all the GCMs in the near-term, ACCESS-CM2 can be the best GCM for maximum
temperature and minimum temperature simulation in the study area climate compared to
other GCMs under the SSP4.5 scenario. For the precipitation simulation, CanESM5 and
ACCESS-CM2 can be the optimal GCMs under the SSP4.5 scenario in the near-term.

The current study successfully calibrated and evaluated the DSSAT CERES-Wheat
model using two-year field experimental data and effectively examined the impact of
climate change on future grain yield in the near-term, mid-term, and long-term under SSPs
scenarios of CMIP6. Even though this study demonstrated success, its limitations include
the uncertainty in GCMs climate projection [105]. Although there is a consensus among
improved climatic models about changes in a projected rising temperature, the extent of
these changes differs substantially. However, projections of precipitation changes are usu-
ally uncertain [88]. The GCM predicted climate change is uncertain due to various factors,
including emission scenarios, model structure, downscaling techniques, bias correction
methods, and impact models [106,107]. Therefore, further study is required to address
the uncertainty in the GCM climate change projections by using more than five GCMs
under various shared socioeconomic pathways scenarios. Other limitations include the
current study using two growing season crop data from one experimental station for single
crop model calibration and evaluation. Future work will use a multi-model ensemble and
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multi-year experimental data from the different experimental stations for calibrating the
crop model to reduce uncertainty.

5. Conclusions

The CSM DSSAT-CERES-Wheat model performed well in simulating the winter wheat
phenology, grain yield, total dry matter, and harvest index. The findings indicate that
temperature, precipitation, and the CO2 increase positively impact the future winter wheat
grain yield in the near-term, mid-term, and long-term. The interplay among these climatic
factors suggests that the increase in precipitation and CO2 offset the decrease in winter
wheat grain yields because of the increased temperature in the future.

Several management scenarios were investigated to determine the best crop man-
agement practices to mitigate future climate change impacts on wheat grain yields. The
mitigation of the negative effect of the warming climate on existing and future production
systems requires better adaptation practices, including changing the sowing date, fertilizer
rate, and irrigation amount for winter wheat. Our findings revealed that the sowing of
winter wheat on 3 October and applying farmer’s fertilizer application rate of nitrogen and
30% more irrigation water than farmer practice can be the optimal adaptive strategy in the
near-term to mitigate the adverse impact of the warming climate on winter wheat grain
yield in the North China Plain.

The limited observed data, uncertainties in GCMs, selecting only one agroclimatic zone,
and the use of a single crop model are the apparent limitations of the study. Meanwhile,
our investigations served their intended purpose. The future work will be conducted in
different agroclimatic zones, and multi-year observed data will be collected to parametrize
the crop models. Additionally, multi-model ensembles will be used to improve the accuracy
and reduce the uncertainty of climate change effects in future research work.
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