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Abstract: Icelandic topsoil sediments, as confirmed by numerous scientific studies, represent the
largest and the most important European source of mineral dust. Strong winds, connected with
the intensive cyclonic circulation in the North Atlantic, induce intense emissions of mineral dust
from local sources all year and carry away these fine aerosol particles for thousands of kilometers.
Various impacts of airborne mineral dust particles on local air quality, human health, transportation,
climate and marine ecosystems motivated us to design a fully dynamic coupled atmosphere–dust
numerical modelling system in order to simulate, predict and quantify the Icelandic mineral dust
process including: local measurements and source specification over Iceland. In this study, we used
the Dust Regional Atmospheric Model (DREAM) with improved Icelandic high resolution dust
source specification and implemented spatially variable particle size distribution, variable snow
cover and soil wetness. Three case studies of intense short- and long-range transport were selected
to evaluate the model performance. Results demonstrated the model’s capability to forecast major
transport features, such as timing, and horizontal and vertical distribution of the processes. This
modelling system can be used as an operational forecasting system, but also as a reliable tool for
assessing climate and environmental Icelandic dust impacts.

Keywords: high latitude dust; coupled atmospheric–dust model; dust sources; Icelandic soils and
sediments; volcanic glass

1. Introduction

Currently, there is no operational dust modelling system in the community designed
to predict Icelandic airborne dust processes. Namely, horizontal resolutions of current op-
erational dust models do not adequately represent the spatial distribution of Icelandic dust
sources, especially small-scale but highly emissive areas defined as “hot-spots“. A regional
atmospheric–dust model, if applied with horizontal grid size of several kilometers, can
identify such sources and their physical characteristics and could consequently reproduce
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dust concentration patterns. Several studies based on regional modelling have been used
to simulate dust transport from Iceland. Many of them are based on atmospheric weather
prediction systems used to “offline” drive the dust process by implementing Lagrangian
models such as HYSPLIT [1], FLEXDUST [2] or NAME [3]. The major conceptual and
practical constraint of such predictive systems is the lack of simultaneous interactions
between the meteorological parameters and the dust concentration during the model
simulation/forecasting.

Icelandic deserts and glacial sediment areas constitute the largest European source of
airborne mineral dust [4,5]. Iceland is an active volcanic island where many of the volcanic
systems are capped by glaciers, which results in frequent explosive volcanism [6]. Glacial
rivers have a high load of basaltic glass fragments, and many of the main dust sources
are associated with glacial margins, glacial rivers, and sandy ocean beaches near glacio-
fluvial outlets [4]. The soils that form in the basaltic dust deposits are andosols. By lacking
cohesive forces, they are extremely susceptible to wind erosion and to dust emission. The
soil particles are primarily volcanic glass and basalt fragments together with allophane
(commonly 5–15%) and ferrihydrite clay (commonly 3–10%), depending on the degree of
weathering, with lower clay content at the dust hot-spots, but there are no phyllosilicates
such as smectite [7]. Dust release from periglacial sources is well documented, such as for
Alaska and Iceland, and may be the major source of dust in high latitudes. Dust release
may likely be increasing with retreating glaciers due to global warming [2,5,8–10].

Soil geochemistry in dust sources in Iceland show high iron content, usually about
10% Fe, which is much higher than in continental dust in general [11–13]. The iron is an
essential micronutrient for marine microbial organisms and is an important modulator of
CO2 uptake from the atmosphere in the high latitude North Atlantic [14], thus contributing
to the slowdown of the ongoing Arctic seawater acidification. In recent years, the high
latitude North Atlantic Ocean has become a focus for research into the role of Fe in ocean
productivity [15].

Estimated mean annual dust emissions from Icelandic desert surfaces are of the order
of 5 to 40 million tons, with the majority of the dust deposited on land or near the shore-
lines [2,12]. However, dust particles from Iceland can be transported at long distances [4],
and they have been identified more than 3500 km far from the sources [16–21]. There are,
on average, 135 dust days annually observed at weather stations in Iceland [22–24], but
occurrence frequency of dust emission and transport is much higher, as some of the dust
is blown from beach areas directly out to sea. Dust day frequency in Iceland is higher
than in USA, Mongolia, Iran, as well as Saharan dust day occurrence in the Mediterranean
basin [25]. Dust storms in the highlands occur mainly in summer (May–October) because
several of the main dust sources, such as Dyngjusandur, Mælifellsandur and Hagavatn, are
usually covered with snow during winter months [23,26]. The Arctic dust storms in NE
Iceland directly affect Arctic areas. In [2], it was estimated that about 7% of Icelandic dust
reaches the High Arctic (>80◦ N). Additionally, [20,27,28] identified that dust pathways
reach far north. Deserts in South Iceland are dust productive continuously throughout
the year, with maximum frequency in spring (March–May). The frequent appearance of
dust storms is related to high velocity wind conditions typical for high latitude regions [29].
Finally, there is evidence that some dust storms occur during a vast variety of weather
conditions [22,30,31]. Most of the dust storms affect Iceland and its neighborhood, but in
some cases dust can reach distant regions such as the Faroe and British Islands, traveling
mainly in the lower troposphere.

Icelandic dust storms with concentrations often exceeding 1000 µg m−3 reduce air
quality, causing low visibility in urban areas [1,22,26,30,32]. Icelandic road transportation
is strongly affected by dust storms more than 20 times per year on average, resulting in
road closures due to reduced visibility [33,34]. High PM10 pollution levels in Reykjavik
tend to be significantly associated with emergency hospital visits and increased need for
anti-asthmatic drugs in the adult population [35,36]. The contribution of submicron dust
particles to measured PM10 during dust storms in Iceland can exceed 50% (PM1/PM10
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ratio of 0.5), which is comparable to urban air pollution rather than to natural dust air
pollution elsewhere [32]. Icelandic volcanic dust can affect high latitude climate through
both direct and indirect forcing. Being dark in color with spectral reflectance of near black
body of <0.03 under laboratory conditions, it can reduce snow albedo similarly as black
carbon [37–40]. Furthermore, it is a radiatively active aerosol that can absorb both short
and long-wave radiation and can also impact the atmospheric stability by altering radiation
budget [41–43]. The net effect is represented by warming of the top of the dust layer
and cooling of the surface, resulting in more stable planetary boundary layer. This can
additionally enhance the health risk by prolonging the high near surface air pollution.
Finally, Icelandic dust is assumed as an important source of ice nucleation particles [44],
which impacts climate through indirect aerosol effects.

The aim of this study is to present for the first time a fully dynamic high-resolution
numerical atmospheric–dust modelling system, capable to simulate/forecast the atmo-
spheric cycle of mineral dust emitted from the Icelandic soil sources. To understand and
mathematically represent the mechanism of airborne dust, processes ranging from micro
to global scales, which include dust emission, horizontal and vertical turbulent mixing,
long-range transport and dust deposition, have to be considered in order to reflect the
complexity of the atmospheric dust cycle.

2. Materials and Methods

The data used in this study include: field campaigns data used to define soil character-
istics, required as model input data; atmospheric dust transport model results obtained in
numerical simulation of the dust storm cases; in situ and satellite observed aerosol data as
well as air quality observations used to define main characteristics of the dust events and
to verify model results.

2.1. Numerical Dynamic Modelling of Icelandic Dust Atmospheric Process

In order to overcome the current limitations in the Icelandic dust modelling, we
introduce here for the first time a high-resolution numerical coupled atmospheric-dust
model with detailed representation of the Icelandic soil sources. The model is designed
to perform the missing daily dust predictions, but also to simulate diverse impacts of this
dust to various environmental systems. For this purpose, we implement the Eulerian-type
numerical, fully coupled, atmospheric–dust model DREAM (Dust REgional Atmospheric
Model) [45,46] and simulate the Icelandic dust atmospheric process, from its emission
to deposition. Particular effort has been made to include information on emission from
Icelandic fine-scale dust sources. Finally, model performance has been evaluated using in
situ and satellite observations for specific cases characterized by significant dust emission
and long-range dust transport.

2.2. Parameterization of Dust Emission from Icelandic Sources

Geographical distribution of dust sources is a key input information in numerical
atmospheric–dust models. Emission of dust particles from the surface is generally deter-
mined by the soil surface conditions (soil moisture and temperature, soil texture, looseness
of the soil surface, land cover characteristics) and by near-surface weather conditions.
Dust sources are bare fraction of topsoil or sediment surfaces susceptible to wind erosion.
Favorable conditions for emission of soil particles from such surfaces include: lower topsoil
moisture, unfrozen soil and surface wind velocity above certain threshold closely related to
soil particle size distribution and soil moisture. Soil surfaces are susceptible to wind erosion
when they contain clay- and/or silt-sized soil particles. Dust sources can be permanent,
seasonal, or just appear occasionally in extreme weather conditions. Their dynamics in
activity can be impacted by the weather and human activities, predominantly by agricul-
ture practice and water scarcity [47,48]. Volcaniclastic sandy deserts in Iceland cover about
22,000 km2, but most of the material suspended during the dust storms comes from seven
major dust sources “hot-spots” according to [4,7,49]. These hot-spots are mainly located on
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glacio-fluvial plains and they cover about 500 km2. Dust from these areas of silty sediments
has particle diameters of less than 30 µm [50]. Icelandic dust particles contain amorphous
glass, large internal voids, and dustcoats comprised of nano-scale flakes. They have high
porosity and roughness while particle densities and settling velocities are low.

To define geo-referenced data on the Icelandic dust sources (Figure 2), we use the
following high-resolution digital datasets:

(A) Desert geomorphology with the resolution of 1:100,000 is based on the survey of
soil erosion in Iceland [51]. Soil surfaces, according to vulnerability to erosion, are classified
in: extreme, severe and considerable exposure to erosion (Figure 1, colored areas). These
areas indicate possible potential for mineral dust emission in case of suitable weather,
topsoil and land cover conditions. The dataset also includes the geographic locations of the
glaciers at the time of dataset publication.
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Figure 1. Areas vulnerable to erosion (extreme—orange, severe—green, considerable—blue) and
hot–spots of dust emission (yellow circles); Dust hot-spots geographical names [1—Flosaskarð,
2—Hagavatn, 3—Dyngjusandur, 4—Vonarskarð, 5—Mælifellssandur, 6—Skeiðarársandur,
7—Landeyjarsandur, 8—Mýrdalssandur].

(B) Dust hot-spots with the resolution of 1:15,000 represent small-scale dust source
patterns with a potential emissivity that far exceeds dust productivity of the sources from
(A), according to [4] (Figure 1, marked with numerated yellow circles).

The geo-referenced dust source spatial distribution map for Iceland is made by combin-
ing (A) and (B) data sets into a unique dust mask with values ranging from 0 to 1 (Figure 2),
where values are proportional to dust emission potential, with the highest values corre-
sponding to highly emissive sources. In accordance with the up-to-date most reliable
observational data, the highest weight is given to detect hot-spot source areas and to high-
light contributions of these sources, which are noted to be responsible for selected dust
transport cases. Other erodible surfaces are included as sources with smaller contributions.
These surfaces encompass all potentially dust productive areas capable to produce at least
“blowing dust” events [52].

Thereby, the contribution of soil surfaces to potential dust emission are weighted
with 0.75 for hot-spots (confirmed dust emissive areas) and 0.25 for the other erodible
surfaces. Vulnerability to erosion from these other surfaces, categorized as extreme, se-
vere and considerable (erosion classes 5, 4 and 3 in [51]), are weighted by 0.2, 0.04 and
0.02, respectively.
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Figure 2. Derived dust source mask for Iceland as seen on the model horizontal resolution of
0.05 degrees.

An important soil feature that influences dust emission is the soil texture. Soil surface
can be susceptible to wind erosion if it contains clay and silt size particles—up to about
50–60 µm in diameter. During the extreme weather with high surface wind velocity, larger
particles can also be suspended from the surface, but over much shorter distances than silt
and clay particles. In DREAM, clay and silt particles are included to represent the airborne
dust life cycle. Clay particles exist mostly as silt- and sand-sized aggregates and because
they are exposed to stronger adhesive forces, they are generally much less available for
emission than silt-sized particles [53]. Clay is not a prominent fraction of the Icelandic
desert surfaces. Higher clay content is only for the developed andosols, which are not
dominant emission sources in the model. In this study, we use the soil texture geographical
distribution with the resolution of 1:100,000 [51,54] to populate their fractions over the
model grid points, as shown in Figure 3. The clay fraction in model grid is shown in
Figure 3a. Higher silt contents (Figure 3b) are typically due to the glaciogenic origin of
the sediments, making up the major proportion of sediment loads of glacial rivers. In
this dataset, fine particles content in identified hot-spot areas is low [55] (Agricultural
University of Iceland, field collected sample data). Accordingly, fine particles content in
hot-spots is updated using data from the same field campaign.
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The total mass of the emitted dust and its gravitational settling in the process of
removal from the atmosphere strongly depends on the particle size distribution at dust
sources. Most of the current dust models use a particle size constant with respect to
geographical distribution [56–58]. In Iceland soils, particle size distributions measured at
eight hot spot locations indicates that particles subjected to dust emission can be larger
in size than, e.g., particles from the Saharan desert as the Icelandic sources have not been
exposed to long-term sorting of particles by aeolian processes. Unlike what is done in
other dust models, we incorporated the data obtained at the sites as location-dependent
information at hot spots. For productive dust sources other than hot-spots, we use the
arithmetic mean of size distributions at hot spots. In the model, we specify 8 particle bins:
with radii of 0.18, 0.23, 0.38 and 0.73 µm for clay particles, and with radii of 1.5, 3, 6 and
9 µm for silt particles. Figure 4 shows the normalized particle size distribution at hot spots
(Appendix A), along with their arithmetic mean (purple line).
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The near surface concentration Cs of emitted particles, under wind conditions strong
enough to create emission, is parameterized in the model as shown in Equation (1):

Cs = α× u2
∗

[
1−

(
U∗t
u∗

)2
]

f or u∗ > U∗t, (1)

where α represents a tuning constant, u∗ is friction velocity [44]. The threshold friction
velocity U∗t is the minimum friction velocity required for triggering dust emission and
strongly dependent on the soil wetness and particle size. Therefore, high soil moisture
reduces the dust emission. We apply the parameterization from [59], which links dust
emission with the soil moisture content (SMC), given by Equation (2):

U∗t = u∗t
[
1 + 1.21

(
SMC− SMC′

)0.68
]0.5

f or SMC > SMC′ (2)

where
SMC′ = 0.0014(%CLAY) + 0.17(%SILT), (3)

Otherwise
U∗t = u∗t, (4)
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In addition, the threshold friction velocity for dry soil depends on soil particle sizes:

u∗t = Ai

(
2gri

ρ− ρa

ρa

) 1
2
, (5)

where Ai is empirical-based parameter [45,60] for i-th particle size bin; g is gravitational
acceleration; ri is bin radius; and ρ and ρa are particle and air densities, respectively.

Since DREAM is a coupled atmospheric–dust model, it also includes snow cover and
precipitation prediction, which alter soil surface conditions and impact emission from
dust sources.

2.3. Model Dynamics of Dust Transport

As mentioned before, the DREAM model [45,47,61,62] was developed as a fully cou-
pled atmospheric–dust model. In this version, its atmospheric component is NMME (Non
hydrostatic Mesoscale Model on E–grid) developed by National Centers for Environmen-
tal Predictions (NCEP) [63]. The dust component is embedded as one of the governing
prognostic equations that solve a set of dust mass continuity equations for eight particle
size bins for Icelandic soils with radii ranging in the interval 0.18–9 µm. The first four bins
are considered as clay particles, and another four as silt particles.

DREAM simulates all major components of the atmospheric dust processes such as
emission, horizontal and vertical turbulent mixing, free atmosphere transport and dust wet
and dry deposition. It numerically solves the Euler-based dust mass conservation equation
applied for each dust aerosol bin:

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+∇h(KH∇hC) +
∂

∂z

(
KV

∂C
∂z

)
+ (w− vg)

∂C
∂z
−
(

∂C
∂t

)
SR

+

(
∂C
∂t

)
SN

= 0, (6)

Here, C is the dust concentration; u, v and w are horizontal and vertical wind velocity
components; vg is the dust gravitational settling velocity; ∇h is the horizontal gradient
operator; KH and KV are the lateral and vertical mixing coefficients; subscripts SR and SN
refer to dust sources and sinks, respectively. During the model integration, dust emission is
calculated over model grid-point cells declared as dust potential sources. Once emitted
into the atmosphere, the dust aerosol is driven by turbulent vertical mixing, by horizontal
and vertical advection and by deposition processes.

The parameterization of the dust source term is based on the approach of mass
emissions from the surface–atmosphere interface. The emission is dependent on the near-
surface turbulent state and its intensity is regulated by a thin viscous sub-layer (VSL)
inserted between the model surface and the first model layer [64]. Within VSL, there is a
mixture of turbulent and laminar mixing determined by the intensity of the near-surface
wind. Above VSL, the vertical mixing is parameterized by the Mellor–Yamada–Janjic
turbulence scheme [64].

VSL operates over the following three different regimes dependent on intensity of
the friction velocity: (1) smooth and transitional, (2) rough, and (3) very rough (Figure 5).
When the friction velocity exceeds u∗r = 0.3 ms−1, the smooth and transitional regime
stops to operate and the flow becomes rough. Dust emission under rough turbulent regime
continues until the next velocity threshold u∗t = 0.7 ms−1 is achieved. At this point, the
regime switches to very rough turbulence when VSL is completely ceased and the emission
becomes fully driven by turbulence [65]. Schematic description of the viscous sub-layer
concept is shown in Figure 5.
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Figure 5. Schematic description of the viscous sub–layer concept. Emission under smooth and
transitional regime happens for small u∗ when VSL is the thickest. In the rough mixing regime, the
near-surface turbulence increases, and the VSL depth decreases. Under fully developed turbulent
conditions (very rough regime), emission reaches its maximum, and VSL depth vanishes.

The concentration emission flux is expressed in terms of the viscous sub-layer parame-
ters by

FS = v
CIN

VSL − CIN
S

ZVSL
, (7)

Here, v is the air kinematic viscosity, and CIN
S and CIN

VSL are concentrations at the
surface and at the top of VSL, respectively. The lower concentration boundary condition in
the model is:

CIN
VSL = v

CIN
S −ωCIN

LM
1 + ω

, (8)

Which is a weighted mean of CIN
S and the concentration at the lowest model level CIN

LM.
The weighting factor ω depends on turbulent and laminar mixing features. CIN

S is a
power function of the friction velocity u∗ and of its threshold value u∗t, above which
emission begins:

CIN
S ∼ u2

[
1−

(
u∗t
u∗

)2
]

f or u∗ > u∗t, (9)

The dry deposition of dust includes parameterization of gravitational settling, Brown-
ian and turbulent deposition at the air–surface interface, and interception and impaction at
the surface roughness elements [45,66]. Deposition scheme takes into account properties
of the depositing particles (size, density), features of the depositing surfaces (roughness,
land cover, land texture) and turbulent conditions of the lower atmosphere. Different
parameterizations are used for the following groups of surfaces: (a) bare soil, ice and sea,
and (b) land covered by vegetation. Wet removal of the concentration by precipitation
is predicted by the atmospheric model component where, at each model time step, the
removal is calculated using a washout parameter [47]. The wet dust removal is proportional
to rainfall rate.

2.4. Model Setup for Case Studies

To verify DREAM performance in prediction of Icelandic dust transport for different
transport scales, we setup the model domain to cover sufficiently large area surrounding
Iceland, as shown in Figure 6.
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The model has 28 model vertical levels spanning from the surface to 50 hPa. The
longitude–latitude coordinates are rotated in the model in such a way that the coordinate
origin is located in the middle of the model domain. In this way, the reduction of the
longitudinal grid-size is minimized as the southern and the northern boundaries of the
domain are approached, and, therefore, longer model time steps are used to increase the
processing time efficiency. In the transformed coordinate system, the model horizontal
resolution is set to 0.05 deg, in which model grid point distance is approximately 3.5 km
within the domain. The non-hydrostatic character of model dynamics [63] provides the
vertical atmospheric dynamics to include convective dynamics as well. The model’s
basic time step (forecast time increment) is 18 s. Dust advection and lateral diffusion are
computed every second time step, while physical processes, including dust surface emission
and vertical diffusion, are updated every 4th time step. The large-scale precipitation is
calculated every 8th time step.

DREAM forecast was done for three selected dust transport episodes: in 2011, 2018
and 2019. Forecast period for each case study was four days. The airborne dust content
at initial time was set to zero, and it is referred as the “cold start” condition. This is done
because there are no satisfactory three-dimensional dust observations to be assimilated
for initialization of dust forecast. For subsequent days 24-h concentration forecast from
the previous day is used as the initial state. The initial and boundary conditions for the
atmospheric model part are specified using the numerical weather prediction parameters
of the ECMWF global model (European Centre for Medium-Range Weather Forecasts).

3. Results

DREAM model performance is validated and evaluated against available observations
for three severe dust events. The 2011 dust transport episode mainly affected Iceland and
its neighborhood, while the other two cases in 2018 and 2019 correspond to long–range
dust transport towards Ireland, and the British and Faroe Islands.

The choice of case studies is governed by the available observations and characteristics
of the events. The main constraints of dust events information in high latitudes are: scarce
in situ measurements, high cloud coverage, which impacts satellite dust information,
and lack of evidence derived from the general public because of low population. The
available observations on airborne dust during selected dust storm cases are used for
model performance validation as follows (Appendices B and C):

• Horizontal distribution of dust-related parameters evaluated by the model and the
MODIS (Moderate Resolution Imaging Spectroradiometer) observations;
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• Model cross-section and point-based vertical profiles vs. aerosol extinction coeffi-
cient profiles retrieved from the CALIPSO (The Cloud–Aerosol Lidar and Infrared
Pathfinder Satellite Observation);

• Model time–height cross-sections of dust concentration for selected locations vs. in
situ ceilometers attenuated backscattering profiles;

• Model near-surface concentration vs. in situ particulate matter (PM10) data;
• Air mass back trajectories used as auxiliary information on the analysis of long-range

dust transport.

3.1. September 2011 Case—Short–Range Dust Transport Episode

The September 2011 case is selected to describe dust hot-spot activation and intense
short-range dust transport. The event started on 9 September 2011 by activation of multiple
dust sources, caused by relatively intense N–NE winds over the whole island. According
to NASA MODIS satellite observations (Terra/Aqua corrected reflectance (true colour)
and Aerosol Optical Depth images, available at https://worldview.earthdata.nasa.gov/,
accessed on 25 May 2022), the sequence lasted for almost 5 days, but the most intense
event which affected Reykjavik occurred on 12 September. Although there were multiple
dust plumes, the one originating from Hagavatn area mostly affected the Iceland capital.
This 10 km2 wide hot-spot is located about 70 km NE from the city. Additional material
might have been resuspended relicts of volcanic ash from the Grimsvötn eruption on
21–28 May 2011. The plume mainly affected the S–SE areas of the island and the maritime
areas off the southern coasts. Severe dust storm had been detected in Reykjavik during
the afternoon hours on 12 September 2011. The dust plume was captured by the NASA
satellites Terra and Aqua, which is clearly seen on the MODIS true color (Figure 7a) and
AOD images (Figure 7b).
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and Aqua combined corrected reflectance (true color); and (b) Aerosol Optical Depth (AOD).

A large amount of dust, emitted from a nearby Hagavatan hot-spot and transported by
intense N–NE winds, caused an increase in PM10 concentration at Reykjavik (Grensásvegur)
station in the afternoon hours of 12 September 2011 (Figure 8). We anticipate that dust
concentration contributed to the total measured particulate matter, because there are usually
no other PM sources activated in this period of the year.

https://worldview.earthdata.nasa.gov/


Atmosphere 2022, 13, 1345 11 of 29Atmosphere 2022, 13, x FOR PEER REVIEW 11 of 29 
 

 

 
Figure 8. Reykjavik dust storm evidence, time period 12 September 2011 00UTC–13 September 2011 
12UTC; orange and red bars: Hourly averaged observed PM10 concentration (µgm−3); blue bars: pre-
dicted surface PM10 dust concentration (µgm−3). 

The main findings are: the peak of predicted dust concentration at 17UTC on 12 Sep-
tember 2011 coincides with the observed PM10; the timing of the dust storm maximum 
gust was captured; the model has the ability to predict sudden increases and decreases in 
dust concentration. The secondary maximum predicted in the morning hours was not ob-
served. Model data are presented as instantaneous full-hour values, while observations 
are hourly averages. Uncertainties of model results, including the false signal for dust 
PM10 in the morning hours, can be mainly caused by somewhat shifted wind patterns with 
a consequent shift of dust plumes, which is related to weather forecast quality, and by 
uncertainty in the source spatial patterns and soil texture information. Due to the high 
spatial and temporal variability of dust concentrations during dust storms using high res-
olution models, point-on-point verification may cause a double penalty problem, when 
model scores decrease with resolution increase [47]. Average PM measurements in severe 
short lived dust storms can lessen the maximum dust concentration gusts by the order of 
magnitude, when is expected model data (outputs at specific moment) to overestimate 
observed means. In this case, model overestimated observed averages, but for the whole 
day. Since the model captured the timing of maximum dust gusts, some of the mentioned 
uncertainties must be responsible for the overestimation. In the future, when more similar 
cases will become available, field studies and/or observations come into play and a clearer 
assessment of the uncertainty source will be provided. 

Model dust concentration for the event for three successive days (11–13 September) 
is shown in Figure 9. Evolution of three dust plumes generated by strong NE surface 
winds is clearly visible over the period: their formation, extreme stages and finally their 
decay. Dust concentration on 12 September reached 2000 µgm−3 in Reykjavik, and even 
3000 µgm−3 in the vicinity of the city. Similar values have been measured in Iceland during 
severe dust storms [1,22,30]. 

  

Figure 8. Reykjavik dust storm evidence, time period 12 September 2011 00UTC–13 September 2011
12UTC; orange and red bars: Hourly averaged observed PM10 concentration (µg m−3); blue bars: pre-
dicted surface PM10 dust concentration (µg m−3).

The main findings are: the peak of predicted dust concentration at 17UTC on
12 September 2011 coincides with the observed PM10; the timing of the dust storm maxi-
mum gust was captured; the model has the ability to predict sudden increases and decreases
in dust concentration. The secondary maximum predicted in the morning hours was not
observed. Model data are presented as instantaneous full-hour values, while observations
are hourly averages. Uncertainties of model results, including the false signal for dust
PM10 in the morning hours, can be mainly caused by somewhat shifted wind patterns
with a consequent shift of dust plumes, which is related to weather forecast quality, and
by uncertainty in the source spatial patterns and soil texture information. Due to the high
spatial and temporal variability of dust concentrations during dust storms using high
resolution models, point-on-point verification may cause a double penalty problem, when
model scores decrease with resolution increase [47]. Average PM measurements in severe
short lived dust storms can lessen the maximum dust concentration gusts by the order
of magnitude, when is expected model data (outputs at specific moment) to overestimate
observed means. In this case, model overestimated observed averages, but for the whole
day. Since the model captured the timing of maximum dust gusts, some of the mentioned
uncertainties must be responsible for the overestimation. In the future, when more similar
cases will become available, field studies and/or observations come into play and a clearer
assessment of the uncertainty source will be provided.

Model dust concentration for the event for three successive days (11–13 September) is
shown in Figure 9. Evolution of three dust plumes generated by strong NE surface winds is
clearly visible over the period: their formation, extreme stages and finally their decay. Dust
concentration on 12 September reached 2000 µg m−3 in Reykjavik, and even 3000 µg m−3

in the vicinity of the city. Similar values have been measured in Iceland during severe dust
storms [1,22,30].

The ability of the model to clear up the atmosphere of high dust concentrations after
such dust storms is also an important feature. Twenty-four hours after the achieved
maximum dust concentration, the dust plume mostly disappeared, and the remaining
concentrations in the area caused dust haze during 13 September.
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Figure 9. DREAM surface dust concentration (µg m−3) forecast for September 2011 dust storm:
(a) The day before the dust storm peak (11 September at 17UTC); (b) at the dust storm peaking hour
(12 September 17UTC); and (c) the day after dust storm peak (13 September 2011 17UTC). Reykjavik
location is marked with “x” and pointed to with a white arrow. Region within the circle is a dust
plume zone.

While crossing the western Iceland coastline region on 12 September 2011, CALIPSO
recorded a dust pattern originating from the island. Figure 10 depicts the MODIS–Aqua
AOD at 550 nm (colored map), the CALIPSO overpass (red line on Figure 10b), while the
red thick line corresponds to the part of the CALIOP track that has been considered for
the curtain plots shown in Figures 10 and 11. Along the same CALIPSO path, we present
the predicted dust concentration in the lower atmosphere (Figure 11a). The model dust
pattern well compares with the observed profile of the CALIPSO classification of atmo-
spheric features, which reports aerosols extending within the first 3 km of the atmosphere
(Figure 11b). The top of the dust layer was gradually decreasing northward, as evident
from both observed and modeled vertical profiles.
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Figure 11. DREAM model and CALIPSO data along satellite path closest to the event, for
12 September 2011: (a) Model dust concentration; (b) CALIPSO vertical profile of recorded fea-
ture type with value 3 (aerosol) dominant at detected dust plume region; (c) CALIPSO extinction
coefficient that marks detection of the pure dust near Reykjavik; and (d) CALIPSO aerosol sub-
types: 1—marine, 2—dust, 3—polluted continental/smoke, 4—clean continental, 5—polluted dust,
6—elevated smoke, 7—dusty marine, 8—PSC aerosol, 9—volcanic ash, 10—sulfate/other.

Note that all three major areas/plumes (at 64◦ N, 65◦ N and 66◦ N), detected by
CALIPSO algorithms as a dust aerosol, are predicted by the model with almost no temporal
and location bias. The mean height of the dust layer, according to CALIPSO measurements,
is about 1 km, with small area between 62◦ N–63◦ N reaching 3 km altitude; DREAM
reproduces the same sequence (Figure 11a,b). The dust/aerosol pattern near 67◦ N is out
of our focus since it originates from sources outside the Iceland. Similar observations of
Icelandic dust plume height were detected by CALIPSO and Light Aerosol Optical Counter
in vertical profiles in 2016 [67].

The Icelandic dust event on the 12 September 2011, was captured by CALIPSO, as
shown in Figure 11. CALIOP observations and the DREAM model forecast are in good
agreement, both quantitatively and regarding the horizontal and vertical extend of the
aerosol layer. The tropospheric features classified as aerosols are further sub-classified
as dust or polluted continental subtypes, mainly due to the relatively high particulate
depolarization ratio and the low elevation of the detected layer [68]. It is important though
to clarify that a significant part of the observed heavy dust event, as captured by CALIPSO,
is possibly misclassified as cloud on Figure 11b, where the cloud–aerosol discrimination
(CAD) score (not shown) reveals a relatively low level of confidence in the feature type
classification. The misclassification of the observed dense dust event possibly relates to the
set of the multidimensional probability density functions (PDF) [69] implemented under
the CALIOP operational cloud–aerosol discrimination algorithm (COCA) and the scene
classifier algorithm (SCA) [70], towards differentiating between clouds and aerosols [71,72].
The special characteristics of dust storms, such the high values of the attenuated backscatter
and volume depolarization ratio at 532 nm, in conjunction with the relatively low temper-
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ature and high-latitude of the event where infrequent dust events are observed [73–75],
compromise the full identification of high-latitude dust. However, the improvements made
in the framework of CALIPSO Version 4 algorithms [69,76] still result mostly in dust aerosol
subtype classification (Figure 11d).

Profiles of observed and predicted dust aerosol extinction coefficient at 532 nm, both
averaged over the CALIPSO path are shown in Figure 12. The DREAM model (black line)
successfully simulates the CALIOP-based pure-dust extinction coefficient averaged profile
(red line), reproducing the vertical structure both qualitative and quantitative, falling well
within the variability of the transported dust plume (±1 σ—shaded area). Such low dust
layer is typical for high latitudes, as a consequence of the dominating shallow mixing layer
conditions [77].
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532 nm vertical profiles averaged over the CALIPSO path for 12 September 2011.

3.2. September 2018 Case—Long–Range Dust Transport Episode

This dust event was captured by MODIS on 20 September 2018, showing at least
3 narrow dust plumes on the south coast of Iceland, visible both on true color and AOD
images (Figure 13). Northern winds with velocities higher than 10 ms−1 over south
Iceland lifted dust from the Landeyjarsandur and Markarfljót dust sources, and from
the Myrdalssandur, Meðallandssandur and Jokulhlaup sediments from Skafftá river area.
Skeidararsandur deposits were likely activated too.
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plumes reached Faroe Islands next day: (a) MODIS true color; and (b) MODIS AOD.
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The model predicted massive dust storm on 20 September 2018, lasting more than
24 h (Figure 14a,b) and the maximum surface dust concentrations reached Faroe Islands
on 21 September (Figure 14b). Another branch of the same system arrived at the British
Islands on the afternoon hours of the same day. Atmospheric circulation characterized
by intense north–west winds, dispersed dust towards the Faroe and British Islands as
indicated also by the MODIS AOD images (Figure 14c,d).
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(c–d) MODIS AOD.

The peak and timing of simulated surface dust concentration on 21 September over
the Faroe Islands well agree with the observations at Torshavn PM Station (Figure 15a).
Time–height evolution of the simulated dust passage over Torshavn shows that the dust
layer is mainly confined below 1.5 km, as displayed on Figure 15b. The model uncertainties
in this case, i.e., the difference between observed and modeled concentrations, are also the
consequence of the different factors mainly related to the wind filed simulation and source
specification in the model as explained in the analysis for the case study of the short range
transport. In this case, with long range transport verification, significant dust is transported
also over higher altitudes. The model also must distribute the dust properly in the vertical
direction as in the horizontal.
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Figure 15. Faroe Islands (Torshavn)—Dust episode 21–22 September 2018: (a) Observed (orange)
and predicted (blue) PM10 concentrations (µg m−3); and (b) time–height plot of dust concentra-
tion (µg m−3).

For the two selected stations in Great Britain (Chilbolton) and Ireland (Mace Head),
we present the height–time evolution of the dust event as represented by ceilometer
observations (Appendix D) and model data (Figures 16 and 17, respectively).
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Figure 16. Chilbolton station: (a) Time series of the model dust concentration (µg m−3) (upper)
and ceilometer attenuated backscatter (lower), along with aerosol type classification inferred using
air mass back trajectories; and (b) vertical profiles of the attenuated backscattering calculated from
the ceilometer observations (left) and of the dust concentration (µg m−3) predicted by the model
(right) for selected time intervals. Note: Boxes in the model images are approximately positioned in
accordance to those specified in the LIDAR/ceilometer analysis plot.
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Figure 17. Mace Head station: (a) Time series of the model dust concentration (µg m−3) (upper)
and ceilometer attenuated backscatter (lower), along with aerosol type classification inferred using
air mass back trajectories; and (b) vertical profiles of the attenuated backscattering calculated from
the ceilometer observations (left) and of the dust concentration (µg m−3) predicted by the model
(right) for selected time intervals. Note: Boxes in the model images are approximately positioned in
accordance to those specified in the LIDAR/ceilometer analysis plot.

Ceilometer measurements from the Chilbolton (51.15◦ N, 1.44◦ W) ACTRIS Cloud-
net station (www.actris.eu, accessed on 25 May 2022), for the 20–22 September 2018 case,
were used to validate the modelled dust concentration (Figure 16). The ceilometer is a
Vaisala CL51 operating at 910 nm [78] and calibrated following the procedure described
in [79], which allows providing the time series of the vertical profile of the aerosol attenu-
ated backscatter.

The left panel (Figure 16a) shows modeled (upper) and ceilometer (lower) height–time
evolution of the event over the time window from 17 UTC on 21 September to 08 UTC
on 22 September 2018. The boxes overlapped with the ceilometer time series shows the
atmospheric target classification along with the aerosol type: three main aerosol layers
are observed peaked at around 900 m, 1100 m and 1700 m above sea level. The aerosol
classification was carried out using the air mass back trajectories (not shown) from HYSPLIT
NOAA model [80]. Each layer has been classified as dust or mixed aerosol, depending on
the height of corresponding trajectory passing over Iceland. As shown in Figure 16a, the
model dust concentration fits well with the observed time–spatial patterns. The majority of
the predicted dust mass (upper plot on Figure 16a), associated with the developed cloud
system, reached Chilbolton around 22 UTC on 21 September 2018. According to ceilometer
data, dust layers tend to remain lower in height until the rain occurrence around 08:00
UTC on 22 September 2018. In addition, we compare the vertical profiles of the observed
attenuated backscatter coefficient with the modelled dust concentration averaged over five
consecutive hourly intervals between 17 and 22 UTC (Figure 16b).

The comparison, although semi-quantitative using the attenuated backscatter coeffi-
cient as a proxy of the aerosol concentration in the atmosphere, shows that:

• The aerosol dynamics provided by the model is in good agreement with the observa-
tions with a difference within ±1 h in the detection of the main features of the dust
event such as beginning, peak concentration, dynamical evolution;

• The model also detects a dust concentration at altitudes above 2.0–2.5 km above sea
level, especially on the 21 September 2018, which is not completely consistent with the
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observations and may be due to either a model overestimation or to the ceilometer’s
sensitivity at small dust concentration, which is more common than in case of lidar
observations [81].

No PM observations in Iceland and appropriate CALIPSO crossings are available for
this dust event. In general, the model reproduces the major features of the dust episode
observed at measurement sites distant more than 1000 km from the source region.

For the 20–22 September 2018 case, ceilometer measurements from the Mace Head
(51.15◦ N, 1.44◦ W) ACTRIS Cloudnet station (www.actris.eu, accessed on 25 May 2022)
have been used to validate the modeled dust concentration (Figure 17). Mace Head
ceilometer is a Lufft CHM15k operating at 1064 nm [81]. This is one of the most powerful
models available on the market, mainly due to its laser source. Time series of the vertical
profile of the aerosol attenuated backscatter are obtained applying a calibration factor.

The left panel (Figure 17a) shows modeled (upper) and ceilometer (lower) height–time
evolution of the event over the time window from 06 UTC on 21 September to 09 UTC on
22 September. The boxes overlapped with the ceilometer time series shows the atmospheric
target classification along with the aerosol type: two main aerosol layers are observed
peaking at around 500 m and 900 m above sea level. The classification was carried out
using the air mass back trajectories (not shown) from HYSPLIT NOAA model [80]. Cloud
and rain can be clearly identified by high values of the attenuated backscatter coefficient in
the boundary layer and close to surface, respectively, and by the extinction of the signal
above. Aerosol type is classified as dust or mixed aerosol depending on the height of
corresponding trajectory passing over Iceland. As shown in the figure, dust layers tend
to increase in altitude and concentration from 15 UTC until the rain occurrence on the
morning of 22 September. The model dust concentration is in very good agreement with
the observed time–spatial patterns both for the altitude of the layer and its concentration.
The comparison of vertical profiles of the observed attenuated backscatter with the model
dust concentration between 14 and 22 UTC is also shown on Figure 17b. The frequent
occurrence of clouds does not allow to get a sufficient statistic in other hourly intervals
during the same time window.

Assuming the attenuated backscatter coefficient as a semi–quantitative proxy of the
aerosol concentration in the atmosphere, the comparison shows that:

• The aerosol dynamics provided by the model is in good agreement with the observa-
tions for the detection of the largest part of the aerosol event, in the timing of the peak
concentration and in the maximum altitude reached by the dust. The most relevant
difference is at the end of the event when from the observations keeps a strong signal
until 03 UTC on 22 September, while the model shows a smaller concentration already
at 00 UTC on the same day;

• The profile comparison shows an almost perfect match between the shape of the
attenuated backscattering profiles and the model concentration. This is true both for
the altitudes of the layers and for the relative difference in their signals (i.e., attenuated
backscatter for the ceilometer and dust concentration for the model).

This long range transport sequence shown by the NOAA HYSPLIT trajectory (Figure 18a)
indicates the arrival of the Icelandic dust to the British Isles in the late afternoon hours
of 21 September 2018. The dust reached Mace Head (Ireland) after traveling more than
a thousand kilometers over the ocean. The comparison of the observed and modelled
concentrations is shown on Figure 18b. The increased model values, during several after-
noon and evening hours on 21 September 2018, agree with the observed pattern. Then,
the concentration decay during early morning hours on 22 September is captured by both
profiles, along with the secondary maximum in the afternoon hours of the same day.

www.actris.eu
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Figure 18. Mace Head station; (a) NOAA HYSPLIT model trajectory evidence on Icelandic dust
arriving at Mace Head at 21 UTC 21 September 2018; and (b) observed PM10 (orange) and model
surface concentration (blue) (µg m−3) over the period 21–22 September 2018. The red, blue and
green lines represent simulated trajectories from the HYSPLIT model. Each line represent air parcels
released from 3 different heights above ground level. Parcels are transported by the mean 3-D wind
field, provided by the atmospheric model.

3.3. October 2019 Case—Long–Range Dust Transport Episode

This dust event was captured by MODIS, showing visible dust plume extending to
about 400 km towards the British Isles (Figure 19a,b). Multiple dust hot-spots were activated
on 24 October 2019 with strong north winds with velocities higher than 20 ms−1 over the
southern Iceland (Myrdalssandur, Landeyjarsandur, Skeidararsandur, and Jokulhlaup
sediments from the Skaftá river area). Dust remained in the atmosphere between Iceland
and the British Isles until 26 October 2019.

 
 

 

 
Atmosphere 2022, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/atmosphere 

 

 

(a) 

 

(b) 

Figure 19. Cont.



Atmosphere 2022, 13, 1345 21 of 29

 
 

 

 
Atmosphere 2022, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/atmosphere 

 

 

(a) 

 

(b) 

Figure 19. MODIS satellite observed dust plume on 24 October 2019. (a) True color; and (b) AOD.

The model predicted the massive dust storm reaching North Ireland, together with
dust driven by a secondary cyclonic circulation orbiting around the Faroe Islands on
October 25 (Figure 20a–c). These dust patterns are consistent with the structure captured
by NASA MODIS AOD images (Figure 20d–f).
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According to the HYSPLIT trajectories (Figure 21a,b), which are in compliance with
the predicted surface dust concentration and the observed PM10 at Mace Head station
(Figure 21c), the Icelandic dust approached Ireland in the evening hours of 25 October 2019
and it persisted all the next day. The predicted dust concentration shows maximum values
for 26 October, as confirmed by the observed PM10, although the first peak in the model
profile (early morning hours on 26 October) is overestimating the observed PM values.
The model also produced an increased concentration before the observed increase, most
probably because of the same reasons, as in previous case studies (wind-filled forecast,
sources specification and point-on-point verification approach).
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Figure 21. The same explanation as for the Figure 18. Here we show the trajectories for 2 different
release heights. The evidence of dust arriving Mace Head station (Ireland) 25–26 October 2019; (a) and
(b) NOAA HYSPLIT backward trajectories for 25 and 26 October 2019, respectively; and (c) observed
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4. Conclusions

Being constantly exposed to intense glacial and aeolian activity, Icelandic soils and
volcanic sediments constitute the largest European dust source, and one of the most
productive sources of mineral dust at high latitudes. Current operational dust transport
models, with typical horizontal resolution of about 10 km, cannot recognize such sources
and their physical characteristics, specifically small-scale highly emissive areas defined as
“hot-spots”. By combining information on Icelandic topsoil characteristics from numerous
field campaigns, we developed a high resolution dust source mask with specific particle
size distribution and emissivity potential for each source area. It represents the main
input parameter for the upgraded fully dynamic coupled atmosphere–dust emission and
transport model (DREAM). In this research, three case studies were selected to assess
the model quality performance in simulating the Icelandic dust transport over various
time–spatial scales.

Selected case studies of dust transport demonstrated the model’s capability to forecast
both large- and small-scale dust transport episodes. All major features, such as timing,
horizontal and vertical distribution of the processes, as well as capability to maintain such
patterns over long distances, are in accordance with the observations.

The dust episode in September 2011, which mainly affected Iceland and its neighbor-
ing area, represented a case of intensive short range dust transport. Analyzing satellite
products such as MODIS (Terra/Aqua), Corrected Reflectance (True Color) and Aerosol
Optical Depth, we showed that the model is capable to reproduce complex horizontal dust
patterns as well as timing of the process. The model dust extinction coefficient at 532 nm
and dust concentration vertical profiles demonstrated good agreement with corresponding
CALISPO profiles of extinction coefficient and aerosol/feature types. Comparison between
observed and modelled surface PM10 concentration for Iceland’s capital Reykjavik proved
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the model’s ability to predict relatively rapid increases and decreases of particles concentra-
tion, which represents one of the main characteristics of the short–lived dust storms.

Dust episodes in September 2018 and October 2019, with Icelandic dust aerosol reach-
ing Great Britain, Ireland and the Faroe Islands, have been chosen to evaluate model
performance in forecasting long-range dust transport that originated from small-scale
hot-spot sources. Model surface dust concentration patterns were confirmed by the NASA
MODIS satellite products such as (Terra/Aqua) Corrected Reflectance (True Color) and
Aerosol Optical Depth. Ceilometer attenuated backscatter measurements at Mace Head
(Ireland) and Chilbolton (UK), and related aerosol type classification, are in good agreement
with corresponding structure of the dust layer provided in the model dust concentration
profiles. Atmospheric dust transport over the Atlantic, characterized by the fact that the
majority of the dust mass is concentrated in the lower atmosphere (below 3 km), is also suc-
cessfully simulated with DREAM model and confirmed by ceilometer/Lidar observations.
The comparison between the observed and modeled surface PM10 concentrations for the
abovementioned stations showed that the prognostic system is able to forecast the timing
of dust reaching areas after traveling even thousands of kilometers from sources with a
time accuracy of about 2 h. NOAA HYSPLIT backward trajectories are also in accordance
with the modeled results of these long-range Icelandic dust transport events.

This study confirmed the findings of emerging studies on long-range transport of
Icelandic dust (and HLD generally) towards the High Arctic and Europe [16,20,21,28] and
Icelandic dust impacts on climate [42,82]. The evidence of long-range transport during high
latitude dust storms is scarce, but such events are noted as an important climate system
feature in recent literature. Better understanding of these storms can contribute to the future
development of high latitude dust forecasting and implementation of aerosol component
in climate models, because of its potentially important connection to changing climate.

Analysis of the selected case studies also highlights the limitations of the dust model
to predict the observed concentrations at the location with observations. Due to the scarce
surface PM10 observations, and no available wind measurements at the same location or in
the vicinity and over source area, it remains unknown if the cause for the false dust peaks
is the local overestimation of the surface wind velocity, wind direction or specification of
the dust sources and its characteristics in the model. The approach in the verification of
dust model using surface measurements, here called point-on-point verification, in cases
when there is a large spatial variability of dust concentrations, could be misleading. The
methodology for such verifications should be revised to avoid misleading conclusions about
model bias when dust plumes are somewhat displaced compared to their propagation in
the reality. Thus far, for the dust forecasting in general and especially for the forecasting of
local severe dust storms, the best expected dust forecast quality remains unknown.

This study demonstrated the ability of the model to predict features of both long-range
and short-term transport of high latitude dust, thus opening an opportunity for accessing
various interactions with the environment and climate. These are dust effects to marine
geochemistry, impact of airborne dust content on radiation balance, dust–cloud interactions,
darkening of snow/ice surfaces, glacial melting, change in emissive surfaces due to glacier
retrievals, and many more. Further research needs to refine the sources parameterization
methodology, such as including sources distribution annual dynamics and better represen-
tation of source emission capacities in order to avoid potential overestimation of emissions,
false alarms and underestimation of emissions of other potentially emissive areas.

Based on the presented research, Republic Hydrometeorological Service of Serbia
(RHMSS) has established a daily Icelandic dust forecast since April 2018 [83,84]. Forecast
products are also shared at the WMO SDS–WAS portal (https://sds-was.aemet.es/news/
new-icelandic-dust-forecast, accessed on 25 May 2022).

https://sds-was.aemet.es/news/new-icelandic-dust-forecast
https://sds-was.aemet.es/news/new-icelandic-dust-forecast
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Appendix A. Particle Size Distribution Observations

The grain size distribution was determined using a laser particle size analyzer CILAS
1190 LD (measurements range from 0.04 to 2500 µm). The measurement was taken after
sufficient dispersion was provided by reaction of the sample with KOH for 10 min.

https://sds-was.aemet.es/
https://www.ready.noaa.gov
https://worldview.earthdata.nasa.gov
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Appendix B. MODIS AOD

Columnar aerosol observations from the MODerate resolution Imaging Spectrora-
diometer (MODIS), onboard the Terra and Aqua polar orbit satellites, have been processed
for the assessment of the Icelandic dust outbreaks’ numerical simulations. More specifically,
the aerosol optical depth at 550 nm (AOD550), obtained from the latest version (Collec-
tion 6.1) of the MODIS retrieval algorithms, has been utilized. As it has been described
in [85], the AODs acquired from three retrieval algorithms [86–88], relying on different
assumptions based on the underlying surface type, have been merged. At each MODIS
swath (Level 2 data; L2), only the most reliable (QA = 3; [89]) AODs are kept, which
subsequently are combined and are regridded on a daily basis in order to depict the sus-
pended loads’ patterns at fine spatial resolution (0.1◦ × 0.1◦). The MODIS data that have
been used for the purposes of the current study are freely available from the Level–1 and
Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center
(DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 25 May 2022).

Appendix C. CALIOP

High-resolved observations of aerosols, for the vertical assessment of the Icelandic
dust outbreaks numerical simulations, have been provided by the Cloud–Aerosol Lidar
with Orthogonal Polarization (CALIOP), the elastic backscatter lidar and primary instru-
ment on-board the sun-synchronous, polar-orbit and part of the Afternoon–Train (A–Train)
constellation of Earth-observation satellites, Cloud–Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) [90]. In the framework of the study, we utilize CALIOP
Version 4.2 Level 2 (L2) aerosol and cloud profiles of backscatter coefficient and particulate
depolarization ratio at 532 nm [91], in addition with the feature type and aerosol subtype
of the detected atmospheric layers [68], along the CALIPSO orbit track. In addition, a
methodology originally established in the framework of the Aerosol Research Lidar Net-
work (EARLINET) [92], towards the decoupling of the pure-dust component from the total
aerosol load [93], is applied to CALIPSO–CALIOP observations [94]. More specifically, the
methodology includes CALIOP L2 and L3 quality assurance procedures [95,96], assumes
CALIOP aerosol subtypes “polluted dust”, “dusty marine”, and “dust” as external mix-
tures of a pure-dust and a non-dust component, towards the derivation of CALIPSO-based
pure-dust extinction coefficient profiles at 532 nm [97].

Appendix D. Lidar/Ceilometer Observations

It is well known that ceilometers are useful instruments to characterize the vertical
structure of the atmosphere in an operational way, although without an appropriate cali-
bration [78,81,98], as they cannot estimate the aerosol attenuated backscatter. Moreover,
quantitative estimation of aerosol optical properties may be affected by large uncertainties
due to the lower signal-to-noise of this type of instruments. In the absence of ancillary
information, from a Raman lidar, a sun-photometer or air mass back trajectories, the typing
of aerosol particles may be challenging.
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